]> git.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
lf viking build / lf awid refactor / lfdemod.c debugMode==2
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <pthread.h>
15 #include "mifarehost.h"
16 #include "proxmark3.h"
17
18 // MIFARE
19 int compar_int(const void * a, const void * b) {
20 // didn't work: (the result is truncated to 32 bits)
21 //return (*(uint64_t*)b - *(uint64_t*)a);
22
23 // better:
24 if (*(uint64_t*)b == *(uint64_t*)a) return 0;
25 else if (*(uint64_t*)b > *(uint64_t*)a) return 1;
26 else return -1;
27 }
28
29 // Compare 16 Bits out of cryptostate
30 int Compare16Bits(const void * a, const void * b) {
31 if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
32 else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
33 else return -1;
34 }
35
36 typedef
37 struct {
38 union {
39 struct Crypto1State *slhead;
40 uint64_t *keyhead;
41 } head;
42 union {
43 struct Crypto1State *sltail;
44 uint64_t *keytail;
45 } tail;
46 uint32_t len;
47 uint32_t uid;
48 uint32_t blockNo;
49 uint32_t keyType;
50 uint32_t nt;
51 uint32_t ks1;
52 } StateList_t;
53
54
55 // wrapper function for multi-threaded lfsr_recovery32
56 void* nested_worker_thread(void *arg)
57 {
58 struct Crypto1State *p1;
59 StateList_t *statelist = arg;
60
61 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
62 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
63 statelist->len = p1 - statelist->head.slhead;
64 statelist->tail.sltail = --p1;
65 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
66
67 return statelist->head.slhead;
68 }
69
70 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
71 {
72 uint16_t i;
73 uint32_t uid;
74 UsbCommand resp;
75
76 StateList_t statelists[2];
77 struct Crypto1State *p1, *p2, *p3, *p4;
78
79 // flush queue
80 WaitForResponseTimeout(CMD_ACK, NULL, 100);
81
82 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
83 memcpy(c.d.asBytes, key, 6);
84 SendCommand(&c);
85
86 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
87 return -1;
88 }
89
90 if (resp.arg[0]) {
91 return resp.arg[0]; // error during nested
92 }
93
94 memcpy(&uid, resp.d.asBytes, 4);
95 PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
96
97 for (i = 0; i < 2; i++) {
98 statelists[i].blockNo = resp.arg[2] & 0xff;
99 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
100 statelists[i].uid = uid;
101 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
102 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
103 }
104
105 // calc keys
106
107 pthread_t thread_id[2];
108
109 // create and run worker threads
110 for (i = 0; i < 2; i++) {
111 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
112 }
113
114 // wait for threads to terminate:
115 for (i = 0; i < 2; i++) {
116 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
117 }
118
119
120 // the first 16 Bits of the cryptostate already contain part of our key.
121 // Create the intersection of the two lists based on these 16 Bits and
122 // roll back the cryptostate
123 p1 = p3 = statelists[0].head.slhead;
124 p2 = p4 = statelists[1].head.slhead;
125 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
126 if (Compare16Bits(p1, p2) == 0) {
127 struct Crypto1State savestate, *savep = &savestate;
128 savestate = *p1;
129 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
130 *p3 = *p1;
131 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
132 p3++;
133 p1++;
134 }
135 savestate = *p2;
136 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
137 *p4 = *p2;
138 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
139 p4++;
140 p2++;
141 }
142 }
143 else {
144 while (Compare16Bits(p1, p2) == -1) p1++;
145 while (Compare16Bits(p1, p2) == 1) p2++;
146 }
147 }
148 p3->even = 0; p3->odd = 0;
149 p4->even = 0; p4->odd = 0;
150 statelists[0].len = p3 - statelists[0].head.slhead;
151 statelists[1].len = p4 - statelists[1].head.slhead;
152 statelists[0].tail.sltail=--p3;
153 statelists[1].tail.sltail=--p4;
154
155 // the statelists now contain possible keys. The key we are searching for must be in the
156 // intersection of both lists. Create the intersection:
157 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
158 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
159
160 uint64_t *p5, *p6, *p7;
161 p5 = p7 = statelists[0].head.keyhead;
162 p6 = statelists[1].head.keyhead;
163 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
164 if (compar_int(p5, p6) == 0) {
165 *p7++ = *p5++;
166 p6++;
167 }
168 else {
169 while (compar_int(p5, p6) == -1) p5++;
170 while (compar_int(p5, p6) == 1) p6++;
171 }
172 }
173 statelists[0].len = p7 - statelists[0].head.keyhead;
174 statelists[0].tail.keytail=--p7;
175
176 memset(resultKey, 0, 6);
177 // The list may still contain several key candidates. Test each of them with mfCheckKeys
178 for (i = 0; i < statelists[0].len; i++) {
179 uint8_t keyBlock[6];
180 uint64_t key64;
181 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
182 num_to_bytes(key64, 6, keyBlock);
183 key64 = 0;
184 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, keyBlock, &key64)) {
185 num_to_bytes(key64, 6, resultKey);
186 break;
187 }
188 }
189
190 free(statelists[0].head.slhead);
191 free(statelists[1].head.slhead);
192
193 return 0;
194 }
195
196 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
197
198 *key = 0;
199
200 UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType&0xff)<<8)), clear_trace, keycnt}};
201 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
202 SendCommand(&c);
203
204 UsbCommand resp;
205 if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
206 if ((resp.arg[0] & 0xff) != 0x01) return 2;
207 *key = bytes_to_num(resp.d.asBytes, 6);
208 return 0;
209 }
210
211 // EMULATOR
212
213 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
214 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
215 SendCommand(&c);
216
217 UsbCommand resp;
218 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
219 memcpy(data, resp.d.asBytes, blocksCount * 16);
220 return 0;
221 }
222
223 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
224 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
225 memcpy(c.d.asBytes, data, blocksCount * 16);
226 SendCommand(&c);
227 return 0;
228 }
229
230 // "MAGIC" CARD
231
232 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe) {
233 uint8_t oldblock0[16] = {0x00};
234 uint8_t block0[16] = {0x00};
235
236 int old = mfCGetBlock(0, oldblock0, CSETBLOCK_SINGLE_OPER);
237 if (old == 0) {
238 memcpy(block0, oldblock0, 16);
239 PrintAndLog("old block 0: %s", sprint_hex(block0,16));
240 } else {
241 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
242 }
243
244 // fill in the new values
245 // UID
246 memcpy(block0, uid, 4);
247 // Mifare UID BCC
248 block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
249 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
250 if (sak!=NULL)
251 block0[5]=sak[0];
252 if (atqa!=NULL) {
253 block0[6]=atqa[1];
254 block0[7]=atqa[0];
255 }
256 PrintAndLog("new block 0: %s", sprint_hex(block0,16));
257 return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);
258 }
259
260 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
261
262 uint8_t isOK = 0;
263 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
264 memcpy(c.d.asBytes, data, 16);
265 SendCommand(&c);
266
267 UsbCommand resp;
268 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
269 isOK = resp.arg[0] & 0xff;
270 if (uid != NULL)
271 memcpy(uid, resp.d.asBytes, 4);
272 if (!isOK)
273 return 2;
274 } else {
275 PrintAndLog("Command execute timeout");
276 return 1;
277 }
278 return 0;
279 }
280
281 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
282 uint8_t isOK = 0;
283
284 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
285 SendCommand(&c);
286
287 UsbCommand resp;
288 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
289 isOK = resp.arg[0] & 0xff;
290 memcpy(data, resp.d.asBytes, 16);
291 if (!isOK) return 2;
292 } else {
293 PrintAndLog("Command execute timeout");
294 return 1;
295 }
296 return 0;
297 }
298
299 // SNIFFER
300
301 // constants
302 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
303
304 // variables
305 char logHexFileName[FILE_PATH_SIZE] = {0x00};
306 static uint8_t traceCard[4096] = {0x00};
307 static char traceFileName[FILE_PATH_SIZE] = {0x00};
308 static int traceState = TRACE_IDLE;
309 static uint8_t traceCurBlock = 0;
310 static uint8_t traceCurKey = 0;
311
312 struct Crypto1State *traceCrypto1 = NULL;
313
314 struct Crypto1State *revstate;
315 uint64_t lfsr;
316 uint32_t ks2;
317 uint32_t ks3;
318
319 uint32_t uid; // serial number
320 uint32_t nt; // tag challenge
321 uint32_t nr_enc; // encrypted reader challenge
322 uint32_t ar_enc; // encrypted reader response
323 uint32_t at_enc; // encrypted tag response
324
325 int isTraceCardEmpty(void) {
326 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
327 }
328
329 int isBlockEmpty(int blockN) {
330 for (int i = 0; i < 16; i++)
331 if (traceCard[blockN * 16 + i] != 0) return 0;
332
333 return 1;
334 }
335
336 int isBlockTrailer(int blockN) {
337 return ((blockN & 0x03) == 0x03);
338 }
339
340 int loadTraceCard(uint8_t *tuid) {
341 FILE * f;
342 char buf[64] = {0x00};
343 uint8_t buf8[64] = {0x00};
344 int i, blockNum;
345
346 if (!isTraceCardEmpty())
347 saveTraceCard();
348
349 memset(traceCard, 0x00, 4096);
350 memcpy(traceCard, tuid + 3, 4);
351
352 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
353
354 f = fopen(traceFileName, "r");
355 if (!f) return 1;
356
357 blockNum = 0;
358
359 while(!feof(f)){
360
361 memset(buf, 0, sizeof(buf));
362 if (fgets(buf, sizeof(buf), f) == NULL) {
363 PrintAndLog("File reading error.");
364 fclose(f);
365 return 2;
366 }
367
368 if (strlen(buf) < 32){
369 if (feof(f)) break;
370 PrintAndLog("File content error. Block data must include 32 HEX symbols");
371 fclose(f);
372 return 2;
373 }
374 for (i = 0; i < 32; i += 2)
375 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
376
377 memcpy(traceCard + blockNum * 16, buf8, 16);
378
379 blockNum++;
380 }
381 fclose(f);
382
383 return 0;
384 }
385
386 int saveTraceCard(void) {
387 FILE * f;
388
389 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
390
391 f = fopen(traceFileName, "w+");
392 if ( !f ) return 1;
393
394 for (int i = 0; i < 64; i++) { // blocks
395 for (int j = 0; j < 16; j++) // bytes
396 fprintf(f, "%02x", *(traceCard + i * 16 + j));
397 fprintf(f,"\n");
398 }
399 fclose(f);
400 return 0;
401 }
402
403 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
404
405 if (traceCrypto1)
406 crypto1_destroy(traceCrypto1);
407
408 traceCrypto1 = NULL;
409
410 if (wantSaveToEmlFile)
411 loadTraceCard(tuid);
412
413 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
414 traceCard[5] = sak;
415 memcpy(&traceCard[6], atqa, 2);
416 traceCurBlock = 0;
417 uid = bytes_to_num(tuid + 3, 4);
418
419 traceState = TRACE_IDLE;
420
421 return 0;
422 }
423
424 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
425 uint8_t bt = 0;
426 int i;
427
428 if (len != 1) {
429 for (i = 0; i < len; i++)
430 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
431 } else {
432 bt = 0;
433 for (i = 0; i < 4; i++)
434 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
435
436 data[0] = bt;
437 }
438 return;
439 }
440
441
442 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
443 uint8_t data[64];
444
445 if (traceState == TRACE_ERROR) return 1;
446 if (len > 64) {
447 traceState = TRACE_ERROR;
448 return 1;
449 }
450
451 memcpy(data, data_src, len);
452 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
453 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
454 PrintAndLog("dec> %s", sprint_hex(data, len));
455 AddLogHex(logHexFileName, "dec> ", data, len);
456 }
457
458 switch (traceState) {
459 case TRACE_IDLE:
460 // check packet crc16!
461 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
462 PrintAndLog("dec> CRC ERROR!!!");
463 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
464 traceState = TRACE_ERROR; // do not decrypt the next commands
465 return 1;
466 }
467
468 // AUTHENTICATION
469 if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
470 traceState = TRACE_AUTH1;
471 traceCurBlock = data[1];
472 traceCurKey = data[0] == 60 ? 1:0;
473 return 0;
474 }
475
476 // READ
477 if ((len ==4) && ((data[0] == 0x30))) {
478 traceState = TRACE_READ_DATA;
479 traceCurBlock = data[1];
480 return 0;
481 }
482
483 // WRITE
484 if ((len ==4) && ((data[0] == 0xA0))) {
485 traceState = TRACE_WRITE_OK;
486 traceCurBlock = data[1];
487 return 0;
488 }
489
490 // HALT
491 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
492 traceState = TRACE_ERROR; // do not decrypt the next commands
493 return 0;
494 }
495
496 return 0;
497 break;
498
499 case TRACE_READ_DATA:
500 if (len == 18) {
501 traceState = TRACE_IDLE;
502
503 if (isBlockTrailer(traceCurBlock)) {
504 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
505 } else {
506 memcpy(traceCard + traceCurBlock * 16, data, 16);
507 }
508 if (wantSaveToEmlFile) saveTraceCard();
509 return 0;
510 } else {
511 traceState = TRACE_ERROR;
512 return 1;
513 }
514 break;
515
516 case TRACE_WRITE_OK:
517 if ((len == 1) && (data[0] == 0x0a)) {
518 traceState = TRACE_WRITE_DATA;
519
520 return 0;
521 } else {
522 traceState = TRACE_ERROR;
523 return 1;
524 }
525 break;
526
527 case TRACE_WRITE_DATA:
528 if (len == 18) {
529 traceState = TRACE_IDLE;
530
531 memcpy(traceCard + traceCurBlock * 16, data, 16);
532 if (wantSaveToEmlFile) saveTraceCard();
533 return 0;
534 } else {
535 traceState = TRACE_ERROR;
536 return 1;
537 }
538 break;
539
540 case TRACE_AUTH1:
541 if (len == 4) {
542 traceState = TRACE_AUTH2;
543 nt = bytes_to_num(data, 4);
544 return 0;
545 } else {
546 traceState = TRACE_ERROR;
547 return 1;
548 }
549 break;
550
551 case TRACE_AUTH2:
552 if (len == 8) {
553 traceState = TRACE_AUTH_OK;
554
555 nr_enc = bytes_to_num(data, 4);
556 ar_enc = bytes_to_num(data + 4, 4);
557 return 0;
558 } else {
559 traceState = TRACE_ERROR;
560 return 1;
561 }
562 break;
563
564 case TRACE_AUTH_OK:
565 if (len ==4) {
566 traceState = TRACE_IDLE;
567
568 at_enc = bytes_to_num(data, 4);
569
570 // decode key here)
571 ks2 = ar_enc ^ prng_successor(nt, 64);
572 ks3 = at_enc ^ prng_successor(nt, 96);
573 revstate = lfsr_recovery64(ks2, ks3);
574 lfsr_rollback_word(revstate, 0, 0);
575 lfsr_rollback_word(revstate, 0, 0);
576 lfsr_rollback_word(revstate, nr_enc, 1);
577 lfsr_rollback_word(revstate, uid ^ nt, 0);
578
579 crypto1_get_lfsr(revstate, &lfsr);
580 printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF));
581 AddLogUint64(logHexFileName, "key> ", lfsr);
582
583 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
584 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
585
586 if (traceCurKey) {
587 num_to_bytes(lfsr, 6, traceCard + blockShift + 10);
588 } else {
589 num_to_bytes(lfsr, 6, traceCard + blockShift);
590 }
591 if (wantSaveToEmlFile) saveTraceCard();
592
593 if (traceCrypto1) {
594 crypto1_destroy(traceCrypto1);
595 }
596
597 // set cryptosystem state
598 traceCrypto1 = lfsr_recovery64(ks2, ks3);
599
600 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
601
602 /* traceCrypto1 = crypto1_create(lfsr); // key in lfsr
603 crypto1_word(traceCrypto1, nt ^ uid, 0);
604 crypto1_word(traceCrypto1, ar, 1);
605 crypto1_word(traceCrypto1, 0, 0);
606 crypto1_word(traceCrypto1, 0, 0);*/
607
608 return 0;
609 } else {
610 traceState = TRACE_ERROR;
611 return 1;
612 }
613 break;
614
615 default:
616 traceState = TRACE_ERROR;
617 return 1;
618 }
619
620 return 0;
621 }
622
623 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
624 /*
625 uint32_t nt; // tag challenge
626 uint32_t ar_enc; // encrypted reader response
627 uint32_t at_enc; // encrypted tag response
628 */
629 if (traceCrypto1) {
630 crypto1_destroy(traceCrypto1);
631 }
632 ks2 = ar_enc ^ prng_successor(nt, 64);
633 ks3 = at_enc ^ prng_successor(nt, 96);
634 traceCrypto1 = lfsr_recovery64(ks2, ks3);
635
636 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
637
638 PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
639 crypto1_destroy(traceCrypto1);
640 return 0;
641 }
Impressum, Datenschutz