]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
ADD: added the possibility to choose which block num to attack with "hf mf mifare...
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 #include "cmd.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "iso14443crc.h"
49 #include "iso15693tools.h"
50 #include "protocols.h"
51 #include "optimized_cipher.h"
52
53 static int timeout = 4096;
54
55
56 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
57
58 //-----------------------------------------------------------------------------
59 // The software UART that receives commands from the reader, and its state
60 // variables.
61 //-----------------------------------------------------------------------------
62 static struct {
63 enum {
64 STATE_UNSYNCD,
65 STATE_START_OF_COMMUNICATION,
66 STATE_RECEIVING
67 } state;
68 uint16_t shiftReg;
69 int bitCnt;
70 int byteCnt;
71 int byteCntMax;
72 int posCnt;
73 int nOutOfCnt;
74 int OutOfCnt;
75 int syncBit;
76 int samples;
77 int highCnt;
78 int swapper;
79 int counter;
80 int bitBuffer;
81 int dropPosition;
82 uint8_t *output;
83 } Uart;
84
85 static RAMFUNC int OutOfNDecoding(int bit)
86 {
87 //int error = 0;
88 int bitright;
89
90 if(!Uart.bitBuffer) {
91 Uart.bitBuffer = bit ^ 0xFF0;
92 return FALSE;
93 }
94 else {
95 Uart.bitBuffer <<= 4;
96 Uart.bitBuffer ^= bit;
97 }
98
99 /*if(Uart.swapper) {
100 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
101 Uart.byteCnt++;
102 Uart.swapper = 0;
103 if(Uart.byteCnt > 15) { return TRUE; }
104 }
105 else {
106 Uart.swapper = 1;
107 }*/
108
109 if(Uart.state != STATE_UNSYNCD) {
110 Uart.posCnt++;
111
112 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
113 bit = 0x00;
114 }
115 else {
116 bit = 0x01;
117 }
118 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
119 bitright = 0x00;
120 }
121 else {
122 bitright = 0x01;
123 }
124 if(bit != bitright) { bit = bitright; }
125
126
127 // So, now we only have to deal with *bit*, lets see...
128 if(Uart.posCnt == 1) {
129 // measurement first half bitperiod
130 if(!bit) {
131 // Drop in first half means that we are either seeing
132 // an SOF or an EOF.
133
134 if(Uart.nOutOfCnt == 1) {
135 // End of Communication
136 Uart.state = STATE_UNSYNCD;
137 Uart.highCnt = 0;
138 if(Uart.byteCnt == 0) {
139 // Its not straightforward to show single EOFs
140 // So just leave it and do not return TRUE
141 Uart.output[0] = 0xf0;
142 Uart.byteCnt++;
143 }
144 else {
145 return TRUE;
146 }
147 }
148 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
149 // When not part of SOF or EOF, it is an error
150 Uart.state = STATE_UNSYNCD;
151 Uart.highCnt = 0;
152 //error = 4;
153 }
154 }
155 }
156 else {
157 // measurement second half bitperiod
158 // Count the bitslot we are in... (ISO 15693)
159 Uart.nOutOfCnt++;
160
161 if(!bit) {
162 if(Uart.dropPosition) {
163 if(Uart.state == STATE_START_OF_COMMUNICATION) {
164 //error = 1;
165 }
166 else {
167 //error = 7;
168 }
169 // It is an error if we already have seen a drop in current frame
170 Uart.state = STATE_UNSYNCD;
171 Uart.highCnt = 0;
172 }
173 else {
174 Uart.dropPosition = Uart.nOutOfCnt;
175 }
176 }
177
178 Uart.posCnt = 0;
179
180
181 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
182 Uart.nOutOfCnt = 0;
183
184 if(Uart.state == STATE_START_OF_COMMUNICATION) {
185 if(Uart.dropPosition == 4) {
186 Uart.state = STATE_RECEIVING;
187 Uart.OutOfCnt = 256;
188 }
189 else if(Uart.dropPosition == 3) {
190 Uart.state = STATE_RECEIVING;
191 Uart.OutOfCnt = 4;
192 //Uart.output[Uart.byteCnt] = 0xdd;
193 //Uart.byteCnt++;
194 }
195 else {
196 Uart.state = STATE_UNSYNCD;
197 Uart.highCnt = 0;
198 }
199 Uart.dropPosition = 0;
200 }
201 else {
202 // RECEIVING DATA
203 // 1 out of 4
204 if(!Uart.dropPosition) {
205 Uart.state = STATE_UNSYNCD;
206 Uart.highCnt = 0;
207 //error = 9;
208 }
209 else {
210 Uart.shiftReg >>= 2;
211
212 // Swap bit order
213 Uart.dropPosition--;
214 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
215 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
216
217 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
218 Uart.bitCnt += 2;
219 Uart.dropPosition = 0;
220
221 if(Uart.bitCnt == 8) {
222 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
223 Uart.byteCnt++;
224 Uart.bitCnt = 0;
225 Uart.shiftReg = 0;
226 }
227 }
228 }
229 }
230 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
231 // RECEIVING DATA
232 // 1 out of 256
233 if(!Uart.dropPosition) {
234 Uart.state = STATE_UNSYNCD;
235 Uart.highCnt = 0;
236 //error = 3;
237 }
238 else {
239 Uart.dropPosition--;
240 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
241 Uart.byteCnt++;
242 Uart.bitCnt = 0;
243 Uart.shiftReg = 0;
244 Uart.nOutOfCnt = 0;
245 Uart.dropPosition = 0;
246 }
247 }
248
249 /*if(error) {
250 Uart.output[Uart.byteCnt] = 0xAA;
251 Uart.byteCnt++;
252 Uart.output[Uart.byteCnt] = error & 0xFF;
253 Uart.byteCnt++;
254 Uart.output[Uart.byteCnt] = 0xAA;
255 Uart.byteCnt++;
256 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
257 Uart.byteCnt++;
258 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
259 Uart.byteCnt++;
260 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
261 Uart.byteCnt++;
262 Uart.output[Uart.byteCnt] = 0xAA;
263 Uart.byteCnt++;
264 return TRUE;
265 }*/
266 }
267
268 }
269 else {
270 bit = Uart.bitBuffer & 0xf0;
271 bit >>= 4;
272 bit ^= 0x0F; // drops become 1s ;-)
273 if(bit) {
274 // should have been high or at least (4 * 128) / fc
275 // according to ISO this should be at least (9 * 128 + 20) / fc
276 if(Uart.highCnt == 8) {
277 // we went low, so this could be start of communication
278 // it turns out to be safer to choose a less significant
279 // syncbit... so we check whether the neighbour also represents the drop
280 Uart.posCnt = 1; // apparently we are busy with our first half bit period
281 Uart.syncBit = bit & 8;
282 Uart.samples = 3;
283 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
284 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
285 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
286 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
287 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
288 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
289 Uart.syncBit = 8;
290
291 // the first half bit period is expected in next sample
292 Uart.posCnt = 0;
293 Uart.samples = 3;
294 }
295 }
296 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
297
298 Uart.syncBit <<= 4;
299 Uart.state = STATE_START_OF_COMMUNICATION;
300 Uart.bitCnt = 0;
301 Uart.byteCnt = 0;
302 Uart.nOutOfCnt = 0;
303 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
304 Uart.dropPosition = 0;
305 Uart.shiftReg = 0;
306 //error = 0;
307 }
308 else {
309 Uart.highCnt = 0;
310 }
311 }
312 else {
313 if(Uart.highCnt < 8) {
314 Uart.highCnt++;
315 }
316 }
317 }
318
319 return FALSE;
320 }
321
322 //=============================================================================
323 // Manchester
324 //=============================================================================
325
326 static struct {
327 enum {
328 DEMOD_UNSYNCD,
329 DEMOD_START_OF_COMMUNICATION,
330 DEMOD_START_OF_COMMUNICATION2,
331 DEMOD_START_OF_COMMUNICATION3,
332 DEMOD_SOF_COMPLETE,
333 DEMOD_MANCHESTER_D,
334 DEMOD_MANCHESTER_E,
335 DEMOD_END_OF_COMMUNICATION,
336 DEMOD_END_OF_COMMUNICATION2,
337 DEMOD_MANCHESTER_F,
338 DEMOD_ERROR_WAIT
339 } state;
340 int bitCount;
341 int posCount;
342 int syncBit;
343 uint16_t shiftReg;
344 int buffer;
345 int buffer2;
346 int buffer3;
347 int buff;
348 int samples;
349 int len;
350 enum {
351 SUB_NONE,
352 SUB_FIRST_HALF,
353 SUB_SECOND_HALF,
354 SUB_BOTH
355 } sub;
356 uint8_t *output;
357 } Demod;
358
359 static RAMFUNC int ManchesterDecoding(int v)
360 {
361 int bit;
362 int modulation;
363 int error = 0;
364
365 bit = Demod.buffer;
366 Demod.buffer = Demod.buffer2;
367 Demod.buffer2 = Demod.buffer3;
368 Demod.buffer3 = v;
369
370 if(Demod.buff < 3) {
371 Demod.buff++;
372 return FALSE;
373 }
374
375 if(Demod.state==DEMOD_UNSYNCD) {
376 Demod.output[Demod.len] = 0xfa;
377 Demod.syncBit = 0;
378 //Demod.samples = 0;
379 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
380
381 if(bit & 0x08) {
382 Demod.syncBit = 0x08;
383 }
384
385 if(bit & 0x04) {
386 if(Demod.syncBit) {
387 bit <<= 4;
388 }
389 Demod.syncBit = 0x04;
390 }
391
392 if(bit & 0x02) {
393 if(Demod.syncBit) {
394 bit <<= 2;
395 }
396 Demod.syncBit = 0x02;
397 }
398
399 if(bit & 0x01 && Demod.syncBit) {
400 Demod.syncBit = 0x01;
401 }
402
403 if(Demod.syncBit) {
404 Demod.len = 0;
405 Demod.state = DEMOD_START_OF_COMMUNICATION;
406 Demod.sub = SUB_FIRST_HALF;
407 Demod.bitCount = 0;
408 Demod.shiftReg = 0;
409 Demod.samples = 0;
410 if(Demod.posCount) {
411 //if(trigger) LED_A_OFF(); // Not useful in this case...
412 switch(Demod.syncBit) {
413 case 0x08: Demod.samples = 3; break;
414 case 0x04: Demod.samples = 2; break;
415 case 0x02: Demod.samples = 1; break;
416 case 0x01: Demod.samples = 0; break;
417 }
418 // SOF must be long burst... otherwise stay unsynced!!!
419 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
420 Demod.state = DEMOD_UNSYNCD;
421 }
422 }
423 else {
424 // SOF must be long burst... otherwise stay unsynced!!!
425 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
426 Demod.state = DEMOD_UNSYNCD;
427 error = 0x88;
428 }
429
430 // TODO: use this error value to print? Ask Holiman.
431 // 2016-01-08 iceman
432 }
433 error = 0;
434 }
435 }
436 else {
437 modulation = bit & Demod.syncBit;
438 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
439
440 Demod.samples += 4;
441
442 if(Demod.posCount==0) {
443 Demod.posCount = 1;
444 if(modulation) {
445 Demod.sub = SUB_FIRST_HALF;
446 }
447 else {
448 Demod.sub = SUB_NONE;
449 }
450 }
451 else {
452 Demod.posCount = 0;
453 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
454 if(Demod.state!=DEMOD_ERROR_WAIT) {
455 Demod.state = DEMOD_ERROR_WAIT;
456 Demod.output[Demod.len] = 0xaa;
457 error = 0x01;
458 }
459 }*/
460 //else if(modulation) {
461 if(modulation) {
462 if(Demod.sub == SUB_FIRST_HALF) {
463 Demod.sub = SUB_BOTH;
464 }
465 else {
466 Demod.sub = SUB_SECOND_HALF;
467 }
468 }
469 else if(Demod.sub == SUB_NONE) {
470 if(Demod.state == DEMOD_SOF_COMPLETE) {
471 Demod.output[Demod.len] = 0x0f;
472 Demod.len++;
473 Demod.state = DEMOD_UNSYNCD;
474 // error = 0x0f;
475 return TRUE;
476 }
477 else {
478 Demod.state = DEMOD_ERROR_WAIT;
479 error = 0x33;
480 }
481 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
482 Demod.state = DEMOD_ERROR_WAIT;
483 Demod.output[Demod.len] = 0xaa;
484 error = 0x01;
485 }*/
486 }
487
488 switch(Demod.state) {
489 case DEMOD_START_OF_COMMUNICATION:
490 if(Demod.sub == SUB_BOTH) {
491 //Demod.state = DEMOD_MANCHESTER_D;
492 Demod.state = DEMOD_START_OF_COMMUNICATION2;
493 Demod.posCount = 1;
494 Demod.sub = SUB_NONE;
495 }
496 else {
497 Demod.output[Demod.len] = 0xab;
498 Demod.state = DEMOD_ERROR_WAIT;
499 error = 0xd2;
500 }
501 break;
502 case DEMOD_START_OF_COMMUNICATION2:
503 if(Demod.sub == SUB_SECOND_HALF) {
504 Demod.state = DEMOD_START_OF_COMMUNICATION3;
505 }
506 else {
507 Demod.output[Demod.len] = 0xab;
508 Demod.state = DEMOD_ERROR_WAIT;
509 error = 0xd3;
510 }
511 break;
512 case DEMOD_START_OF_COMMUNICATION3:
513 if(Demod.sub == SUB_SECOND_HALF) {
514 // Demod.state = DEMOD_MANCHESTER_D;
515 Demod.state = DEMOD_SOF_COMPLETE;
516 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
517 //Demod.len++;
518 }
519 else {
520 Demod.output[Demod.len] = 0xab;
521 Demod.state = DEMOD_ERROR_WAIT;
522 error = 0xd4;
523 }
524 break;
525 case DEMOD_SOF_COMPLETE:
526 case DEMOD_MANCHESTER_D:
527 case DEMOD_MANCHESTER_E:
528 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
529 // 00001111 = 1 (0 in 14443)
530 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
531 Demod.bitCount++;
532 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
533 Demod.state = DEMOD_MANCHESTER_D;
534 }
535 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
536 Demod.bitCount++;
537 Demod.shiftReg >>= 1;
538 Demod.state = DEMOD_MANCHESTER_E;
539 }
540 else if(Demod.sub == SUB_BOTH) {
541 Demod.state = DEMOD_MANCHESTER_F;
542 }
543 else {
544 Demod.state = DEMOD_ERROR_WAIT;
545 error = 0x55;
546 }
547 break;
548
549 case DEMOD_MANCHESTER_F:
550 // Tag response does not need to be a complete byte!
551 if(Demod.len > 0 || Demod.bitCount > 0) {
552 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
553 Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
554 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
555 Demod.len++;
556 }
557
558 Demod.state = DEMOD_UNSYNCD;
559 return TRUE;
560 }
561 else {
562 Demod.output[Demod.len] = 0xad;
563 Demod.state = DEMOD_ERROR_WAIT;
564 error = 0x03;
565 }
566 break;
567
568 case DEMOD_ERROR_WAIT:
569 Demod.state = DEMOD_UNSYNCD;
570 break;
571
572 default:
573 Demod.output[Demod.len] = 0xdd;
574 Demod.state = DEMOD_UNSYNCD;
575 break;
576 }
577
578 /*if(Demod.bitCount>=9) {
579 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
580 Demod.len++;
581
582 Demod.parityBits <<= 1;
583 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
584
585 Demod.bitCount = 0;
586 Demod.shiftReg = 0;
587 }*/
588 if(Demod.bitCount>=8) {
589 Demod.shiftReg >>= 1;
590 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
591 Demod.len++;
592 Demod.bitCount = 0;
593 Demod.shiftReg = 0;
594 }
595
596 if(error) {
597 Demod.output[Demod.len] = 0xBB;
598 Demod.len++;
599 Demod.output[Demod.len] = error & 0xFF;
600 Demod.len++;
601 Demod.output[Demod.len] = 0xBB;
602 Demod.len++;
603 Demod.output[Demod.len] = bit & 0xFF;
604 Demod.len++;
605 Demod.output[Demod.len] = Demod.buffer & 0xFF;
606 Demod.len++;
607 // Look harder ;-)
608 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
609 Demod.len++;
610 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
611 Demod.len++;
612 Demod.output[Demod.len] = 0xBB;
613 Demod.len++;
614 return TRUE;
615 }
616
617 }
618
619 } // end (state != UNSYNCED)
620
621 return FALSE;
622 }
623
624 //=============================================================================
625 // Finally, a `sniffer' for iClass communication
626 // Both sides of communication!
627 //=============================================================================
628
629 //-----------------------------------------------------------------------------
630 // Record the sequence of commands sent by the reader to the tag, with
631 // triggering so that we start recording at the point that the tag is moved
632 // near the reader.
633 //-----------------------------------------------------------------------------
634 void RAMFUNC SnoopIClass(void)
635 {
636 // We won't start recording the frames that we acquire until we trigger;
637 // a good trigger condition to get started is probably when we see a
638 // response from the tag.
639 //int triggered = FALSE; // FALSE to wait first for card
640
641 // The command (reader -> tag) that we're receiving.
642 // The length of a received command will in most cases be no more than 18 bytes.
643 // So 32 should be enough!
644 #define ICLASS_BUFFER_SIZE 32
645 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
646 // The response (tag -> reader) that we're receiving.
647 uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
648
649 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
650
651 // free all BigBuf memory
652 BigBuf_free();
653 // The DMA buffer, used to stream samples from the FPGA
654 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
655
656 clear_trace();
657 set_tracing(TRUE);
658
659 iso14a_set_trigger(FALSE);
660
661 int lastRxCounter;
662 uint8_t *upTo;
663 int smpl;
664 int maxBehindBy = 0;
665
666 // Count of samples received so far, so that we can include timing
667 // information in the trace buffer.
668 int samples = 0;
669 rsamples = 0;
670
671 // Set up the demodulator for tag -> reader responses.
672 Demod.output = tagToReaderResponse;
673 Demod.len = 0;
674 Demod.state = DEMOD_UNSYNCD;
675
676 // Setup for the DMA.
677 FpgaSetupSsc();
678 upTo = dmaBuf;
679 lastRxCounter = DMA_BUFFER_SIZE;
680 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
681
682 // And the reader -> tag commands
683 memset(&Uart, 0, sizeof(Uart));
684 Uart.output = readerToTagCmd;
685 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
686 Uart.state = STATE_UNSYNCD;
687
688 // And put the FPGA in the appropriate mode
689 // Signal field is off with the appropriate LED
690 LED_D_OFF();
691 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
692 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
693
694 uint32_t time_0 = GetCountSspClk();
695 uint32_t time_start = 0;
696 uint32_t time_stop = 0;
697
698 int div = 0;
699 //int div2 = 0;
700 int decbyte = 0;
701 int decbyter = 0;
702
703 // And now we loop, receiving samples.
704 for(;;) {
705 LED_A_ON();
706 WDT_HIT();
707 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1);
708
709 if ( behindBy > maxBehindBy) {
710 maxBehindBy = behindBy;
711 if ( behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
712 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
713 goto done;
714 }
715 }
716 if( behindBy < 1) continue;
717
718 LED_A_OFF();
719 smpl = upTo[0];
720 upTo++;
721 lastRxCounter -= 1;
722 if (upTo - dmaBuf > DMA_BUFFER_SIZE) {
723 upTo -= DMA_BUFFER_SIZE;
724 lastRxCounter += DMA_BUFFER_SIZE;
725 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
726 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
727 }
728
729 //samples += 4;
730 samples += 1;
731
732 if(smpl & 0xF)
733 decbyte ^= (1 << (3 - div));
734
735
736 // FOR READER SIDE COMMUMICATION...
737
738 decbyter <<= 2;
739 decbyter ^= (smpl & 0x30);
740
741 ++div;
742
743 if (( div + 1) % 2 == 0) {
744 smpl = decbyter;
745 if ( OutOfNDecoding((smpl & 0xF0) >> 4)) {
746 rsamples = samples - Uart.samples;
747 time_stop = (GetCountSspClk()-time_0) << 4;
748 LED_C_ON();
749
750 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
751 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
752 if(tracing) {
753 uint8_t parity[MAX_PARITY_SIZE];
754 GetParity(Uart.output, Uart.byteCnt, parity);
755 LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE);
756 }
757
758 /* And ready to receive another command. */
759 Uart.state = STATE_UNSYNCD;
760 /* And also reset the demod code, which might have been */
761 /* false-triggered by the commands from the reader. */
762 Demod.state = DEMOD_UNSYNCD;
763 LED_B_OFF();
764 Uart.byteCnt = 0;
765 } else {
766 time_start = (GetCountSspClk()-time_0) << 4;
767 }
768 decbyter = 0;
769 }
770
771 if(div > 3) {
772 smpl = decbyte;
773 if(ManchesterDecoding(smpl & 0x0F)) {
774 time_stop = (GetCountSspClk()-time_0) << 4;
775
776 rsamples = samples - Demod.samples;
777 LED_B_ON();
778
779 if(tracing) {
780 uint8_t parity[MAX_PARITY_SIZE];
781 GetParity(Demod.output, Demod.len, parity);
782 LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE);
783 }
784
785 // And ready to receive another response.
786 memset(&Demod, 0, sizeof(Demod));
787 Demod.output = tagToReaderResponse;
788 Demod.state = DEMOD_UNSYNCD;
789 LED_C_OFF();
790 } else {
791 time_start = (GetCountSspClk()-time_0) << 4;
792 }
793
794 div = 0;
795 decbyte = 0x00;
796 }
797
798 if (BUTTON_PRESS()) {
799 DbpString("cancelled_a");
800 goto done;
801 }
802 }
803
804 DbpString("COMMAND FINISHED");
805
806 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
807 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
808
809 done:
810 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
811 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
812 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
813 LEDsoff();
814 set_tracing(FALSE);
815 }
816
817 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
818 int i;
819 for(i = 0; i < 8; i++)
820 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
821 }
822
823 //-----------------------------------------------------------------------------
824 // Wait for commands from reader
825 // Stop when button is pressed
826 // Or return TRUE when command is captured
827 //-----------------------------------------------------------------------------
828 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
829 {
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
833 LED_D_OFF();
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
835
836 // Now run a `software UART' on the stream of incoming samples.
837 Uart.output = received;
838 Uart.byteCntMax = maxLen;
839 Uart.state = STATE_UNSYNCD;
840
841 for(;;) {
842 WDT_HIT();
843
844 if(BUTTON_PRESS()) return FALSE;
845
846 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
847 AT91C_BASE_SSC->SSC_THR = 0x00;
848 }
849 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
850 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
851
852 if(OutOfNDecoding(b & 0x0f)) {
853 *len = Uart.byteCnt;
854 return TRUE;
855 }
856 }
857 }
858 }
859
860 static uint8_t encode4Bits(const uint8_t b)
861 {
862 uint8_t c = b & 0xF;
863 // OTA, the least significant bits first
864 // The columns are
865 // 1 - Bit value to send
866 // 2 - Reversed (big-endian)
867 // 3 - Encoded
868 // 4 - Hex values
869
870 switch(c){
871 // 1 2 3 4
872 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
873 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
874 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
875 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
876 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
877 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
878 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
879 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
880 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
881 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
882 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
883 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
884 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
885 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
886 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
887 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
888
889 }
890 }
891
892 //-----------------------------------------------------------------------------
893 // Prepare tag messages
894 //-----------------------------------------------------------------------------
895 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
896 {
897
898 /*
899 * SOF comprises 3 parts;
900 * * An unmodulated time of 56.64 us
901 * * 24 pulses of 423.75 KHz (fc/32)
902 * * A logic 1, which starts with an unmodulated time of 18.88us
903 * followed by 8 pulses of 423.75kHz (fc/32)
904 *
905 *
906 * EOF comprises 3 parts:
907 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
908 * time of 18.88us.
909 * - 24 pulses of fc/32
910 * - An unmodulated time of 56.64 us
911 *
912 *
913 * A logic 0 starts with 8 pulses of fc/32
914 * followed by an unmodulated time of 256/fc (~18,88us).
915 *
916 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
917 * 8 pulses of fc/32 (also 18.88us)
918 *
919 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
920 * works like this.
921 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
922 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
923 *
924 * In this mode the SOF can be written as 00011101 = 0x1D
925 * The EOF can be written as 10111000 = 0xb8
926 * A logic 1 is 01
927 * A logic 0 is 10
928 *
929 * */
930
931 int i;
932
933 ToSendReset();
934
935 // Send SOF
936 ToSend[++ToSendMax] = 0x1D;
937
938 for(i = 0; i < len; i++) {
939 uint8_t b = cmd[i];
940 ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
941 ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
942 }
943
944 // Send EOF
945 ToSend[++ToSendMax] = 0xB8;
946 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
947 // Convert from last byte pos to length
948 ToSendMax++;
949 }
950
951 // Only SOF
952 static void CodeIClassTagSOF()
953 {
954 //So far a dummy implementation, not used
955 //int lastProxToAirDuration =0;
956
957 ToSendReset();
958 // Send SOF
959 ToSend[++ToSendMax] = 0x1D;
960 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
961
962 // Convert from last byte pos to length
963 ToSendMax++;
964 }
965 #define MODE_SIM_CSN 0
966 #define MODE_EXIT_AFTER_MAC 1
967 #define MODE_FULLSIM 2
968
969 int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
970 /**
971 * @brief SimulateIClass simulates an iClass card.
972 * @param arg0 type of simulation
973 * - 0 uses the first 8 bytes in usb data as CSN
974 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
975 * in the usb data. This mode collects MAC from the reader, in order to do an offline
976 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
977 * - Other : Uses the default CSN (031fec8af7ff12e0)
978 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
979 * @param arg2
980 * @param datain
981 */
982 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
983 {
984 uint32_t simType = arg0;
985 uint32_t numberOfCSNS = arg1;
986 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
987
988 // Enable and clear the trace
989 clear_trace();
990 set_tracing(TRUE);
991
992 //Use the emulator memory for SIM
993 uint8_t *emulator = BigBuf_get_EM_addr();
994
995 if(simType == 0) {
996 // Use the CSN from commandline
997 memcpy(emulator, datain, 8);
998 doIClassSimulation(MODE_SIM_CSN,NULL);
999 }else if(simType == 1)
1000 {
1001 //Default CSN
1002 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1003 // Use the CSN from commandline
1004 memcpy(emulator, csn_crc, 8);
1005 doIClassSimulation(MODE_SIM_CSN,NULL);
1006 }
1007 else if(simType == 2)
1008 {
1009
1010 uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
1011 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
1012 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1013 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1014 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1015 int i = 0;
1016 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
1017 {
1018 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1019
1020 memcpy(emulator, datain+(i*8), 8);
1021 if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
1022 {
1023 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1024 return; // Button pressed
1025 }
1026 }
1027 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1028
1029 }else if(simType == 3){
1030 //This is 'full sim' mode, where we use the emulator storage for data.
1031 doIClassSimulation(MODE_FULLSIM, NULL);
1032 }
1033 else{
1034 // We may want a mode here where we hardcode the csns to use (from proxclone).
1035 // That will speed things up a little, but not required just yet.
1036 Dbprintf("The mode is not implemented, reserved for future use");
1037 }
1038 Dbprintf("Done...");
1039 set_tracing(FALSE);
1040 }
1041 void AppendCrc(uint8_t* data, int len)
1042 {
1043 ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
1044 }
1045
1046 /**
1047 * @brief Does the actual simulation
1048 * @param csn - csn to use
1049 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1050 */
1051 int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
1052 {
1053 // free eventually allocated BigBuf memory
1054 BigBuf_free_keep_EM();
1055
1056 State cipher_state;
1057 // State cipher_state_reserve;
1058 uint8_t *csn = BigBuf_get_EM_addr();
1059 uint8_t *emulator = csn;
1060 uint8_t sof_data[] = { 0x0F} ;
1061 // CSN followed by two CRC bytes
1062 uint8_t anticoll_data[10] = { 0 };
1063 uint8_t csn_data[10] = { 0 };
1064 memcpy(csn_data,csn,sizeof(csn_data));
1065 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1066
1067 // Construct anticollision-CSN
1068 rotateCSN(csn_data,anticoll_data);
1069
1070 // Compute CRC on both CSNs
1071 ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
1072 ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
1073
1074 uint8_t diversified_key[8] = { 0 };
1075 // e-Purse
1076 uint8_t card_challenge_data[8] = { 0x00 };
1077 if(simulationMode == MODE_FULLSIM)
1078 {
1079 //The diversified key should be stored on block 3
1080 //Get the diversified key from emulator memory
1081 memcpy(diversified_key, emulator+(8*3),8);
1082
1083 //Card challenge, a.k.a e-purse is on block 2
1084 memcpy(card_challenge_data,emulator + (8 * 2) , 8);
1085 //Precalculate the cipher state, feeding it the CC
1086 cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
1087
1088 }
1089
1090 int exitLoop = 0;
1091 // Reader 0a
1092 // Tag 0f
1093 // Reader 0c
1094 // Tag anticoll. CSN
1095 // Reader 81 anticoll. CSN
1096 // Tag CSN
1097
1098 uint8_t *modulated_response;
1099 int modulated_response_size = 0;
1100 uint8_t* trace_data = NULL;
1101 int trace_data_size = 0;
1102
1103
1104 // Respond SOF -- takes 1 bytes
1105 uint8_t *resp_sof = BigBuf_malloc(2);
1106 int resp_sof_Len;
1107
1108 // Anticollision CSN (rotated CSN)
1109 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1110 uint8_t *resp_anticoll = BigBuf_malloc(28);
1111 int resp_anticoll_len;
1112
1113 // CSN
1114 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1115 uint8_t *resp_csn = BigBuf_malloc(30);
1116 int resp_csn_len;
1117
1118 // e-Purse
1119 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1120 uint8_t *resp_cc = BigBuf_malloc(20);
1121 int resp_cc_len;
1122
1123 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1124 int len;
1125
1126 // Prepare card messages
1127 ToSendMax = 0;
1128
1129 // First card answer: SOF
1130 CodeIClassTagSOF();
1131 memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
1132
1133 // Anticollision CSN
1134 CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
1135 memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
1136
1137 // CSN
1138 CodeIClassTagAnswer(csn_data, sizeof(csn_data));
1139 memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
1140
1141 // e-Purse
1142 CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
1143 memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
1144
1145 //This is used for responding to READ-block commands or other data which is dynamically generated
1146 //First the 'trace'-data, not encoded for FPGA
1147 uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1148 //Then storage for the modulated data
1149 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1150 uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
1151
1152 // Start from off (no field generated)
1153 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1154 //SpinDelay(200);
1155 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1156 SpinDelay(100);
1157 StartCountSspClk();
1158 // We need to listen to the high-frequency, peak-detected path.
1159 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1160 FpgaSetupSsc();
1161
1162 // To control where we are in the protocol
1163 int cmdsRecvd = 0;
1164 uint32_t time_0 = GetCountSspClk();
1165 uint32_t t2r_time =0;
1166 uint32_t r2t_time =0;
1167
1168 LED_A_ON();
1169 bool buttonPressed = false;
1170 uint8_t response_delay = 1;
1171 while(!exitLoop) {
1172 response_delay = 1;
1173 LED_B_OFF();
1174 //Signal tracer
1175 // Can be used to get a trigger for an oscilloscope..
1176 LED_C_OFF();
1177
1178 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1179 buttonPressed = true;
1180 break;
1181 }
1182 r2t_time = GetCountSspClk();
1183 //Signal tracer
1184 LED_C_ON();
1185
1186 // Okay, look at the command now.
1187 if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
1188 // Reader in anticollission phase
1189 modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
1190 trace_data = sof_data;
1191 trace_data_size = sizeof(sof_data);
1192 } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
1193 // Reader asks for anticollission CSN
1194 modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
1195 trace_data = anticoll_data;
1196 trace_data_size = sizeof(anticoll_data);
1197 //DbpString("Reader requests anticollission CSN:");
1198 } else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
1199 // Reader selects anticollission CSN.
1200 // Tag sends the corresponding real CSN
1201 modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
1202 trace_data = csn_data;
1203 trace_data_size = sizeof(csn_data);
1204 //DbpString("Reader selects anticollission CSN:");
1205 } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
1206 // Read e-purse (88 02)
1207 modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
1208 trace_data = card_challenge_data;
1209 trace_data_size = sizeof(card_challenge_data);
1210 LED_B_ON();
1211 } else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
1212 // Reader random and reader MAC!!!
1213 if(simulationMode == MODE_FULLSIM)
1214 {
1215 //NR, from reader, is in receivedCmd +1
1216 opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
1217
1218 trace_data = data_generic_trace;
1219 trace_data_size = 4;
1220 CodeIClassTagAnswer(trace_data , trace_data_size);
1221 memcpy(data_response, ToSend, ToSendMax);
1222 modulated_response = data_response;
1223 modulated_response_size = ToSendMax;
1224 response_delay = 0;//We need to hurry here...
1225 //exitLoop = true;
1226 }else
1227 { //Not fullsim, we don't respond
1228 // We do not know what to answer, so lets keep quiet
1229 modulated_response = resp_sof; modulated_response_size = 0;
1230 trace_data = NULL;
1231 trace_data_size = 0;
1232 if (simulationMode == MODE_EXIT_AFTER_MAC){
1233 // dbprintf:ing ...
1234 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1235 ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1236 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1237 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1238 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1239 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1240 if (reader_mac_buf != NULL)
1241 {
1242 memcpy(reader_mac_buf,receivedCmd+1,8);
1243 }
1244 exitLoop = true;
1245 }
1246 }
1247
1248 } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
1249 // Reader ends the session
1250 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1251 trace_data = NULL;
1252 trace_data_size = 0;
1253 } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
1254 //Read block
1255 uint16_t blk = receivedCmd[1];
1256 //Take the data...
1257 memcpy(data_generic_trace, emulator+(blk << 3),8);
1258 //Add crc
1259 AppendCrc(data_generic_trace, 8);
1260 trace_data = data_generic_trace;
1261 trace_data_size = 10;
1262 CodeIClassTagAnswer(trace_data , trace_data_size);
1263 memcpy(data_response, ToSend, ToSendMax);
1264 modulated_response = data_response;
1265 modulated_response_size = ToSendMax;
1266 }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
1267 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1268 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1269 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1270 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1271
1272 //Take the data...
1273 memcpy(data_generic_trace, receivedCmd+2,8);
1274 //Add crc
1275 AppendCrc(data_generic_trace, 8);
1276 trace_data = data_generic_trace;
1277 trace_data_size = 10;
1278 CodeIClassTagAnswer(trace_data , trace_data_size);
1279 memcpy(data_response, ToSend, ToSendMax);
1280 modulated_response = data_response;
1281 modulated_response_size = ToSendMax;
1282 }
1283 else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
1284 {//Pagesel
1285 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1286 //Chips with a single page will not answer to this command
1287 // It appears we're fine ignoring this.
1288 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1289 }
1290 else {
1291 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1292 // Never seen this command before
1293 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1294 len,
1295 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1296 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1297 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1298 // Do not respond
1299 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1300 trace_data = NULL;
1301 trace_data_size = 0;
1302 }
1303
1304 if(cmdsRecvd > 100) {
1305 //DbpString("100 commands later...");
1306 //break;
1307 }
1308 else {
1309 cmdsRecvd++;
1310 }
1311 /**
1312 A legit tag has about 380us delay between reader EOT and tag SOF.
1313 **/
1314 if(modulated_response_size > 0) {
1315 SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
1316 t2r_time = GetCountSspClk();
1317 }
1318
1319 if (tracing) {
1320 uint8_t parity[MAX_PARITY_SIZE];
1321 GetParity(receivedCmd, len, parity);
1322 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE);
1323
1324 if (trace_data != NULL) {
1325 GetParity(trace_data, trace_data_size, parity);
1326 LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
1327 }
1328 if(!tracing)
1329 DbpString("Trace full");
1330
1331 }
1332 }
1333
1334 LEDsoff();
1335
1336 if(buttonPressed)
1337 DbpString("Button pressed");
1338
1339 return buttonPressed;
1340 }
1341
1342 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1343 {
1344 int i = 0, d=0;//, u = 0, d = 0;
1345 uint8_t b = 0;
1346
1347 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1348 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
1349
1350 AT91C_BASE_SSC->SSC_THR = 0x00;
1351 FpgaSetupSsc();
1352 while(!BUTTON_PRESS()) {
1353 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1354 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1355 }
1356 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1357 b = 0x00;
1358 if(d < delay) {
1359 d++;
1360 }
1361 else {
1362 if( i < respLen){
1363 b = resp[i];
1364 //Hack
1365 //b = 0xAC;
1366 }
1367 i++;
1368 }
1369 AT91C_BASE_SSC->SSC_THR = b;
1370 }
1371
1372 // if (i > respLen +4) break;
1373 if (i > respLen +1) break;
1374 }
1375
1376 return 0;
1377 }
1378
1379 /// THE READER CODE
1380
1381 //-----------------------------------------------------------------------------
1382 // Transmit the command (to the tag) that was placed in ToSend[].
1383 //-----------------------------------------------------------------------------
1384 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1385 {
1386 int c;
1387 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1388 AT91C_BASE_SSC->SSC_THR = 0x00;
1389 FpgaSetupSsc();
1390
1391 if (wait)
1392 {
1393 if(*wait < 10) *wait = 10;
1394
1395 for(c = 0; c < *wait;) {
1396 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1397 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1398 c++;
1399 }
1400 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1401 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1402 (void)r;
1403 }
1404 WDT_HIT();
1405 }
1406
1407 }
1408
1409
1410 uint8_t sendbyte;
1411 bool firstpart = TRUE;
1412 c = 0;
1413 for(;;) {
1414 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1415
1416 // DOUBLE THE SAMPLES!
1417 if(firstpart) {
1418 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1419 }
1420 else {
1421 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1422 c++;
1423 }
1424 if(sendbyte == 0xff) {
1425 sendbyte = 0xfe;
1426 }
1427 AT91C_BASE_SSC->SSC_THR = sendbyte;
1428 firstpart = !firstpart;
1429
1430 if(c >= len) {
1431 break;
1432 }
1433 }
1434 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1435 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1436 (void)r;
1437 }
1438 WDT_HIT();
1439 }
1440 if (samples) *samples = (c + *wait) << 3;
1441 }
1442
1443
1444 //-----------------------------------------------------------------------------
1445 // Prepare iClass reader command to send to FPGA
1446 //-----------------------------------------------------------------------------
1447 void CodeIClassCommand(const uint8_t * cmd, int len)
1448 {
1449 int i, j, k;
1450 uint8_t b;
1451
1452 ToSendReset();
1453
1454 // Start of Communication: 1 out of 4
1455 ToSend[++ToSendMax] = 0xf0;
1456 ToSend[++ToSendMax] = 0x00;
1457 ToSend[++ToSendMax] = 0x0f;
1458 ToSend[++ToSendMax] = 0x00;
1459
1460 // Modulate the bytes
1461 for (i = 0; i < len; i++) {
1462 b = cmd[i];
1463 for(j = 0; j < 4; j++) {
1464 for(k = 0; k < 4; k++) {
1465 if(k == (b & 3)) {
1466 ToSend[++ToSendMax] = 0x0f;
1467 }
1468 else {
1469 ToSend[++ToSendMax] = 0x00;
1470 }
1471 }
1472 b >>= 2;
1473 }
1474 }
1475
1476 // End of Communication
1477 ToSend[++ToSendMax] = 0x00;
1478 ToSend[++ToSendMax] = 0x00;
1479 ToSend[++ToSendMax] = 0xf0;
1480 ToSend[++ToSendMax] = 0x00;
1481
1482 // Convert from last character reference to length
1483 ToSendMax++;
1484 }
1485
1486 void ReaderTransmitIClass(uint8_t* frame, int len)
1487 {
1488 int wait = 0;
1489 int samples = 0;
1490
1491 // This is tied to other size changes
1492 CodeIClassCommand(frame,len);
1493
1494 // Select the card
1495 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1496 if(trigger)
1497 LED_A_ON();
1498
1499 // Store reader command in buffer
1500 if (tracing) {
1501 uint8_t par[MAX_PARITY_SIZE];
1502 GetParity(frame, len, par);
1503 LogTrace(frame, len, rsamples, rsamples, par, TRUE);
1504 }
1505 }
1506
1507 //-----------------------------------------------------------------------------
1508 // Wait a certain time for tag response
1509 // If a response is captured return TRUE
1510 // If it takes too long return FALSE
1511 //-----------------------------------------------------------------------------
1512 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1513 {
1514 // buffer needs to be 512 bytes
1515 int c;
1516
1517 // Set FPGA mode to "reader listen mode", no modulation (listen
1518 // only, since we are receiving, not transmitting).
1519 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1520
1521 // Now get the answer from the card
1522 Demod.output = receivedResponse;
1523 Demod.len = 0;
1524 Demod.state = DEMOD_UNSYNCD;
1525
1526 uint8_t b;
1527 if (elapsed) *elapsed = 0;
1528
1529 bool skip = FALSE;
1530
1531 c = 0;
1532 for(;;) {
1533 WDT_HIT();
1534
1535 if(BUTTON_PRESS()) return FALSE;
1536
1537 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1538 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1539 if (elapsed) (*elapsed)++;
1540 }
1541 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1542 if(c < timeout) { c++; } else { return FALSE; }
1543 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1544 skip = !skip;
1545 if(skip) continue;
1546
1547 if(ManchesterDecoding(b & 0x0f)) {
1548 *samples = c << 3;
1549 return TRUE;
1550 }
1551 }
1552 }
1553 }
1554
1555 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1556 {
1557 int samples = 0;
1558 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
1559 rsamples += samples;
1560 if (tracing) {
1561 uint8_t parity[MAX_PARITY_SIZE];
1562 GetParity(receivedAnswer, Demod.len, parity);
1563 LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE);
1564 }
1565 if(samples == 0) return FALSE;
1566 return Demod.len;
1567 }
1568
1569 void setupIclassReader()
1570 {
1571 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1572 // Reset trace buffer
1573 clear_trace();
1574 set_tracing(TRUE);
1575
1576 // Setup SSC
1577 FpgaSetupSsc();
1578 // Start from off (no field generated)
1579 // Signal field is off with the appropriate LED
1580 LED_D_OFF();
1581 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1582 SpinDelay(200);
1583
1584 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1585
1586 // Now give it time to spin up.
1587 // Signal field is on with the appropriate LED
1588 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1589 SpinDelay(200);
1590 LED_A_ON();
1591
1592 }
1593
1594 bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
1595 {
1596 while(retries-- > 0)
1597 {
1598 ReaderTransmitIClass(command, cmdsize);
1599 if(expected_size == ReaderReceiveIClass(resp)){
1600 return true;
1601 }
1602 }
1603 return false;//Error
1604 }
1605
1606 /**
1607 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1608 * @param card_data where the CSN and CC are stored for return
1609 * @return 0 = fail
1610 * 1 = Got CSN
1611 * 2 = Got CSN and CC
1612 */
1613 uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
1614 {
1615 static uint8_t act_all[] = { 0x0a };
1616 //static uint8_t identify[] = { 0x0c };
1617 static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
1618 static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1619 static uint8_t readcheck_cc[]= { 0x88, 0x02 };
1620 if (use_credit_key)
1621 readcheck_cc[0] = 0x18;
1622 else
1623 readcheck_cc[0] = 0x88;
1624
1625 uint8_t resp[ICLASS_BUFFER_SIZE];
1626
1627 uint8_t read_status = 0;
1628
1629 // Send act_all
1630 ReaderTransmitIClass(act_all, 1);
1631 // Card present?
1632 if(!ReaderReceiveIClass(resp)) return read_status;//Fail
1633 //Send Identify
1634 ReaderTransmitIClass(identify, 1);
1635 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1636 uint8_t len = ReaderReceiveIClass(resp);
1637 if(len != 10) return read_status;//Fail
1638
1639 //Copy the Anti-collision CSN to our select-packet
1640 memcpy(&select[1],resp,8);
1641 //Select the card
1642 ReaderTransmitIClass(select, sizeof(select));
1643 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1644 len = ReaderReceiveIClass(resp);
1645 if(len != 10) return read_status;//Fail
1646
1647 //Success - level 1, we got CSN
1648 //Save CSN in response data
1649 memcpy(card_data,resp,8);
1650
1651 //Flag that we got to at least stage 1, read CSN
1652 read_status = 1;
1653
1654 // Card selected, now read e-purse (cc)
1655 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1656 if(ReaderReceiveIClass(resp) == 8) {
1657 //Save CC (e-purse) in response data
1658 memcpy(card_data+8,resp,8);
1659 read_status++;
1660 }
1661
1662 return read_status;
1663 }
1664 uint8_t handshakeIclassTag(uint8_t *card_data){
1665 return handshakeIclassTag_ext(card_data, false);
1666 }
1667
1668
1669 // Reader iClass Anticollission
1670 void ReaderIClass(uint8_t arg0) {
1671
1672 uint8_t card_data[6 * 8]={0};
1673 memset(card_data, 0xFF, sizeof(card_data));
1674 uint8_t last_csn[8]={0};
1675
1676 //Read conf block CRC(0x01) => 0xfa 0x22
1677 uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
1678 //Read conf block CRC(0x05) => 0xde 0x64
1679 uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
1680
1681
1682 int read_status= 0;
1683 uint8_t result_status = 0;
1684 bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
1685 bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
1686 bool use_credit_key = false;
1687 if (arg0 & FLAG_ICLASS_READER_CEDITKEY)
1688 use_credit_key = true;
1689 set_tracing(TRUE);
1690 setupIclassReader();
1691
1692 uint16_t tryCnt=0;
1693 while(!BUTTON_PRESS())
1694 {
1695 if (try_once && tryCnt > 5) break;
1696
1697 tryCnt++;
1698
1699 if(!tracing) {
1700 DbpString("Trace full");
1701 break;
1702 }
1703 WDT_HIT();
1704
1705 read_status = handshakeIclassTag_ext(card_data, use_credit_key);
1706
1707 if(read_status == 0) continue;
1708 if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
1709 if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
1710
1711 // handshakeIclass returns CSN|CC, but the actual block
1712 // layout is CSN|CONFIG|CC, so here we reorder the data,
1713 // moving CC forward 8 bytes
1714 memcpy(card_data+16,card_data+8, 8);
1715 //Read block 1, config
1716 if(arg0 & FLAG_ICLASS_READER_CONF)
1717 {
1718 if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf),card_data+8, 10, 10))
1719 {
1720 result_status |= FLAG_ICLASS_READER_CONF;
1721 } else {
1722 Dbprintf("Failed to dump config block");
1723 }
1724 }
1725
1726 //Read block 5, AA
1727 if(arg0 & FLAG_ICLASS_READER_AA){
1728 if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA),card_data+(8*4), 10, 10))
1729 {
1730 result_status |= FLAG_ICLASS_READER_AA;
1731 } else {
1732 //Dbprintf("Failed to dump AA block");
1733 }
1734 }
1735
1736 // 0 : CSN
1737 // 1 : Configuration
1738 // 2 : e-purse
1739 // (3,4 write-only, kc and kd)
1740 // 5 Application issuer area
1741 //
1742 //Then we can 'ship' back the 8 * 5 bytes of data,
1743 // with 0xFF:s in block 3 and 4.
1744
1745 LED_B_ON();
1746 //Send back to client, but don't bother if we already sent this
1747 if(memcmp(last_csn, card_data, 8) != 0)
1748 {
1749 // If caller requires that we get CC, continue until we got it
1750 if( (arg0 & read_status & FLAG_ICLASS_READER_CC) || !(arg0 & FLAG_ICLASS_READER_CC))
1751 {
1752 cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
1753 if(abort_after_read) {
1754 LED_A_OFF();
1755 set_tracing(FALSE);
1756 return;
1757 }
1758 //Save that we already sent this....
1759 memcpy(last_csn, card_data, 8);
1760 }
1761 }
1762 LED_B_OFF();
1763 }
1764 cmd_send(CMD_ACK,0,0,0,card_data, 0);
1765 LED_A_OFF();
1766 set_tracing(FALSE);
1767 }
1768
1769 void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
1770
1771 uint8_t card_data[USB_CMD_DATA_SIZE]={0};
1772 uint16_t block_crc_LUT[255] = {0};
1773
1774 {//Generate a lookup table for block crc
1775 for(int block = 0; block < 255; block++){
1776 char bl = block;
1777 block_crc_LUT[block] = iclass_crc16(&bl ,1);
1778 }
1779 }
1780 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1781
1782 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1783 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1784
1785 uint16_t crc = 0;
1786 uint8_t cardsize=0;
1787 uint8_t mem=0;
1788
1789 static struct memory_t{
1790 int k16;
1791 int book;
1792 int k2;
1793 int lockauth;
1794 int keyaccess;
1795 } memory;
1796
1797 uint8_t resp[ICLASS_BUFFER_SIZE];
1798
1799 setupIclassReader();
1800 set_tracing(TRUE);
1801
1802 while(!BUTTON_PRESS()) {
1803
1804 WDT_HIT();
1805
1806 if(!tracing) {
1807 DbpString("Trace full");
1808 break;
1809 }
1810
1811 uint8_t read_status = handshakeIclassTag(card_data);
1812 if(read_status < 2) continue;
1813
1814 //for now replay captured auth (as cc not updated)
1815 memcpy(check+5,MAC,4);
1816
1817 if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
1818 {
1819 Dbprintf("Error: Authentication Fail!");
1820 continue;
1821 }
1822
1823 //first get configuration block (block 1)
1824 crc = block_crc_LUT[1];
1825 read[1]=1;
1826 read[2] = crc >> 8;
1827 read[3] = crc & 0xff;
1828
1829 if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
1830 {
1831 Dbprintf("Dump config (block 1) failed");
1832 continue;
1833 }
1834
1835 mem=resp[5];
1836 memory.k16= (mem & 0x80);
1837 memory.book= (mem & 0x20);
1838 memory.k2= (mem & 0x8);
1839 memory.lockauth= (mem & 0x2);
1840 memory.keyaccess= (mem & 0x1);
1841
1842 cardsize = memory.k16 ? 255 : 32;
1843 WDT_HIT();
1844 //Set card_data to all zeroes, we'll fill it with data
1845 memset(card_data,0x0,USB_CMD_DATA_SIZE);
1846 uint8_t failedRead =0;
1847 uint32_t stored_data_length =0;
1848 //then loop around remaining blocks
1849 for(int block=0; block < cardsize; block++){
1850
1851 read[1]= block;
1852 crc = block_crc_LUT[block];
1853 read[2] = crc >> 8;
1854 read[3] = crc & 0xff;
1855
1856 if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
1857 {
1858 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1859 block, resp[0], resp[1], resp[2],
1860 resp[3], resp[4], resp[5],
1861 resp[6], resp[7]);
1862
1863 //Fill up the buffer
1864 memcpy(card_data+stored_data_length,resp,8);
1865 stored_data_length += 8;
1866 if(stored_data_length +8 > USB_CMD_DATA_SIZE)
1867 {//Time to send this off and start afresh
1868 cmd_send(CMD_ACK,
1869 stored_data_length,//data length
1870 failedRead,//Failed blocks?
1871 0,//Not used ATM
1872 card_data, stored_data_length);
1873 //reset
1874 stored_data_length = 0;
1875 failedRead = 0;
1876 }
1877 } else {
1878 failedRead = 1;
1879 stored_data_length +=8;//Otherwise, data becomes misaligned
1880 Dbprintf("Failed to dump block %d", block);
1881 }
1882 }
1883
1884 //Send off any remaining data
1885 if(stored_data_length > 0)
1886 {
1887 cmd_send(CMD_ACK,
1888 stored_data_length,//data length
1889 failedRead,//Failed blocks?
1890 0,//Not used ATM
1891 card_data, stored_data_length);
1892 }
1893 //If we got here, let's break
1894 break;
1895 }
1896 //Signal end of transmission
1897 cmd_send(CMD_ACK,
1898 0,//data length
1899 0,//Failed blocks?
1900 0,//Not used ATM
1901 card_data, 0);
1902
1903 LED_A_OFF();
1904 set_tracing(FALSE);
1905 }
1906
1907 void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
1908 uint8_t readcheck[] = { keyType, blockNo };
1909 uint8_t resp[] = {0,0,0,0,0,0,0,0};
1910 size_t isOK = 0;
1911 isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
1912 cmd_send(CMD_ACK,isOK,0,0,0,0);
1913 }
1914
1915 void iClass_Authentication(uint8_t *MAC) {
1916 uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1917 uint8_t resp[ICLASS_BUFFER_SIZE];
1918 memcpy(check+5,MAC,4);
1919 bool isOK;
1920 isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
1921 cmd_send(CMD_ACK,isOK,0,0,0,0);
1922 }
1923 bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
1924 uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1925 char bl = blockNo;
1926 uint16_t rdCrc = iclass_crc16(&bl, 1);
1927 readcmd[2] = rdCrc >> 8;
1928 readcmd[3] = rdCrc & 0xff;
1929 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
1930 bool isOK = false;
1931
1932 //readcmd[1] = blockNo;
1933 isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
1934 memcpy(readdata, resp, sizeof(resp));
1935
1936 return isOK;
1937 }
1938
1939 void iClass_ReadBlk(uint8_t blockno) {
1940 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1941 bool isOK = false;
1942 isOK = iClass_ReadBlock(blockno, readblockdata);
1943 cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
1944 }
1945
1946 void iClass_Dump(uint8_t blockno, uint8_t numblks) {
1947 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1948 bool isOK = false;
1949 uint8_t blkCnt = 0;
1950
1951 BigBuf_free();
1952 uint8_t *dataout = BigBuf_malloc(255*8);
1953 if (dataout == NULL){
1954 Dbprintf("out of memory");
1955 OnError(1);
1956 return;
1957 }
1958 memset(dataout,0xFF,255*8);
1959
1960 for (;blkCnt < numblks; blkCnt++) {
1961 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1962 if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
1963 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1964 if (!isOK) {
1965 Dbprintf("Block %02X failed to read", blkCnt+blockno);
1966 break;
1967 }
1968 }
1969 memcpy(dataout+(blkCnt*8),readblockdata,8);
1970 }
1971 //return pointer to dump memory in arg3
1972 cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0);
1973 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1974 LEDsoff();
1975 BigBuf_free();
1976 }
1977
1978 bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
1979 uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1980 //uint8_t readblockdata[10];
1981 //write[1] = blockNo;
1982 memcpy(write+2, data, 12); // data + mac
1983 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
1984 bool isOK;
1985 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
1986 if (isOK) {
1987 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
1988 if (memcmp(write+2,resp,8)) {
1989 //error try again
1990 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
1991 }
1992 }
1993 return isOK;
1994 }
1995
1996 void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
1997 bool isOK = iClass_WriteBlock_ext(blockNo, data);
1998 if (isOK){
1999 Dbprintf("Write block [%02x] successful",blockNo);
2000 }else {
2001 Dbprintf("Write block [%02x] failed",blockNo);
2002 }
2003 cmd_send(CMD_ACK,isOK,0,0,0,0);
2004 }
2005
2006 void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
2007 int i;
2008 int written = 0;
2009 int total_block = (endblock - startblock) + 1;
2010 for (i = 0; i < total_block;i++){
2011 // block number
2012 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2013 Dbprintf("Write block [%02x] successful",i + startblock);
2014 written++;
2015 } else {
2016 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2017 Dbprintf("Write block [%02x] successful",i + startblock);
2018 written++;
2019 } else {
2020 Dbprintf("Write block [%02x] failed",i + startblock);
2021 }
2022 }
2023 }
2024 if (written == total_block)
2025 Dbprintf("Clone complete");
2026 else
2027 Dbprintf("Clone incomplete");
2028
2029 cmd_send(CMD_ACK,1,0,0,0,0);
2030 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2031 LEDsoff();
2032 }
Impressum, Datenschutz