]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
mifare usb update
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // The main application code. This is the first thing called after start.c
3 // executes.
4 // Jonathan Westhues, Mar 2006
5 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
6 //-----------------------------------------------------------------------------
7
8 #include <proxmark3.h>
9 #include <stdlib.h>
10 #include "apps.h"
11 #include "legicrf.h"
12 #ifdef WITH_LCD
13 #include "fonts.h"
14 #include "LCD.h"
15 #endif
16
17 //=============================================================================
18 // A buffer where we can queue things up to be sent through the FPGA, for
19 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
20 // is the order in which they go out on the wire.
21 //=============================================================================
22
23 BYTE ToSend[256];
24 int ToSendMax;
25 static int ToSendBit;
26 struct common_area common_area __attribute__((section(".commonarea")));
27
28 void BufferClear(void)
29 {
30 memset(BigBuf,0,sizeof(BigBuf));
31 DbpString("Buffer cleared");
32 }
33
34 void ToSendReset(void)
35 {
36 ToSendMax = -1;
37 ToSendBit = 8;
38 }
39
40 void ToSendStuffBit(int b)
41 {
42 if(ToSendBit >= 8) {
43 ToSendMax++;
44 ToSend[ToSendMax] = 0;
45 ToSendBit = 0;
46 }
47
48 if(b) {
49 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
50 }
51
52 ToSendBit++;
53
54 if(ToSendBit >= sizeof(ToSend)) {
55 ToSendBit = 0;
56 DbpString("ToSendStuffBit overflowed!");
57 }
58 }
59
60 //=============================================================================
61 // Debug print functions, to go out over USB, to the usual PC-side client.
62 //=============================================================================
63
64 void DbpString(char *str)
65 {
66 /* this holds up stuff unless we're connected to usb */
67 if (!UsbConnected())
68 return;
69
70 UsbCommand c;
71 c.cmd = CMD_DEBUG_PRINT_STRING;
72 c.arg[0] = strlen(str);
73 memcpy(c.d.asBytes, str, c.arg[0]);
74
75 UsbSendPacket((BYTE *)&c, sizeof(c));
76 // TODO fix USB so stupid things like this aren't req'd
77 SpinDelay(50);
78 }
79
80 void DbpIntegers(int x1, int x2, int x3)
81 {
82 /* this holds up stuff unless we're connected to usb */
83 if (!UsbConnected())
84 return;
85
86 UsbCommand c;
87 c.cmd = CMD_DEBUG_PRINT_INTEGERS;
88 c.arg[0] = x1;
89 c.arg[1] = x2;
90 c.arg[2] = x3;
91
92 UsbSendPacket((BYTE *)&c, sizeof(c));
93 // XXX
94 SpinDelay(50);
95 }
96
97 //-----------------------------------------------------------------------------
98 // Read an ADC channel and block till it completes, then return the result
99 // in ADC units (0 to 1023). Also a routine to average 32 samples and
100 // return that.
101 //-----------------------------------------------------------------------------
102 static int ReadAdc(int ch)
103 {
104 DWORD d;
105
106 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
107 AT91C_BASE_ADC->ADC_MR =
108 ADC_MODE_PRESCALE(32) |
109 ADC_MODE_STARTUP_TIME(16) |
110 ADC_MODE_SAMPLE_HOLD_TIME(8);
111 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
112
113 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
114 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
115 ;
116 d = AT91C_BASE_ADC->ADC_CDR[ch];
117
118 return d;
119 }
120
121 static int AvgAdc(int ch)
122 {
123 int i;
124 int a = 0;
125
126 for(i = 0; i < 32; i++) {
127 a += ReadAdc(ch);
128 }
129
130 return (a + 15) >> 5;
131 }
132
133 void MeasureAntennaTuning(void)
134 {
135 BYTE *dest = (BYTE *)BigBuf;
136 int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
137 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
138
139 UsbCommand c;
140
141 DbpString("Measuring antenna characteristics, please wait.");
142 memset(BigBuf,0,sizeof(BigBuf));
143
144 /*
145 * Sweeps the useful LF range of the proxmark from
146 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
147 * read the voltage in the antenna, the result left
148 * in the buffer is a graph which should clearly show
149 * the resonating frequency of your LF antenna
150 * ( hopefully around 95 if it is tuned to 125kHz!)
151 */
152 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
153 for (i=255; i>19; i--) {
154 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
155 SpinDelay(20);
156 // Vref = 3.3V, and a 10000:240 voltage divider on the input
157 // can measure voltages up to 137500 mV
158 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
159 if (i==95) vLf125 = adcval; // voltage at 125Khz
160 if (i==89) vLf134 = adcval; // voltage at 134Khz
161
162 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
163 if(dest[i] > peak) {
164 peakv = adcval;
165 peak = dest[i];
166 peakf = i;
167 ptr = i;
168 }
169 }
170
171 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
172 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
173 SpinDelay(20);
174 // Vref = 3300mV, and an 10:1 voltage divider on the input
175 // can measure voltages up to 33000 mV
176 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
177
178 c.cmd = CMD_MEASURED_ANTENNA_TUNING;
179 c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
180 c.arg[1] = vHf;
181 c.arg[2] = peakf | (peakv << 16);
182 UsbSendPacket((BYTE *)&c, sizeof(c));
183 }
184
185 void SimulateTagHfListen(void)
186 {
187 BYTE *dest = (BYTE *)BigBuf;
188 int n = sizeof(BigBuf);
189 BYTE v = 0;
190 int i;
191 int p = 0;
192
193 // We're using this mode just so that I can test it out; the simulated
194 // tag mode would work just as well and be simpler.
195 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
196
197 // We need to listen to the high-frequency, peak-detected path.
198 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
199
200 FpgaSetupSsc();
201
202 i = 0;
203 for(;;) {
204 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
205 AT91C_BASE_SSC->SSC_THR = 0xff;
206 }
207 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
208 BYTE r = (BYTE)AT91C_BASE_SSC->SSC_RHR;
209
210 v <<= 1;
211 if(r & 1) {
212 v |= 1;
213 }
214 p++;
215
216 if(p >= 8) {
217 dest[i] = v;
218 v = 0;
219 p = 0;
220 i++;
221
222 if(i >= n) {
223 break;
224 }
225 }
226 }
227 }
228 DbpString("simulate tag (now type bitsamples)");
229 }
230
231 void ReadMem(int addr)
232 {
233 const DWORD *data = ((DWORD *)addr);
234 int i;
235
236 DbpString("Reading memory at address");
237 DbpIntegers(0, 0, addr);
238 for (i = 0; i < 8; i+= 2)
239 DbpIntegers(0, data[i], data[i+1]);
240 }
241
242 /* osimage version information is linked in */
243 extern struct version_information version_information;
244 /* bootrom version information is pointed to from _bootphase1_version_pointer */
245 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
246 void SendVersion(void)
247 {
248 char temp[48]; /* Limited data payload in USB packets */
249 DbpString("Prox/RFID mark3 RFID instrument");
250
251 /* Try to find the bootrom version information. Expect to find a pointer at
252 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
253 * pointer, then use it.
254 */
255 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
256 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
257 DbpString("bootrom version information appears invalid");
258 } else {
259 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
260 DbpString(temp);
261 }
262
263 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
264 DbpString(temp);
265
266 FpgaGatherVersion(temp, sizeof(temp));
267 DbpString(temp);
268 }
269
270 #ifdef WITH_LF
271 // samy's sniff and repeat routine
272 void SamyRun()
273 {
274 DbpString("Stand-alone mode! No PC necessary.");
275
276 // 3 possible options? no just 2 for now
277 #define OPTS 2
278
279 int high[OPTS], low[OPTS];
280
281 // Oooh pretty -- notify user we're in elite samy mode now
282 LED(LED_RED, 200);
283 LED(LED_ORANGE, 200);
284 LED(LED_GREEN, 200);
285 LED(LED_ORANGE, 200);
286 LED(LED_RED, 200);
287 LED(LED_ORANGE, 200);
288 LED(LED_GREEN, 200);
289 LED(LED_ORANGE, 200);
290 LED(LED_RED, 200);
291
292 int selected = 0;
293 int playing = 0;
294
295 // Turn on selected LED
296 LED(selected + 1, 0);
297
298 for (;;)
299 {
300 UsbPoll(FALSE);
301 WDT_HIT();
302
303 // Was our button held down or pressed?
304 int button_pressed = BUTTON_HELD(1000);
305 SpinDelay(300);
306
307 // Button was held for a second, begin recording
308 if (button_pressed > 0)
309 {
310 LEDsoff();
311 LED(selected + 1, 0);
312 LED(LED_RED2, 0);
313
314 // record
315 DbpString("Starting recording");
316
317 // wait for button to be released
318 while(BUTTON_PRESS())
319 WDT_HIT();
320
321 /* need this delay to prevent catching some weird data */
322 SpinDelay(500);
323
324 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
325 DbpString("Recorded");
326 DbpIntegers(selected, high[selected], low[selected]);
327
328 LEDsoff();
329 LED(selected + 1, 0);
330 // Finished recording
331
332 // If we were previously playing, set playing off
333 // so next button push begins playing what we recorded
334 playing = 0;
335 }
336
337 // Change where to record (or begin playing)
338 else if (button_pressed)
339 {
340 // Next option if we were previously playing
341 if (playing)
342 selected = (selected + 1) % OPTS;
343 playing = !playing;
344
345 LEDsoff();
346 LED(selected + 1, 0);
347
348 // Begin transmitting
349 if (playing)
350 {
351 LED(LED_GREEN, 0);
352 DbpString("Playing");
353 // wait for button to be released
354 while(BUTTON_PRESS())
355 WDT_HIT();
356 DbpIntegers(selected, high[selected], low[selected]);
357 CmdHIDsimTAG(high[selected], low[selected], 0);
358 DbpString("Done playing");
359 if (BUTTON_HELD(1000) > 0)
360 {
361 DbpString("Exiting");
362 LEDsoff();
363 return;
364 }
365
366 /* We pressed a button so ignore it here with a delay */
367 SpinDelay(300);
368
369 // when done, we're done playing, move to next option
370 selected = (selected + 1) % OPTS;
371 playing = !playing;
372 LEDsoff();
373 LED(selected + 1, 0);
374 }
375 else
376 while(BUTTON_PRESS())
377 WDT_HIT();
378 }
379 }
380 }
381 #endif
382
383 /*
384 OBJECTIVE
385 Listen and detect an external reader. Determine the best location
386 for the antenna.
387
388 INSTRUCTIONS:
389 Inside the ListenReaderField() function, there is two mode.
390 By default, when you call the function, you will enter mode 1.
391 If you press the PM3 button one time, you will enter mode 2.
392 If you press the PM3 button a second time, you will exit the function.
393
394 DESCRIPTION OF MODE 1:
395 This mode just listens for an external reader field and lights up green
396 for HF and/or red for LF. This is the original mode of the detectreader
397 function.
398
399 DESCRIPTION OF MODE 2:
400 This mode will visually represent, using the LEDs, the actual strength of the
401 current compared to the maximum current detected. Basically, once you know
402 what kind of external reader is present, it will help you spot the best location to place
403 your antenna. You will probably not get some good results if there is a LF and a HF reader
404 at the same place! :-)
405
406 LIGHT SCHEME USED:
407 */
408 static const char LIGHT_SCHEME[] = {
409 0x0, /* ---- | No field detected */
410 0x1, /* X--- | 14% of maximum current detected */
411 0x2, /* -X-- | 29% of maximum current detected */
412 0x4, /* --X- | 43% of maximum current detected */
413 0x8, /* ---X | 57% of maximum current detected */
414 0xC, /* --XX | 71% of maximum current detected */
415 0xE, /* -XXX | 86% of maximum current detected */
416 0xF, /* XXXX | 100% of maximum current detected */
417 };
418 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
419
420 void ListenReaderField(int limit)
421 {
422 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
423 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
424 int mode=1, display_val, display_max, i;
425
426 #define LF_ONLY 1
427 #define HF_ONLY 2
428
429 LEDsoff();
430
431 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
432
433 if(limit != HF_ONLY) {
434 DbpString("LF 125/134 Baseline:");
435 DbpIntegers(lf_av,0,0);
436 lf_baseline= lf_av;
437 }
438
439 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
440
441 if (limit != LF_ONLY) {
442 DbpString("HF 13.56 Baseline:");
443 DbpIntegers(hf_av,0,0);
444 hf_baseline= hf_av;
445 }
446
447 for(;;) {
448 if (BUTTON_PRESS()) {
449 SpinDelay(500);
450 switch (mode) {
451 case 1:
452 mode=2;
453 DbpString("Signal Strength Mode");
454 break;
455 case 2:
456 default:
457 DbpString("Stopped");
458 LEDsoff();
459 return;
460 break;
461 }
462 }
463 WDT_HIT();
464
465 if (limit != HF_ONLY) {
466 if(mode==1) {
467 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
468 else LED_D_OFF();
469 }
470
471 ++lf_count;
472 lf_av_new= ReadAdc(ADC_CHAN_LF);
473 // see if there's a significant change
474 if(abs(lf_av - lf_av_new) > 10) {
475 DbpString("LF 125/134 Field Change:");
476 DbpIntegers(lf_av,lf_av_new,lf_count);
477 lf_av= lf_av_new;
478 if (lf_av > lf_max)
479 lf_max = lf_av;
480 lf_count= 0;
481 }
482 }
483
484 if (limit != LF_ONLY) {
485 if (mode == 1){
486 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
487 else LED_B_OFF();
488 }
489
490 ++hf_count;
491 hf_av_new= ReadAdc(ADC_CHAN_HF);
492 // see if there's a significant change
493 if(abs(hf_av - hf_av_new) > 10) {
494 DbpString("HF 13.56 Field Change:");
495 DbpIntegers(hf_av,hf_av_new,hf_count);
496 hf_av= hf_av_new;
497 if (hf_av > hf_max)
498 hf_max = hf_av;
499 hf_count= 0;
500 }
501 }
502
503 if(mode == 2) {
504 if (limit == LF_ONLY) {
505 display_val = lf_av;
506 display_max = lf_max;
507 } else if (limit == HF_ONLY) {
508 display_val = hf_av;
509 display_max = hf_max;
510 } else { /* Pick one at random */
511 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
512 display_val = hf_av;
513 display_max = hf_max;
514 } else {
515 display_val = lf_av;
516 display_max = lf_max;
517 }
518 }
519 for (i=0; i<LIGHT_LEN; i++) {
520 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
521 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
522 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
523 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
524 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
525 break;
526 }
527 }
528 }
529 }
530 }
531
532 void UsbPacketReceived(BYTE *packet, int len)
533 {
534 UsbCommand *c = (UsbCommand *)packet;
535
536 switch(c->cmd) {
537 #ifdef WITH_LF
538 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
539 AcquireRawAdcSamples125k(c->arg[0]);
540 break;
541 #endif
542
543 #ifdef WITH_LF
544 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
545 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
546 break;
547 #endif
548
549 #ifdef WITH_ISO15693
550 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
551 AcquireRawAdcSamplesIso15693();
552 break;
553 #endif
554
555 case CMD_BUFF_CLEAR:
556 BufferClear();
557 break;
558
559 #ifdef WITH_ISO15693
560 case CMD_READER_ISO_15693:
561 ReaderIso15693(c->arg[0]);
562 break;
563 #endif
564
565 case CMD_READER_LEGIC_RF:
566 LegicRfReader();
567 break;
568
569 #ifdef WITH_ISO15693
570 case CMD_SIMTAG_ISO_15693:
571 SimTagIso15693(c->arg[0]);
572 break;
573 #endif
574
575 #ifdef WITH_ISO14443b
576 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
577 AcquireRawAdcSamplesIso14443(c->arg[0]);
578 break;
579 #endif
580
581 #ifdef WITH_ISO14443b
582 case CMD_READ_SRI512_TAG:
583 ReadSRI512Iso14443(c->arg[0]);
584 break;
585 case CMD_READ_SRIX4K_TAG:
586 ReadSRIX4KIso14443(c->arg[0]);
587 break;
588 #endif
589
590 #ifdef WITH_ISO14443a
591 case CMD_READER_ISO_14443a:
592 ReaderIso14443a(c->arg[0]);
593 break;
594 #endif
595
596 #ifdef WITH_ISO14443a
597 case CMD_READER_MIFARE:
598 ReaderMifare(c->arg[0]);
599 break;
600 #endif
601
602 #ifdef WITH_ISO14443b
603 case CMD_SNOOP_ISO_14443:
604 SnoopIso14443();
605 break;
606 #endif
607
608 #ifdef WITH_ISO14443a
609 case CMD_SNOOP_ISO_14443a:
610 SnoopIso14443a();
611 break;
612 #endif
613
614 case CMD_SIMULATE_TAG_HF_LISTEN:
615 SimulateTagHfListen();
616 break;
617
618 #ifdef WITH_ISO14443b
619 case CMD_SIMULATE_TAG_ISO_14443:
620 SimulateIso14443Tag();
621 break;
622 #endif
623
624 #ifdef WITH_ISO14443a
625 case CMD_SIMULATE_TAG_ISO_14443a:
626 SimulateIso14443aTag(c->arg[0], c->arg[1]); // ## Simulate iso14443a tag - pass tag type & UID
627 break;
628 #endif
629
630 case CMD_MEASURE_ANTENNA_TUNING:
631 MeasureAntennaTuning();
632 break;
633
634 case CMD_LISTEN_READER_FIELD:
635 ListenReaderField(c->arg[0]);
636 break;
637
638 #ifdef WITH_LF
639 case CMD_HID_DEMOD_FSK:
640 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
641 break;
642 #endif
643
644 #ifdef WITH_LF
645 case CMD_HID_SIM_TAG:
646 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
647 break;
648 #endif
649
650 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
651 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
652 SpinDelay(200);
653 LED_D_OFF(); // LED D indicates field ON or OFF
654 break;
655
656 #ifdef WITH_LF
657 case CMD_READ_TI_TYPE:
658 ReadTItag();
659 break;
660 #endif
661
662 #ifdef WITH_LF
663 case CMD_WRITE_TI_TYPE:
664 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
665 break;
666 #endif
667
668 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
669 UsbCommand n;
670 if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
671 n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
672 } else {
673 n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
674 }
675 n.arg[0] = c->arg[0];
676 memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(DWORD));
677 UsbSendPacket((BYTE *)&n, sizeof(n));
678 break;
679 }
680
681 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
682 BYTE *b = (BYTE *)BigBuf;
683 memcpy(b+c->arg[0], c->d.asBytes, 48);
684 break;
685 }
686
687 #ifdef WITH_LF
688 case CMD_SIMULATE_TAG_125K:
689 LED_A_ON();
690 SimulateTagLowFrequency(c->arg[0], 1);
691 LED_A_OFF();
692 break;
693 #endif
694
695 case CMD_READ_MEM:
696 ReadMem(c->arg[0]);
697 break;
698
699 case CMD_SET_LF_DIVISOR:
700 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
701 break;
702
703 case CMD_SET_ADC_MUX:
704 switch(c->arg[0]) {
705 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
706 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
707 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
708 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
709 }
710 break;
711
712 case CMD_VERSION:
713 SendVersion();
714 break;
715
716 #ifdef WITH_LF
717 case CMD_LF_SIMULATE_BIDIR:
718 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
719 break;
720 #endif
721
722 #ifdef WITH_LCD
723 case CMD_LCD_RESET:
724 LCDReset();
725 break;
726 case CMD_LCD:
727 LCDSend(c->arg[0]);
728 break;
729 #endif
730 case CMD_SETUP_WRITE:
731 case CMD_FINISH_WRITE:
732 case CMD_HARDWARE_RESET:
733 USB_D_PLUS_PULLUP_OFF();
734 SpinDelay(1000);
735 SpinDelay(1000);
736 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
737 for(;;) {
738 // We're going to reset, and the bootrom will take control.
739 }
740 break;
741
742 case CMD_START_FLASH:
743 if(common_area.flags.bootrom_present) {
744 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
745 }
746 USB_D_PLUS_PULLUP_OFF();
747 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
748 for(;;);
749 break;
750
751 case CMD_DEVICE_INFO: {
752 UsbCommand c;
753 c.cmd = CMD_DEVICE_INFO;
754 c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
755 if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
756 UsbSendPacket((BYTE*)&c, sizeof(c));
757 }
758 break;
759 default:
760 DbpString("unknown command");
761 break;
762 }
763 }
764
765 void __attribute__((noreturn)) AppMain(void)
766 {
767 SpinDelay(100);
768
769 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
770 /* Initialize common area */
771 memset(&common_area, 0, sizeof(common_area));
772 common_area.magic = COMMON_AREA_MAGIC;
773 common_area.version = 1;
774 }
775 common_area.flags.osimage_present = 1;
776
777 LED_D_OFF();
778 LED_C_OFF();
779 LED_B_OFF();
780 LED_A_OFF();
781
782 UsbStart();
783
784 // The FPGA gets its clock from us from PCK0 output, so set that up.
785 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
786 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
787 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
788 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
789 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
790 AT91C_PMC_PRES_CLK_4;
791 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
792
793 // Reset SPI
794 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
795 // Reset SSC
796 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
797
798 // Load the FPGA image, which we have stored in our flash.
799 FpgaDownloadAndGo();
800
801 #ifdef WITH_LCD
802
803 LCDInit();
804
805 // test text on different colored backgrounds
806 LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK );
807 LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE );
808 LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED );
809 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN );
810 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE );
811 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW);
812 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN );
813 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
814
815 // color bands
816 LCDFill(0, 1+8* 8, 132, 8, BLACK);
817 LCDFill(0, 1+8* 9, 132, 8, WHITE);
818 LCDFill(0, 1+8*10, 132, 8, RED);
819 LCDFill(0, 1+8*11, 132, 8, GREEN);
820 LCDFill(0, 1+8*12, 132, 8, BLUE);
821 LCDFill(0, 1+8*13, 132, 8, YELLOW);
822 LCDFill(0, 1+8*14, 132, 8, CYAN);
823 LCDFill(0, 1+8*15, 132, 8, MAGENTA);
824
825 #endif
826
827 for(;;) {
828 UsbPoll(FALSE);
829 WDT_HIT();
830
831 #ifdef WITH_LF
832 if (BUTTON_HELD(1000) > 0)
833 SamyRun();
834 #endif
835 }
836 }
Impressum, Datenschutz