]> git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
CHG: extracted a #define for the crc16 poly
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdlib.h>
12 #include <string.h>
13 #include "lfdemod.h"
14 #include "common.h"
15
16 //un_comment to allow debug print calls when used not on device
17 void dummy(char *fmt, ...){}
18
19 #ifndef ON_DEVICE
20 #include "ui.h"
21 #include "cmdparser.h"
22 #include "cmddata.h"
23 #define prnt PrintAndLog
24 #else
25 uint8_t g_debugMode=0;
26 #define prnt dummy
27 #endif
28
29 uint8_t justNoise(uint8_t *BitStream, size_t size)
30 {
31 static const uint8_t THRESHOLD = 123;
32 //test samples are not just noise
33 uint8_t justNoise1 = 1;
34 for(size_t idx=0; idx < size && justNoise1 ;idx++){
35 justNoise1 = BitStream[idx] < THRESHOLD;
36 }
37 return justNoise1;
38 }
39
40 //by marshmellow
41 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
42 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
43 {
44 *high=0;
45 *low=255;
46 // get high and low thresholds
47 for (size_t i=0; i < size; i++){
48 if (BitStream[i] > *high) *high = BitStream[i];
49 if (BitStream[i] < *low) *low = BitStream[i];
50 }
51 if (*high < 123) return -1; // just noise
52 *high = ((*high-128)*fuzzHi + 12800)/100;
53 *low = ((*low-128)*fuzzLo + 12800)/100;
54 return 1;
55 }
56
57 // by marshmellow
58 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
59 // returns 1 if passed
60 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
61 {
62 uint8_t ans = 0;
63 for (uint8_t i = 0; i < bitLen; i++){
64 ans ^= ((bits >> i) & 1);
65 }
66 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
67 return (ans == pType);
68 }
69
70 //by marshmellow
71 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
72 // Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
73 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
74 {
75 uint32_t parityWd = 0;
76 size_t j = 0, bitCnt = 0;
77 for (int word = 0; word < (bLen); word+=pLen){
78 for (int bit=0; bit < pLen; bit++){
79 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
80 BitStream[j++] = (BitStream[startIdx+word+bit]);
81 }
82 j--; // overwrite parity with next data
83 // if parity fails then return 0
84 if (pType == 2) { // then marker bit which should be a 1
85 if (!BitStream[j]) return 0;
86 } else {
87 if (parityTest(parityWd, pLen, pType) == 0) return 0;
88 }
89 bitCnt+=(pLen-1);
90 parityWd = 0;
91 }
92 // if we got here then all the parities passed
93 //return ID start index and size
94 return bitCnt;
95 }
96
97 // by marshmellow
98 // takes a array of binary values, length of bits per parity (includes parity bit),
99 // Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
100 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
101 {
102 uint32_t parityWd = 0;
103 size_t j = 0, bitCnt = 0;
104 for (int word = 0; word < sourceLen; word+=pLen-1) {
105 for (int bit=0; bit < pLen-1; bit++){
106 parityWd = (parityWd << 1) | BitSource[word+bit];
107 dest[j++] = (BitSource[word+bit]);
108 }
109 // if parity fails then return 0
110 if (pType == 2) { // then marker bit which should be a 1
111 dest[j++]=1;
112 } else {
113 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
114 }
115 bitCnt += pLen;
116 parityWd = 0;
117 }
118 // if we got here then all the parities passed
119 //return ID start index and size
120 return bitCnt;
121 }
122
123 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
124 {
125 uint32_t num = 0;
126 for(int i = 0 ; i < numbits ; i++)
127 {
128 num = (num << 1) | (*src);
129 src++;
130 }
131 return num;
132 }
133
134 //least significant bit first
135 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
136 {
137 uint32_t num = 0;
138 for(int i = 0 ; i < numbits ; i++) {
139 num = (num << 1) | *(src + (numbits-(i+1)));
140 }
141 return num;
142 }
143
144 //by marshmellow
145 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
146 uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
147 {
148 uint8_t foundCnt=0;
149 for (int idx=0; idx < *size - pLen; idx++){
150 if (memcmp(BitStream+idx, preamble, pLen) == 0){
151 //first index found
152 foundCnt++;
153 if (foundCnt == 1){
154 *startIdx = idx;
155 }
156 if (foundCnt == 2){
157 *size = idx - *startIdx;
158 return 1;
159 }
160 }
161 }
162 return 0;
163 }
164
165 //by marshmellow
166 //takes 1s and 0s and searches for EM410x format - output EM ID
167 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
168 {
169 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
170 // otherwise could be a void with no arguments
171 //set defaults
172 uint32_t i = 0;
173 if (BitStream[1]>1) return 0; //allow only 1s and 0s
174
175 // 111111111 bit pattern represent start of frame
176 // include 0 in front to help get start pos
177 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
178 uint32_t idx = 0;
179 uint32_t parityBits = 0;
180 uint8_t errChk = 0;
181 uint8_t FmtLen = 10;
182 *startIdx = 0;
183 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
184 if (errChk == 0 || *size < 64) return 0;
185 if (*size > 64) FmtLen = 22;
186 *startIdx += 1; //get rid of 0 from preamble
187 idx = *startIdx + 9;
188 for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
189 parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
190 //check even parity - quit if failed
191 if (parityTest(parityBits, 5, 0) == 0) return 0;
192 //set uint64 with ID from BitStream
193 for (uint8_t ii=0; ii<4; ii++){
194 *hi = (*hi << 1) | (*lo >> 63);
195 *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
196 }
197 }
198 if (errChk != 0) return 1;
199 //skip last 5 bit parity test for simplicity.
200 // *size = 64 | 128;
201 return 0;
202 }
203
204 //by marshmellow
205 //demodulates strong heavily clipped samples
206 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
207 {
208 size_t bitCnt=0, smplCnt=0, errCnt=0;
209 uint8_t waveHigh = 0;
210 for (size_t i=0; i < *size; i++){
211 if (BinStream[i] >= high && waveHigh){
212 smplCnt++;
213 } else if (BinStream[i] <= low && !waveHigh){
214 smplCnt++;
215 } else { //transition
216 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
217 if (smplCnt > clk-(clk/4)-1) { //full clock
218 if (smplCnt > clk + (clk/4)+1) { //too many samples
219 errCnt++;
220 BinStream[bitCnt++]=7;
221 } else if (waveHigh) {
222 BinStream[bitCnt++] = invert;
223 BinStream[bitCnt++] = invert;
224 } else if (!waveHigh) {
225 BinStream[bitCnt++] = invert ^ 1;
226 BinStream[bitCnt++] = invert ^ 1;
227 }
228 waveHigh ^= 1;
229 smplCnt = 0;
230 } else if (smplCnt > (clk/2) - (clk/4)-1) {
231 if (waveHigh) {
232 BinStream[bitCnt++] = invert;
233 } else if (!waveHigh) {
234 BinStream[bitCnt++] = invert ^ 1;
235 }
236 waveHigh ^= 1;
237 smplCnt = 0;
238 } else if (!bitCnt) {
239 //first bit
240 waveHigh = (BinStream[i] >= high);
241 smplCnt = 1;
242 } else {
243 smplCnt++;
244 //transition bit oops
245 }
246 } else { //haven't hit new high or new low yet
247 smplCnt++;
248 }
249 }
250 }
251 *size = bitCnt;
252 return errCnt;
253 }
254
255 //by marshmellow
256 void askAmp(uint8_t *BitStream, size_t size)
257 {
258 for(size_t i = 1; i<size; i++){
259 if (BitStream[i]-BitStream[i-1]>=30) //large jump up
260 BitStream[i]=127;
261 else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
262 BitStream[i]=-127;
263 }
264 return;
265 }
266
267 //by marshmellow
268 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
269 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
270 {
271 if (*size==0) return -1;
272 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
273 if (*clk==0 || start < 0) return -3;
274 if (*invert != 1) *invert = 0;
275 if (amp==1) askAmp(BinStream, *size);
276 if (g_debugMode==2) prnt("DEBUG: clk %d, beststart %d", *clk, start);
277
278 uint8_t initLoopMax = 255;
279 if (initLoopMax > *size) initLoopMax = *size;
280 // Detect high and lows
281 //25% clip in case highs and lows aren't clipped [marshmellow]
282 int high, low;
283 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
284 return -2; //just noise
285
286 size_t errCnt = 0;
287 // if clean clipped waves detected run alternate demod
288 if (DetectCleanAskWave(BinStream, *size, high, low)) {
289 if (g_debugMode==2) prnt("DEBUG: Clean Wave Detected");
290 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
291 if (askType) //askman
292 return manrawdecode(BinStream, size, 0);
293 else //askraw
294 return errCnt;
295 }
296
297 int lastBit; //set first clock check - can go negative
298 size_t i, bitnum = 0; //output counter
299 uint8_t midBit = 0;
300 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
301 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
302 size_t MaxBits = 3072;
303 lastBit = start - *clk;
304
305 for (i = start; i < *size; ++i) {
306 if (i-lastBit >= *clk-tol){
307 if (BinStream[i] >= high) {
308 BinStream[bitnum++] = *invert;
309 } else if (BinStream[i] <= low) {
310 BinStream[bitnum++] = *invert ^ 1;
311 } else if (i-lastBit >= *clk+tol) {
312 if (bitnum > 0) {
313 BinStream[bitnum++]=7;
314 errCnt++;
315 }
316 } else { //in tolerance - looking for peak
317 continue;
318 }
319 midBit = 0;
320 lastBit += *clk;
321 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
322 if (BinStream[i] >= high) {
323 BinStream[bitnum++] = *invert;
324 } else if (BinStream[i] <= low) {
325 BinStream[bitnum++] = *invert ^ 1;
326 } else if (i-lastBit >= *clk/2+tol) {
327 BinStream[bitnum] = BinStream[bitnum-1];
328 bitnum++;
329 } else { //in tolerance - looking for peak
330 continue;
331 }
332 midBit = 1;
333 }
334 if (bitnum >= MaxBits) break;
335 }
336 *size = bitnum;
337 return errCnt;
338 }
339
340 //by marshmellow
341 //take 10 and 01 and manchester decode
342 //run through 2 times and take least errCnt
343 int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
344 {
345 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
346 size_t i, ii;
347 uint16_t bestErr = 1000, bestRun = 0;
348 if (*size < 16) return -1;
349 //find correct start position [alignment]
350 for (ii=0;ii<2;++ii){
351 for (i=ii; i<*size-3; i+=2)
352 if (BitStream[i]==BitStream[i+1])
353 errCnt++;
354
355 if (bestErr>errCnt){
356 bestErr=errCnt;
357 bestRun=ii;
358 }
359 errCnt=0;
360 }
361 //decode
362 for (i=bestRun; i < *size-3; i+=2){
363 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
364 BitStream[bitnum++]=invert;
365 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
366 BitStream[bitnum++]=invert^1;
367 } else {
368 BitStream[bitnum++]=7;
369 }
370 if(bitnum>MaxBits) break;
371 }
372 *size=bitnum;
373 return bestErr;
374 }
375
376 uint32_t manchesterEncode2Bytes(uint16_t datain) {
377 uint32_t output = 0;
378 uint8_t curBit = 0;
379 for (uint8_t i=0; i<16; i++) {
380 curBit = (datain >> (15-i) & 1);
381 output |= (1<<(((15-i)*2)+curBit));
382 }
383 return output;
384 }
385
386 //by marshmellow
387 //encode binary data into binary manchester
388 int ManchesterEncode(uint8_t *BitStream, size_t size)
389 {
390 size_t modIdx=20000, i=0;
391 if (size>modIdx) return -1;
392 for (size_t idx=0; idx < size; idx++){
393 BitStream[idx+modIdx++] = BitStream[idx];
394 BitStream[idx+modIdx++] = BitStream[idx]^1;
395 }
396 for (; i<(size*2); i++){
397 BitStream[i] = BitStream[i+20000];
398 }
399 return i;
400 }
401
402 //by marshmellow
403 //take 01 or 10 = 1 and 11 or 00 = 0
404 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
405 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
406 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
407 {
408 uint16_t bitnum = 0;
409 uint16_t errCnt = 0;
410 size_t i = offset;
411 uint16_t MaxBits=512;
412 //if not enough samples - error
413 if (*size < 51) return -1;
414 //check for phase change faults - skip one sample if faulty
415 uint8_t offsetA = 1, offsetB = 1;
416 for (; i<48; i+=2){
417 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
418 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
419 }
420 if (!offsetA && offsetB) offset++;
421 for (i=offset; i<*size-3; i+=2){
422 //check for phase error
423 if (BitStream[i+1]==BitStream[i+2]) {
424 BitStream[bitnum++]=7;
425 errCnt++;
426 }
427 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
428 BitStream[bitnum++]=1^invert;
429 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
430 BitStream[bitnum++]=invert;
431 } else {
432 BitStream[bitnum++]=7;
433 errCnt++;
434 }
435 if(bitnum>MaxBits) break;
436 }
437 *size=bitnum;
438 return errCnt;
439 }
440
441 // by marshmellow
442 // demod gProxIIDemod
443 // error returns as -x
444 // success returns start position in BitStream
445 // BitStream must contain previously askrawdemod and biphasedemoded data
446 int gProxII_Demod(uint8_t BitStream[], size_t *size)
447 {
448 size_t startIdx=0;
449 uint8_t preamble[] = {1,1,1,1,1,0};
450
451 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
452 if (errChk == 0) return -3; //preamble not found
453 if (*size != 96) return -2; //should have found 96 bits
454 //check first 6 spacer bits to verify format
455 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
456 //confirmed proper separator bits found
457 //return start position
458 return (int) startIdx;
459 }
460 return -5;
461 }
462
463 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
464 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
465 {
466 size_t last_transition = 0;
467 size_t idx = 1;
468 //uint32_t maxVal=0;
469 if (fchigh==0) fchigh=10;
470 if (fclow==0) fclow=8;
471 //set the threshold close to 0 (graph) or 128 std to avoid static
472 uint8_t threshold_value = 123;
473 size_t preLastSample = 0;
474 size_t LastSample = 0;
475 size_t currSample = 0;
476 // sync to first lo-hi transition, and threshold
477
478 // Need to threshold first sample
479 // skip 160 samples to allow antenna/samples to settle
480 if(dest[160] < threshold_value) dest[0] = 0;
481 else dest[0] = 1;
482
483 size_t numBits = 0;
484 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
485 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
486 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
487 for(idx = 161; idx < size-20; idx++) {
488 // threshold current value
489
490 if (dest[idx] < threshold_value) dest[idx] = 0;
491 else dest[idx] = 1;
492
493 // Check for 0->1 transition
494 if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
495 preLastSample = LastSample;
496 LastSample = currSample;
497 currSample = idx-last_transition;
498 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
499 //do nothing with extra garbage
500 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves or 3-6 = 5
501 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
502 dest[numBits-1]=1; //correct previous 9 wave surrounded by 8 waves
503 }
504 dest[numBits++]=1;
505
506 } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = garbage
507 //do nothing with beginning garbage
508 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's
509 dest[numBits++]=1;
510 } else { //9+ = 10 sample waves
511 dest[numBits++]=0;
512 }
513 last_transition = idx;
514 }
515 }
516 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
517 }
518
519 //translate 11111100000 to 10
520 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
521 uint8_t invert, uint8_t fchigh, uint8_t fclow)
522 {
523 uint8_t lastval=dest[0];
524 size_t idx=0;
525 size_t numBits=0;
526 uint32_t n=1;
527 for( idx=1; idx < size; idx++) {
528 n++;
529 if (dest[idx]==lastval) continue;
530
531 //if lastval was 1, we have a 1->0 crossing
532 if (dest[idx-1]==1) {
533 n = (n * fclow + rfLen/2) / rfLen;
534 } else {// 0->1 crossing
535 n = (n * fchigh + rfLen/2) / rfLen;
536 }
537 if (n == 0) n = 1;
538
539 memset(dest+numBits, dest[idx-1]^invert , n);
540 numBits += n;
541 n=0;
542 lastval=dest[idx];
543 }//end for
544 // if valid extra bits at the end were all the same frequency - add them in
545 if (n > rfLen/fchigh) {
546 if (dest[idx-2]==1) {
547 n = (n * fclow + rfLen/2) / rfLen;
548 } else {
549 n = (n * fchigh + rfLen/2) / rfLen;
550 }
551 memset(dest+numBits, dest[idx-1]^invert , n);
552 numBits += n;
553 }
554 return numBits;
555 }
556
557 //by marshmellow (from holiman's base)
558 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
559 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
560 {
561 // FSK demodulator
562 size = fsk_wave_demod(dest, size, fchigh, fclow);
563 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
564 return size;
565 }
566
567 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
568 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
569 {
570 if (justNoise(dest, *size)) return -1;
571
572 size_t numStart=0, size2=*size, startIdx=0;
573 // FSK demodulator
574 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
575 if (*size < 96*2) return -2;
576 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
577 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
578 // find bitstring in array
579 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
580 if (errChk == 0) return -3; //preamble not found
581
582 numStart = startIdx + sizeof(preamble);
583 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
584 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
585 if (dest[idx] == dest[idx+1]){
586 return -4; //not manchester data
587 }
588 *hi2 = (*hi2<<1)|(*hi>>31);
589 *hi = (*hi<<1)|(*lo>>31);
590 //Then, shift in a 0 or one into low
591 if (dest[idx] && !dest[idx+1]) // 1 0
592 *lo=(*lo<<1)|1;
593 else // 0 1
594 *lo=(*lo<<1)|0;
595 }
596 return (int)startIdx;
597 }
598
599 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
600 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
601 {
602 if (justNoise(dest, *size)) return -1;
603
604 size_t numStart=0, size2=*size, startIdx=0;
605 // FSK demodulator
606 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
607 if (*size < 96) return -2;
608
609 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
610 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
611
612 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
613 if (errChk == 0) return -3; //preamble not found
614
615 numStart = startIdx + sizeof(preamble);
616 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
617 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
618 if (dest[idx] == dest[idx+1])
619 return -4; //not manchester data
620 *hi2 = (*hi2<<1)|(*hi>>31);
621 *hi = (*hi<<1)|(*lo>>31);
622 //Then, shift in a 0 or one into low
623 if (dest[idx] && !dest[idx+1]) // 1 0
624 *lo=(*lo<<1)|1;
625 else // 0 1
626 *lo=(*lo<<1)|0;
627 }
628 return (int)startIdx;
629 }
630
631 int IOdemodFSK(uint8_t *dest, size_t size)
632 {
633 if (justNoise(dest, size)) return -1;
634 //make sure buffer has data
635 if (size < 66*64) return -2;
636 // FSK demodulator
637 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
638 if (size < 65) return -3; //did we get a good demod?
639 //Index map
640 //0 10 20 30 40 50 60
641 //| | | | | | |
642 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
643 //-----------------------------------------------------------------------------
644 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
645 //
646 //XSF(version)facility:codeone+codetwo
647 //Handle the data
648 size_t startIdx = 0;
649 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
650 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
651 if (errChk == 0) return -4; //preamble not found
652
653 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
654 //confirmed proper separator bits found
655 //return start position
656 return (int) startIdx;
657 }
658 return -5;
659 }
660
661 // by marshmellow
662 // find viking preamble 0xF200 in already demoded data
663 int VikingDemod_AM(uint8_t *dest, size_t *size) {
664 //make sure buffer has data
665 if (*size < 64*2) return -2;
666
667 size_t startIdx = 0;
668 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
669 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
670 if (errChk == 0) return -4; //preamble not found
671 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
672 ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8)
673 ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
674 if ( checkCalc != 0xA8 ) return -5;
675 if (*size != 64) return -6;
676 //return start position
677 return (int) startIdx;
678 }
679
680 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
681 // BitStream must contain previously askrawdemod and biphasedemoded data
682 int FDXBdemodBI(uint8_t *dest, size_t *size)
683 {
684 //make sure buffer has enough data
685 if (*size < 128) return -1;
686
687 size_t startIdx = 0;
688 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
689
690 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
691 if (errChk == 0) return -2; //preamble not found
692 return (int)startIdx;
693 }
694
695 // by marshmellow
696 // FSK Demod then try to locate an AWID ID
697 int AWIDdemodFSK(uint8_t *dest, size_t *size)
698 {
699 //make sure buffer has enough data
700 if (*size < 96*50) return -1;
701
702 if (justNoise(dest, *size)) return -2;
703
704 // FSK demodulator
705 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
706 if (*size < 96) return -3; //did we get a good demod?
707
708 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
709 size_t startIdx = 0;
710 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
711 if (errChk == 0) return -4; //preamble not found
712 if (*size != 96) return -5;
713 return (int)startIdx;
714 }
715
716 // by marshmellow
717 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
718 int PyramiddemodFSK(uint8_t *dest, size_t *size)
719 {
720 //make sure buffer has data
721 if (*size < 128*50) return -5;
722
723 //test samples are not just noise
724 if (justNoise(dest, *size)) return -1;
725
726 // FSK demodulator
727 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
728 if (*size < 128) return -2; //did we get a good demod?
729
730 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
731 size_t startIdx = 0;
732 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
733 if (errChk == 0) return -4; //preamble not found
734 if (*size != 128) return -3;
735 return (int)startIdx;
736 }
737
738 // by marshmellow
739 // to detect a wave that has heavily clipped (clean) samples
740 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
741 {
742 bool allArePeaks = true;
743 uint16_t cntPeaks=0;
744 size_t loopEnd = 512+160;
745 if (loopEnd > size) loopEnd = size;
746 for (size_t i=160; i<loopEnd; i++){
747 if (dest[i]>low && dest[i]<high)
748 allArePeaks = false;
749 else
750 cntPeaks++;
751 }
752 if (!allArePeaks){
753 if (cntPeaks > 300) return true;
754 }
755 return allArePeaks;
756 }
757 // by marshmellow
758 // to help detect clocks on heavily clipped samples
759 // based on count of low to low
760 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
761 {
762 uint8_t fndClk[] = {8,16,32,40,50,64,128};
763 size_t startwave;
764 size_t i = 100;
765 size_t minClk = 255;
766 // get to first full low to prime loop and skip incomplete first pulse
767 while ((dest[i] < high) && (i < size))
768 ++i;
769 while ((dest[i] > low) && (i < size))
770 ++i;
771
772 // loop through all samples
773 while (i < size) {
774 // measure from low to low
775 while ((dest[i] > low) && (i < size))
776 ++i;
777 startwave= i;
778 while ((dest[i] < high) && (i < size))
779 ++i;
780 while ((dest[i] > low) && (i < size))
781 ++i;
782 //get minimum measured distance
783 if (i-startwave < minClk && i < size)
784 minClk = i - startwave;
785 }
786 // set clock
787 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
788 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
789 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
790 return fndClk[clkCnt];
791 }
792 return 0;
793 }
794
795 // by marshmellow
796 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
797 // maybe somehow adjust peak trimming value based on samples to fix?
798 // return start index of best starting position for that clock and return clock (by reference)
799 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
800 {
801 size_t i=1;
802 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
803 uint8_t clkEnd = 9;
804 uint8_t loopCnt = 255; //don't need to loop through entire array...
805 if (size <= loopCnt+60) return -1; //not enough samples
806 size -= 60; //sometimes there is a strange end wave - filter out this....
807 //if we already have a valid clock
808 uint8_t clockFnd=0;
809 for (;i<clkEnd;++i)
810 if (clk[i] == *clock) clockFnd = i;
811 //clock found but continue to find best startpos
812
813 //get high and low peak
814 int peak, low;
815 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
816
817 //test for large clean peaks
818 if (!clockFnd){
819 if (DetectCleanAskWave(dest, size, peak, low)==1){
820 int ans = DetectStrongAskClock(dest, size, peak, low);
821 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
822 for (i=clkEnd-1; i>0; i--){
823 if (clk[i] == ans) {
824 *clock = ans;
825 //clockFnd = i;
826 return 0; // for strong waves i don't use the 'best start position' yet...
827 //break; //clock found but continue to find best startpos [not yet]
828 }
829 }
830 }
831 }
832 uint8_t ii;
833 uint8_t clkCnt, tol = 0;
834 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
835 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
836 size_t errCnt = 0;
837 size_t arrLoc, loopEnd;
838
839 if (clockFnd>0) {
840 clkCnt = clockFnd;
841 clkEnd = clockFnd+1;
842 }
843 else clkCnt=1;
844
845 //test each valid clock from smallest to greatest to see which lines up
846 for(; clkCnt < clkEnd; clkCnt++){
847 if (clk[clkCnt] <= 32){
848 tol=1;
849 }else{
850 tol=0;
851 }
852 //if no errors allowed - keep start within the first clock
853 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
854 bestErr[clkCnt]=1000;
855 //try lining up the peaks by moving starting point (try first few clocks)
856 for (ii=0; ii < loopCnt; ii++){
857 if (dest[ii] < peak && dest[ii] > low) continue;
858
859 errCnt=0;
860 // now that we have the first one lined up test rest of wave array
861 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
862 for (i=0; i < loopEnd; ++i){
863 arrLoc = ii + (i * clk[clkCnt]);
864 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
865 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
866 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
867 }else{ //error no peak detected
868 errCnt++;
869 }
870 }
871 //if we found no errors then we can stop here and a low clock (common clocks)
872 // this is correct one - return this clock
873 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
874 if(errCnt==0 && clkCnt<7) {
875 if (!clockFnd) *clock = clk[clkCnt];
876 return ii;
877 }
878 //if we found errors see if it is lowest so far and save it as best run
879 if(errCnt<bestErr[clkCnt]){
880 bestErr[clkCnt]=errCnt;
881 bestStart[clkCnt]=ii;
882 }
883 }
884 }
885 uint8_t iii;
886 uint8_t best=0;
887 for (iii=1; iii<clkEnd; ++iii){
888 if (bestErr[iii] < bestErr[best]){
889 if (bestErr[iii] == 0) bestErr[iii]=1;
890 // current best bit to error ratio vs new bit to error ratio
891 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
892 best = iii;
893 }
894 }
895 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
896 }
897 if (!clockFnd) *clock = clk[best];
898 return bestStart[best];
899 }
900
901 //by marshmellow
902 //detect psk clock by reading each phase shift
903 // a phase shift is determined by measuring the sample length of each wave
904 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
905 {
906 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
907 uint16_t loopCnt = 4096; //don't need to loop through entire array...
908 if (size == 0) return 0;
909 if (size<loopCnt) loopCnt = size-20;
910
911 //if we already have a valid clock quit
912 size_t i=1;
913 for (; i < 8; ++i)
914 if (clk[i] == clock) return clock;
915
916 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
917 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
918 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
919 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
920 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
921 fc = countFC(dest, size, 0);
922 if (fc!=2 && fc!=4 && fc!=8) return -1;
923 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
924
925 //find first full wave
926 for (i=160; i<loopCnt; i++){
927 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
928 if (waveStart == 0) {
929 waveStart = i+1;
930 //prnt("DEBUG: waveStart: %d",waveStart);
931 } else {
932 waveEnd = i+1;
933 //prnt("DEBUG: waveEnd: %d",waveEnd);
934 waveLenCnt = waveEnd-waveStart;
935 if (waveLenCnt > fc){
936 firstFullWave = waveStart;
937 fullWaveLen=waveLenCnt;
938 break;
939 }
940 waveStart=0;
941 }
942 }
943 }
944 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
945
946 //test each valid clock from greatest to smallest to see which lines up
947 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
948 lastClkBit = firstFullWave; //set end of wave as clock align
949 waveStart = 0;
950 errCnt=0;
951 peakcnt=0;
952 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
953
954 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
955 //top edge of wave = start of new wave
956 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
957 if (waveStart == 0) {
958 waveStart = i+1;
959 waveLenCnt=0;
960 } else { //waveEnd
961 waveEnd = i+1;
962 waveLenCnt = waveEnd-waveStart;
963 if (waveLenCnt > fc){
964 //if this wave is a phase shift
965 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
966 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
967 peakcnt++;
968 lastClkBit+=clk[clkCnt];
969 } else if (i<lastClkBit+8){
970 //noise after a phase shift - ignore
971 } else { //phase shift before supposed to based on clock
972 errCnt++;
973 }
974 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
975 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
976 }
977 waveStart=i+1;
978 }
979 }
980 }
981 if (errCnt == 0){
982 return clk[clkCnt];
983 }
984 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
985 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
986 }
987 //all tested with errors
988 //return the highest clk with the most peaks found
989 uint8_t best=7;
990 for (i=7; i>=1; i--){
991 if (peaksdet[i] > peaksdet[best]) {
992 best = i;
993 }
994 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
995 }
996 return clk[best];
997 }
998
999 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1000 //find shortest transition from high to low
1001 size_t i = 0;
1002 size_t transition1 = 0;
1003 int lowestTransition = 255;
1004 bool lastWasHigh = false;
1005
1006 //find first valid beginning of a high or low wave
1007 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1008 ++i;
1009 while ((dest[i] < peak && dest[i] > low) && (i < size))
1010 ++i;
1011 lastWasHigh = (dest[i] >= peak);
1012
1013 if (i==size) return 0;
1014 transition1 = i;
1015
1016 for (;i < size; i++) {
1017 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1018 lastWasHigh = (dest[i] >= peak);
1019 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1020 transition1 = i;
1021 }
1022 }
1023 if (lowestTransition == 255) lowestTransition = 0;
1024 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1025 return lowestTransition;
1026 }
1027
1028 //by marshmellow
1029 //detect nrz clock by reading #peaks vs no peaks(or errors)
1030 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1031 {
1032 size_t i=0;
1033 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1034 size_t loopCnt = 4096; //don't need to loop through entire array...
1035 if (size == 0) return 0;
1036 if (size<loopCnt) loopCnt = size-20;
1037 //if we already have a valid clock quit
1038 for (; i < 8; ++i)
1039 if (clk[i] == clock) return clock;
1040
1041 //get high and low peak
1042 int peak, low;
1043 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1044
1045 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1046 size_t ii;
1047 uint8_t clkCnt;
1048 uint8_t tol = 0;
1049 uint16_t smplCnt = 0;
1050 int16_t peakcnt = 0;
1051 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1052 uint16_t maxPeak = 255;
1053 bool firstpeak = false;
1054 //test for large clipped waves
1055 for (i=0; i<loopCnt; i++){
1056 if (dest[i] >= peak || dest[i] <= low){
1057 if (!firstpeak) continue;
1058 smplCnt++;
1059 } else {
1060 firstpeak=true;
1061 if (smplCnt > 6 ){
1062 if (maxPeak > smplCnt){
1063 maxPeak = smplCnt;
1064 //prnt("maxPk: %d",maxPeak);
1065 }
1066 peakcnt++;
1067 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1068 smplCnt=0;
1069 }
1070 }
1071 }
1072 bool errBitHigh = 0;
1073 bool bitHigh = 0;
1074 uint8_t ignoreCnt = 0;
1075 uint8_t ignoreWindow = 4;
1076 bool lastPeakHigh = 0;
1077 int lastBit = 0;
1078 peakcnt=0;
1079 //test each valid clock from smallest to greatest to see which lines up
1080 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1081 //ignore clocks smaller than smallest peak
1082 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1083 //try lining up the peaks by moving starting point (try first 256)
1084 for (ii=20; ii < loopCnt; ++ii){
1085 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1086 peakcnt=0;
1087 bitHigh = false;
1088 ignoreCnt = 0;
1089 lastBit = ii-clk[clkCnt];
1090 //loop through to see if this start location works
1091 for (i = ii; i < size-20; ++i) {
1092 //if we are at a clock bit
1093 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1094 //test high/low
1095 if (dest[i] >= peak || dest[i] <= low) {
1096 //if same peak don't count it
1097 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1098 peakcnt++;
1099 }
1100 lastPeakHigh = (dest[i] >= peak);
1101 bitHigh = true;
1102 errBitHigh = false;
1103 ignoreCnt = ignoreWindow;
1104 lastBit += clk[clkCnt];
1105 } else if (i == lastBit + clk[clkCnt] + tol) {
1106 lastBit += clk[clkCnt];
1107 }
1108 //else if not a clock bit and no peaks
1109 } else if (dest[i] < peak && dest[i] > low){
1110 if (ignoreCnt==0){
1111 bitHigh=false;
1112 if (errBitHigh==true) peakcnt--;
1113 errBitHigh=false;
1114 } else {
1115 ignoreCnt--;
1116 }
1117 // else if not a clock bit but we have a peak
1118 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1119 //error bar found no clock...
1120 errBitHigh=true;
1121 }
1122 }
1123 if(peakcnt>peaksdet[clkCnt]) {
1124 peaksdet[clkCnt]=peakcnt;
1125 }
1126 }
1127 }
1128 }
1129 int iii=7;
1130 uint8_t best=0;
1131 for (iii=7; iii > 0; iii--){
1132 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1133 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1134 best = iii;
1135 }
1136 } else if (peaksdet[iii] > peaksdet[best]){
1137 best = iii;
1138 }
1139 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
1140 }
1141
1142 return clk[best];
1143 }
1144
1145 // by marshmellow
1146 // convert psk1 demod to psk2 demod
1147 // only transition waves are 1s
1148 void psk1TOpsk2(uint8_t *BitStream, size_t size)
1149 {
1150 size_t i=1;
1151 uint8_t lastBit=BitStream[0];
1152 for (; i<size; i++){
1153 if (BitStream[i]==7){
1154 //ignore errors
1155 } else if (lastBit!=BitStream[i]){
1156 lastBit=BitStream[i];
1157 BitStream[i]=1;
1158 } else {
1159 BitStream[i]=0;
1160 }
1161 }
1162 return;
1163 }
1164
1165 // by marshmellow
1166 // convert psk2 demod to psk1 demod
1167 // from only transition waves are 1s to phase shifts change bit
1168 void psk2TOpsk1(uint8_t *BitStream, size_t size)
1169 {
1170 uint8_t phase=0;
1171 for (size_t i=0; i<size; i++){
1172 if (BitStream[i]==1){
1173 phase ^=1;
1174 }
1175 BitStream[i]=phase;
1176 }
1177 return;
1178 }
1179
1180 // redesigned by marshmellow adjusted from existing decode functions
1181 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1182 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1183 {
1184 //26 bit 40134 format (don't know other formats)
1185 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1186 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1187 size_t startidx = 0;
1188 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1189 // if didn't find preamble try again inverting
1190 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1191 *invert ^= 1;
1192 }
1193 if (*size != 64 && *size != 224) return -2;
1194 if (*invert==1)
1195 for (size_t i = startidx; i < *size; i++)
1196 bitStream[i] ^= 1;
1197
1198 return (int) startidx;
1199 }
1200
1201 // by marshmellow - demodulate NRZ wave
1202 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1203 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1204 if (justNoise(dest, *size)) return -1;
1205 *clk = DetectNRZClock(dest, *size, *clk);
1206 if (*clk==0) return -2;
1207 size_t i, gLen = 4096;
1208 if (gLen>*size) gLen = *size-20;
1209 int high, low;
1210 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1211
1212 uint8_t bit=0;
1213 //convert wave samples to 1's and 0's
1214 for(i=20; i < *size-20; i++){
1215 if (dest[i] >= high) bit = 1;
1216 if (dest[i] <= low) bit = 0;
1217 dest[i] = bit;
1218 }
1219 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1220 size_t lastBit = 0;
1221 size_t numBits = 0;
1222 for(i=21; i < *size-20; i++) {
1223 //if transition detected or large number of same bits - store the passed bits
1224 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1225 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1226 numBits += (i - lastBit + (*clk/4)) / *clk;
1227 lastBit = i-1;
1228 }
1229 }
1230 *size = numBits;
1231 return 0;
1232 }
1233
1234 //by marshmellow
1235 //detects the bit clock for FSK given the high and low Field Clocks
1236 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1237 {
1238 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1239 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1240 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1241 uint8_t rfLensFnd = 0;
1242 uint8_t lastFCcnt = 0;
1243 uint16_t fcCounter = 0;
1244 uint16_t rfCounter = 0;
1245 uint8_t firstBitFnd = 0;
1246 size_t i;
1247 if (size == 0) return 0;
1248
1249 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1250 rfLensFnd=0;
1251 fcCounter=0;
1252 rfCounter=0;
1253 firstBitFnd=0;
1254 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1255 // prime i to first peak / up transition
1256 for (i = 160; i < size-20; i++)
1257 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1258 break;
1259
1260 for (; i < size-20; i++){
1261 fcCounter++;
1262 rfCounter++;
1263
1264 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1265 continue;
1266 // else new peak
1267 // if we got less than the small fc + tolerance then set it to the small fc
1268 if (fcCounter < fcLow+fcTol)
1269 fcCounter = fcLow;
1270 else //set it to the large fc
1271 fcCounter = fcHigh;
1272
1273 //look for bit clock (rf/xx)
1274 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1275 //not the same size as the last wave - start of new bit sequence
1276 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1277 for (int ii=0; ii<15; ii++){
1278 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1279 rfCnts[ii]++;
1280 rfCounter = 0;
1281 break;
1282 }
1283 }
1284 if (rfCounter > 0 && rfLensFnd < 15){
1285 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1286 rfCnts[rfLensFnd]++;
1287 rfLens[rfLensFnd++] = rfCounter;
1288 }
1289 } else {
1290 firstBitFnd++;
1291 }
1292 rfCounter=0;
1293 lastFCcnt=fcCounter;
1294 }
1295 fcCounter=0;
1296 }
1297 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1298
1299 for (i=0; i<15; i++){
1300 //get highest 2 RF values (might need to get more values to compare or compare all?)
1301 if (rfCnts[i]>rfCnts[rfHighest]){
1302 rfHighest3=rfHighest2;
1303 rfHighest2=rfHighest;
1304 rfHighest=i;
1305 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1306 rfHighest3=rfHighest2;
1307 rfHighest2=i;
1308 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1309 rfHighest3=i;
1310 }
1311 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1312 }
1313 // set allowed clock remainder tolerance to be 1 large field clock length+1
1314 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1315 uint8_t tol1 = fcHigh+1;
1316
1317 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1318
1319 // loop to find the highest clock that has a remainder less than the tolerance
1320 // compare samples counted divided by
1321 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1322 int ii=7;
1323 for (; ii>=2; ii--){
1324 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1325 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1326 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1327 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1328 break;
1329 }
1330 }
1331 }
1332 }
1333
1334 if (ii<0) return 0; // oops we went too far
1335
1336 return clk[ii];
1337 }
1338
1339 //by marshmellow
1340 //countFC is to detect the field clock lengths.
1341 //counts and returns the 2 most common wave lengths
1342 //mainly used for FSK field clock detection
1343 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1344 {
1345 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1346 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1347 uint8_t fcLensFnd = 0;
1348 uint8_t lastFCcnt=0;
1349 uint8_t fcCounter = 0;
1350 size_t i;
1351 if (size == 0) return 0;
1352
1353 // prime i to first up transition
1354 for (i = 160; i < size-20; i++)
1355 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1356 break;
1357
1358 for (; i < size-20; i++){
1359 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1360 // new up transition
1361 fcCounter++;
1362 if (fskAdj){
1363 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1364 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1365 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1366 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1367 // save last field clock count (fc/xx)
1368 lastFCcnt = fcCounter;
1369 }
1370 // find which fcLens to save it to:
1371 for (int ii=0; ii<15; ii++){
1372 if (fcLens[ii]==fcCounter){
1373 fcCnts[ii]++;
1374 fcCounter=0;
1375 break;
1376 }
1377 }
1378 if (fcCounter>0 && fcLensFnd<15){
1379 //add new fc length
1380 fcCnts[fcLensFnd]++;
1381 fcLens[fcLensFnd++]=fcCounter;
1382 }
1383 fcCounter=0;
1384 } else {
1385 // count sample
1386 fcCounter++;
1387 }
1388 }
1389
1390 uint8_t best1=14, best2=14, best3=14;
1391 uint16_t maxCnt1=0;
1392 // go through fclens and find which ones are bigest 2
1393 for (i=0; i<15; i++){
1394 // get the 3 best FC values
1395 if (fcCnts[i]>maxCnt1) {
1396 best3=best2;
1397 best2=best1;
1398 maxCnt1=fcCnts[i];
1399 best1=i;
1400 } else if(fcCnts[i]>fcCnts[best2]){
1401 best3=best2;
1402 best2=i;
1403 } else if(fcCnts[i]>fcCnts[best3]){
1404 best3=i;
1405 }
1406 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1407 }
1408 if (fcLens[best1]==0) return 0;
1409 uint8_t fcH=0, fcL=0;
1410 if (fcLens[best1]>fcLens[best2]){
1411 fcH=fcLens[best1];
1412 fcL=fcLens[best2];
1413 } else{
1414 fcH=fcLens[best2];
1415 fcL=fcLens[best1];
1416 }
1417 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1418 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1419 return 0; //lots of waves not psk or fsk
1420 }
1421 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1422
1423 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1424 if (fskAdj) return fcs;
1425 return fcLens[best1];
1426 }
1427
1428 //by marshmellow - demodulate PSK1 wave
1429 //uses wave lengths (# Samples)
1430 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1431 {
1432 if (size == 0) return -1;
1433 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1434 if (*size<loopCnt) loopCnt = *size;
1435
1436 size_t numBits=0;
1437 uint8_t curPhase = *invert;
1438 size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1439 uint8_t fc=0, fullWaveLen=0, tol=1;
1440 uint16_t errCnt=0, waveLenCnt=0;
1441 fc = countFC(dest, *size, 0);
1442 if (fc!=2 && fc!=4 && fc!=8) return -1;
1443 //PrintAndLog("DEBUG: FC: %d",fc);
1444 *clock = DetectPSKClock(dest, *size, *clock);
1445 if (*clock == 0) return -1;
1446 int avgWaveVal=0, lastAvgWaveVal=0;
1447 //find first phase shift
1448 for (i=0; i<loopCnt; i++){
1449 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1450 waveEnd = i+1;
1451 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1452 waveLenCnt = waveEnd-waveStart;
1453 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
1454 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1455 firstFullWave = waveStart;
1456 fullWaveLen=waveLenCnt;
1457 //if average wave value is > graph 0 then it is an up wave or a 1
1458 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
1459 break;
1460 }
1461 waveStart = i+1;
1462 avgWaveVal = 0;
1463 }
1464 avgWaveVal += dest[i+2];
1465 }
1466 if (firstFullWave == 0) {
1467 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1468 // so skip a little to ensure we are past any Start Signal
1469 firstFullWave = 160;
1470 memset(dest, curPhase, firstFullWave / *clock);
1471 } else {
1472 memset(dest, curPhase^1, firstFullWave / *clock);
1473 }
1474 //advance bits
1475 numBits += (firstFullWave / *clock);
1476 //set start of wave as clock align
1477 lastClkBit = firstFullWave;
1478 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1479 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1480 waveStart = 0;
1481 dest[numBits++] = curPhase; //set first read bit
1482 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1483 //top edge of wave = start of new wave
1484 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1485 if (waveStart == 0) {
1486 waveStart = i+1;
1487 waveLenCnt = 0;
1488 avgWaveVal = dest[i+1];
1489 } else { //waveEnd
1490 waveEnd = i+1;
1491 waveLenCnt = waveEnd-waveStart;
1492 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1493 if (waveLenCnt > fc){
1494 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1495 //this wave is a phase shift
1496 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1497 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1498 curPhase ^= 1;
1499 dest[numBits++] = curPhase;
1500 lastClkBit += *clock;
1501 } else if (i < lastClkBit+10+fc){
1502 //noise after a phase shift - ignore
1503 } else { //phase shift before supposed to based on clock
1504 errCnt++;
1505 dest[numBits++] = 7;
1506 }
1507 } else if (i+1 > lastClkBit + *clock + tol + fc){
1508 lastClkBit += *clock; //no phase shift but clock bit
1509 dest[numBits++] = curPhase;
1510 }
1511 avgWaveVal = 0;
1512 waveStart = i+1;
1513 }
1514 }
1515 avgWaveVal += dest[i+1];
1516 }
1517 *size = numBits;
1518 return errCnt;
1519 }
Impressum, Datenschutz