1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
14 #include "proxmark3.h"
20 #include "lfsampling.h"
22 #include "mifareutil.h"
28 // Craig Young - 14a stand-alone code
29 #ifdef WITH_ISO14443a_StandAlone
30 #include "iso14443a.h"
31 #include "protocols.h"
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
44 struct common_area common_area
__attribute__((section(".commonarea")));
46 void ToSendReset(void)
52 void ToSendStuffBit(int b
) {
55 ToSend
[ToSendMax
] = 0;
60 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
64 if(ToSendMax
>= sizeof(ToSend
)) {
66 DbpString("ToSendStuffBit overflowed!");
70 void PrintToSendBuffer(void){
71 DbpString("Printing ToSendBuffer:");
72 Dbhexdump(ToSendMax
, ToSend
, 0);
75 void print_result(char *name
, uint8_t *buf
, size_t len
) {
78 if ( len
% 16 == 0 ) {
79 for(; p
-buf
< len
; p
+= 16)
80 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
84 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7],p
[8], p
[9], p
[10], p
[11], p
[12], p
[13], p
[14], p
[15]
88 for(; p
-buf
< len
; p
+= 8)
89 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
93 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7]);
97 //=============================================================================
98 // Debug print functions, to go out over USB, to the usual PC-side client.
99 //=============================================================================
101 void DbpStringEx(char *str
, uint32_t cmd
){
102 byte_t len
= strlen(str
);
103 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
106 void DbpString(char *str
) {
111 void DbpIntegers(int x1
, int x2
, int x3
) {
112 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
115 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
116 // should probably limit size here; oh well, let's just use a big buffer
117 char output_string
[128] = {0x00};
121 kvsprintf(fmt
, output_string
, 10, ap
);
124 DbpStringEx(output_string
, cmd
);
127 void Dbprintf(const char *fmt
, ...) {
128 // should probably limit size here; oh well, let's just use a big buffer
129 char output_string
[128] = {0x00};
133 kvsprintf(fmt
, output_string
, 10, ap
);
136 DbpString(output_string
);
139 // prints HEX & ASCII
140 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
146 l
= (len
>8) ? 8 : len
;
153 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
156 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
158 Dbprintf("%*D",l
,d
," ");
165 //-----------------------------------------------------------------------------
166 // Read an ADC channel and block till it completes, then return the result
167 // in ADC units (0 to 1023). Also a routine to average 32 samples and
169 //-----------------------------------------------------------------------------
170 static int ReadAdc(int ch
)
174 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
175 AT91C_BASE_ADC
->ADC_MR
=
176 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
177 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
178 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
180 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
181 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
182 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
185 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
187 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
189 // Note: with the "historic" values in the comments above, the error was 34% !!!
191 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
193 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
195 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
197 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
201 int AvgAdc(int ch
) // was static - merlok
204 for(i
= 0; i
< 32; ++i
)
207 return (a
+ 15) >> 5;
211 void MeasureAntennaTuning(void) {
213 uint8_t LF_Results
[256];
214 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;
215 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
217 memset(LF_Results
, 0, sizeof(LF_Results
));
221 * Sweeps the useful LF range of the proxmark from
222 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
223 * read the voltage in the antenna, the result left
224 * in the buffer is a graph which should clearly show
225 * the resonating frequency of your LF antenna
226 * ( hopefully around 95 if it is tuned to 125kHz!)
229 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
230 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
232 for (i
= 255; i
>= 19; i
--) {
234 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
236 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
237 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
238 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
240 LF_Results
[i
] = adcval
>> 8; // scale int to fit in byte for graphing purposes
241 if(LF_Results
[i
] > peak
) {
243 peak
= LF_Results
[i
];
249 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
250 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
251 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
253 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
255 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<< 16), vHf
, peakf
| (peakv
<< 16), LF_Results
, 256);
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
260 void MeasureAntennaTuningHf(void) {
261 int vHf
= 0; // in mV
262 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
263 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
264 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
266 while ( !BUTTON_PRESS() ){
268 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
269 //Dbprintf("%d mV",vHf);
270 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
272 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
273 DbpString("cancelled");
277 void ReadMem(int addr
) {
278 const uint8_t *data
= ((uint8_t *)addr
);
280 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
281 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
284 /* osimage version information is linked in */
285 extern struct version_information version_information
;
286 /* bootrom version information is pointed to from _bootphase1_version_pointer */
287 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
288 void SendVersion(void)
290 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
291 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
293 /* Try to find the bootrom version information. Expect to find a pointer at
294 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
295 * pointer, then use it.
297 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
299 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
300 strcat(VersionString
, "bootrom version information appears invalid\n");
302 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
303 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
306 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
307 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
309 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
310 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
312 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
313 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
315 // Send Chip ID and used flash memory
316 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
317 uint32_t compressed_data_section_size
= common_area
.arg1
;
318 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
321 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
322 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
323 void printUSBSpeed(void)
325 Dbprintf("USB Speed:");
326 Dbprintf(" Sending USB packets to client...");
328 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
329 uint8_t *test_data
= BigBuf_get_addr();
332 uint32_t start_time
= end_time
= GetTickCount();
333 uint32_t bytes_transferred
= 0;
336 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
337 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
338 end_time
= GetTickCount();
339 bytes_transferred
+= USB_CMD_DATA_SIZE
;
343 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
344 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
345 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
346 1000 * bytes_transferred
/ (end_time
- start_time
));
351 * Prints runtime information about the PM3.
353 void SendStatus(void) {
354 BigBuf_print_status();
356 printConfig(); //LF Sampling config
359 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
360 Dbprintf(" ToSendMax..........%d", ToSendMax
);
361 Dbprintf(" ToSendBit..........%d", ToSendBit
);
362 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
364 cmd_send(CMD_ACK
,1,0,0,0,0);
367 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
370 void StandAloneMode()
372 DbpString("Stand-alone mode! No PC necessary.");
373 // Oooh pretty -- notify user we're in elite samy mode now
375 LED(LED_ORANGE
, 200);
377 LED(LED_ORANGE
, 200);
379 LED(LED_ORANGE
, 200);
381 LED(LED_ORANGE
, 200);
386 #ifdef WITH_ISO14443a_StandAlone
393 } __attribute__((__packed__
)) card_clone_t
;
395 void StandAloneMode14a()
398 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
400 int selected
= 0, playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
401 int cardRead
[OPTS
] = {0};
403 card_clone_t uids
[OPTS
];
404 iso14a_card_select_t card_info
[OPTS
];
405 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
407 LED(selected
+ 1, 0);
415 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
419 LED(selected
+ 1, 0);
423 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
424 /* need this delay to prevent catching some weird data */
426 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
431 if (BUTTON_PRESS()) {
432 if (cardRead
[selected
]) {
433 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
436 else if (cardRead
[(selected
+1) % OPTS
]) {
437 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
438 selected
= (selected
+1) % OPTS
;
439 break; // playing = 1;
442 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
446 if (!iso14443a_select_card(NULL
, &card_info
[selected
], NULL
, true, 0))
450 Dbprintf("Read UID:");
451 Dbhexdump(card_info
[selected
].uidlen
, card_info
[selected
].uid
, 0);
453 if (memcmp(uids
[(selected
+1)%OPTS
].uid
, card_info
[selected
].uid
, card_info
[selected
].uidlen
) == 0 ) {
454 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
458 uids
[selected
].sak
= card_info
[selected
].sak
;
459 uids
[selected
].uidlen
= card_info
[selected
].uidlen
;
460 memcpy(uids
[selected
].uid
, card_info
[selected
].uid
, uids
[selected
].uidlen
);
461 memcpy(uids
[selected
].atqa
, card_info
[selected
].atqa
, 2);
463 if (uids
[selected
].uidlen
> 4)
464 Dbprintf("Bank[%d] received a 7-byte UID", selected
);
466 Dbprintf("Bank[%d] received a 4-byte UID", selected
);
471 Dbprintf("ATQA = %02X%02X", uids
[selected
].atqa
[0], uids
[selected
].atqa
[1]);
472 Dbprintf("SAK = %02X", uids
[selected
].sak
);
475 LED(LED_ORANGE
, 200);
477 LED(LED_ORANGE
, 200);
480 LED(selected
+ 1, 0);
482 // Next state is replay:
485 cardRead
[selected
] = 1;
487 /* MF Classic UID clone */
488 else if (iGotoClone
==1)
492 LED(selected
+ 1, 0);
493 LED(LED_ORANGE
, 250);
495 // magiccards holds 4bytes uid.
496 uint64_t tmpuid
= bytes_to_num(uids
[selected
].uid
, 4);
499 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, tmpuid
& 0xFFFFFFFF);
501 // wait for button to be released
502 // Delay cloning until card is in place
503 while(BUTTON_PRESS())
506 Dbprintf("Starting clone. [Bank: %u]", selected
);
507 // need this delay to prevent catching some weird data
509 // Begin clone function here:
510 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
511 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
512 memcpy(c.d.asBytes, data, 16);
515 Block read is similar:
516 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
517 We need to imitate that call with blockNo 0 to set a uid.
519 The get and set commands are handled in this file:
520 // Work with "magic Chinese" card
521 case CMD_MIFARE_CSETBLOCK:
522 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
524 case CMD_MIFARE_CGETBLOCK:
525 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
528 mfCSetUID provides example logic for UID set workflow:
529 -Read block0 from card in field with MifareCGetBlock()
530 -Configure new values without replacing reserved bytes
531 memcpy(block0, uid, 4); // Copy UID bytes from byte array
533 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
534 Bytes 5-7 are reserved SAK and ATQA for mifare classic
535 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
537 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
538 // arg0 = Flags, arg1=blockNo
539 MifareCGetBlock(params
, 0, oldBlock0
);
540 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
541 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
545 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0], oldBlock0
[1], oldBlock0
[2], oldBlock0
[3]);
546 memcpy(newBlock0
, oldBlock0
, 16);
548 // Copy uid for bank (2nd is for longer UIDs not supported if classic)
549 memcpy(newBlock0
, uids
[selected
].uid
, 4);
550 newBlock0
[4] = newBlock0
[0] ^ newBlock0
[1] ^ newBlock0
[2] ^ newBlock0
[3];
552 // arg0 = workFlags, arg1 = blockNo, datain
553 MifareCSetBlock(params
, 0, newBlock0
);
554 MifareCGetBlock(params
, 0, testBlock0
);
556 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
557 DbpString("Cloned successfull!");
558 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
561 selected
= (selected
+ 1) % OPTS
;
563 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
568 LED(selected
+ 1, 0);
570 // Change where to record (or begin playing)
571 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
574 LED(selected
+ 1, 0);
576 // Begin transmitting
580 DbpString("Playing");
583 int button_action
= BUTTON_HELD(1000);
584 if (button_action
== 0) { // No button action, proceed with sim
586 uint8_t flags
= FLAG_4B_UID_IN_DATA
;
587 uint8_t data
[USB_CMD_DATA_SIZE
] = {0}; // in case there is a read command received we shouldn't break
589 memcpy(data
, uids
[selected
].uid
, uids
[selected
].uidlen
);
591 uint64_t tmpuid
= bytes_to_num(uids
[selected
].uid
, uids
[selected
].uidlen
);
593 if ( uids
[selected
].uidlen
== 7 ) {
594 flags
= FLAG_7B_UID_IN_DATA
;
595 Dbprintf("Simulating ISO14443a tag with uid: %02x%08x [Bank: %u]", tmpuid
>> 32, tmpuid
& 0xFFFFFFFF , selected
);
597 Dbprintf("Simulating ISO14443a tag with uid: %08x [Bank: %u]", tmpuid
& 0xFFFFFFFF , selected
);
600 if (uids
[selected
].sak
== 0x08 && uids
[selected
].atqa
[0] == 0x04 && uids
[selected
].atqa
[1] == 0) {
601 DbpString("Mifare Classic 1k");
602 SimulateIso14443aTag(1, flags
, data
);
603 } else if (uids
[selected
].sak
== 0x18 && uids
[selected
].atqa
[0] == 0x02 && uids
[selected
].atqa
[1] == 0) {
604 DbpString("Mifare Classic 4k (4b uid)");
605 SimulateIso14443aTag(8, flags
, data
);
606 } else if (uids
[selected
].sak
== 0x08 && uids
[selected
].atqa
[0] == 0x44 && uids
[selected
].atqa
[1] == 0) {
607 DbpString("Mifare Classic 4k (7b uid)");
608 SimulateIso14443aTag(8, flags
, data
);
609 } else if (uids
[selected
].sak
== 0x00 && uids
[selected
].atqa
[0] == 0x44 && uids
[selected
].atqa
[1] == 0) {
610 DbpString("Mifare Ultralight");
611 SimulateIso14443aTag(2, flags
, data
);
612 } else if (uids
[selected
].sak
== 0x20 && uids
[selected
].atqa
[0] == 0x04 && uids
[selected
].atqa
[1] == 0x03) {
613 DbpString("Mifare DESFire");
614 SimulateIso14443aTag(3, flags
, data
);
617 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
618 SimulateIso14443aTag(1, flags
, data
);
621 else if (button_action
== BUTTON_SINGLE_CLICK
) {
622 selected
= (selected
+ 1) % OPTS
;
623 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
627 else if (button_action
== BUTTON_HOLD
) {
628 Dbprintf("Playtime over. Begin cloning...");
635 /* We pressed a button so ignore it here with a delay */
638 LED(selected
+ 1, 0);
641 while(BUTTON_PRESS())
647 // samy's sniff and repeat routine
651 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
653 int high
[OPTS
], low
[OPTS
];
658 // Turn on selected LED
659 LED(selected
+ 1, 0);
665 // Was our button held down or pressed?
666 int button_pressed
= BUTTON_HELD(1000);
669 // Button was held for a second, begin recording
670 if (button_pressed
> 0 && cardRead
== 0)
673 LED(selected
+ 1, 0);
677 DbpString("Starting recording");
679 // wait for button to be released
680 while(BUTTON_PRESS())
683 /* need this delay to prevent catching some weird data */
686 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
687 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
690 LED(selected
+ 1, 0);
691 // Finished recording
692 // If we were previously playing, set playing off
693 // so next button push begins playing what we recorded
697 else if (button_pressed
> 0 && cardRead
== 1) {
699 LED(selected
+ 1, 0);
703 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
705 // wait for button to be released
706 while(BUTTON_PRESS())
709 /* need this delay to prevent catching some weird data */
712 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
713 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
716 LED(selected
+ 1, 0);
717 // Finished recording
719 // If we were previously playing, set playing off
720 // so next button push begins playing what we recorded
725 // Change where to record (or begin playing)
726 else if (button_pressed
) {
727 // Next option if we were previously playing
729 selected
= (selected
+ 1) % OPTS
;
733 LED(selected
+ 1, 0);
735 // Begin transmitting
739 DbpString("Playing");
740 // wait for button to be released
741 while(BUTTON_PRESS())
744 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
745 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
746 DbpString("Done playing");
748 if (BUTTON_HELD(1000) > 0) {
749 DbpString("Exiting");
754 /* We pressed a button so ignore it here with a delay */
757 // when done, we're done playing, move to next option
758 selected
= (selected
+ 1) % OPTS
;
761 LED(selected
+ 1, 0);
764 while(BUTTON_PRESS())
773 Listen and detect an external reader. Determine the best location
777 Inside the ListenReaderField() function, there is two mode.
778 By default, when you call the function, you will enter mode 1.
779 If you press the PM3 button one time, you will enter mode 2.
780 If you press the PM3 button a second time, you will exit the function.
782 DESCRIPTION OF MODE 1:
783 This mode just listens for an external reader field and lights up green
784 for HF and/or red for LF. This is the original mode of the detectreader
787 DESCRIPTION OF MODE 2:
788 This mode will visually represent, using the LEDs, the actual strength of the
789 current compared to the maximum current detected. Basically, once you know
790 what kind of external reader is present, it will help you spot the best location to place
791 your antenna. You will probably not get some good results if there is a LF and a HF reader
792 at the same place! :-)
796 static const char LIGHT_SCHEME
[] = {
797 0x0, /* ---- | No field detected */
798 0x1, /* X--- | 14% of maximum current detected */
799 0x2, /* -X-- | 29% of maximum current detected */
800 0x4, /* --X- | 43% of maximum current detected */
801 0x8, /* ---X | 57% of maximum current detected */
802 0xC, /* --XX | 71% of maximum current detected */
803 0xE, /* -XXX | 86% of maximum current detected */
804 0xF, /* XXXX | 100% of maximum current detected */
806 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
808 void ListenReaderField(int limit
) {
811 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
813 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
814 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
815 int mode
=1, display_val
, display_max
, i
;
817 // switch off FPGA - we don't want to measure our own signal
818 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
819 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
823 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
825 if(limit
!= HF_ONLY
) {
826 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
830 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
832 if (limit
!= LF_ONLY
) {
833 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
838 if (BUTTON_PRESS()) {
843 DbpString("Signal Strength Mode");
847 DbpString("Stopped");
855 if (limit
!= HF_ONLY
) {
857 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
863 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
864 // see if there's a significant change
865 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
866 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
873 if (limit
!= LF_ONLY
) {
875 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
881 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
882 // see if there's a significant change
883 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
884 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
892 if (limit
== LF_ONLY
) {
894 display_max
= lf_max
;
895 } else if (limit
== HF_ONLY
) {
897 display_max
= hf_max
;
898 } else { /* Pick one at random */
899 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
901 display_max
= hf_max
;
904 display_max
= lf_max
;
907 for (i
=0; i
<LIGHT_LEN
; i
++) {
908 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
909 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
910 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
911 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
912 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
920 void UsbPacketReceived(uint8_t *packet
, int len
)
922 UsbCommand
*c
= (UsbCommand
*)packet
;
924 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
928 case CMD_SET_LF_SAMPLING_CONFIG
:
929 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
931 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
932 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
934 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
935 ModThenAcquireRawAdcSamples125k(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
937 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
938 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
940 case CMD_HID_DEMOD_FSK
:
941 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
943 case CMD_HID_SIM_TAG
:
944 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
946 case CMD_FSK_SIM_TAG
:
947 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
949 case CMD_ASK_SIM_TAG
:
950 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
952 case CMD_PSK_SIM_TAG
:
953 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
955 case CMD_HID_CLONE_TAG
:
956 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
958 case CMD_IO_DEMOD_FSK
:
959 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
961 case CMD_IO_CLONE_TAG
:
962 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
964 case CMD_EM410X_DEMOD
:
965 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
967 case CMD_EM410X_WRITE_TAG
:
968 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
970 case CMD_READ_TI_TYPE
:
973 case CMD_WRITE_TI_TYPE
:
974 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
976 case CMD_SIMULATE_TAG_125K
:
978 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
981 case CMD_LF_SIMULATE_BIDIR
:
982 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
984 case CMD_INDALA_CLONE_TAG
:
985 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
987 case CMD_INDALA_CLONE_TAG_L
:
988 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
990 case CMD_T55XX_READ_BLOCK
:
991 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
993 case CMD_T55XX_WRITE_BLOCK
:
994 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
996 case CMD_T55XX_WAKEUP
:
997 T55xxWakeUp(c
->arg
[0]);
999 case CMD_T55XX_RESET_READ
:
1002 case CMD_PCF7931_READ
:
1005 case CMD_PCF7931_WRITE
:
1006 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1008 case CMD_EM4X_READ_WORD
:
1009 EM4xReadWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1011 case CMD_EM4X_WRITE_WORD
:
1012 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1014 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1015 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1017 case CMD_VIKING_CLONE_TAG
:
1018 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1026 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1027 SnoopHitag(c
->arg
[0]);
1029 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1030 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1032 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1033 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1035 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1036 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1038 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1039 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1041 case CMD_READ_HITAG_S
: //Reader for only Hitag S tags, args = key or challenge
1042 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1044 case CMD_WR_HITAG_S
: //writer for Hitag tags args=data to write,page and key or challenge
1045 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1049 #ifdef WITH_ISO15693
1050 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1051 AcquireRawAdcSamplesIso15693();
1053 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1054 RecordRawAdcSamplesIso15693();
1056 case CMD_ISO_15693_COMMAND
:
1057 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1059 case CMD_ISO_15693_FIND_AFI
:
1060 BruteforceIso15693Afi(c
->arg
[0]);
1062 case CMD_ISO_15693_DEBUG
:
1063 SetDebugIso15693(c
->arg
[0]);
1065 case CMD_READER_ISO_15693
:
1066 ReaderIso15693(c
->arg
[0]);
1068 case CMD_SIMTAG_ISO_15693
:
1069 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1074 case CMD_SIMULATE_TAG_LEGIC_RF
:
1075 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1077 case CMD_WRITER_LEGIC_RF
:
1078 LegicRfWriter( c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1080 case CMD_READER_LEGIC_RF
:
1081 LegicRfReader(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1083 case CMD_LEGIC_INFO
:
1086 case CMD_LEGIC_ESET
:
1087 LegicEMemSet(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1091 #ifdef WITH_ISO14443b
1092 case CMD_READ_SRI_TAG
:
1093 ReadSTMemoryIso14443b(c
->arg
[0]);
1095 case CMD_SNOOP_ISO_14443B
:
1098 case CMD_SIMULATE_TAG_ISO_14443B
:
1099 SimulateIso14443bTag(c
->arg
[0]);
1101 case CMD_ISO_14443B_COMMAND
:
1102 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1103 SendRawCommand14443B_Ex(c
);
1107 #ifdef WITH_ISO14443a
1108 case CMD_SNOOP_ISO_14443a
:
1109 SniffIso14443a(c
->arg
[0]);
1111 case CMD_READER_ISO_14443a
:
1114 case CMD_SIMULATE_TAG_ISO_14443a
:
1115 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1117 case CMD_EPA_PACE_COLLECT_NONCE
:
1118 EPA_PACE_Collect_Nonce(c
);
1120 case CMD_EPA_PACE_REPLAY
:
1123 case CMD_READER_MIFARE
:
1124 ReaderMifare(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1126 case CMD_MIFARE_READBL
:
1127 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1129 case CMD_MIFAREU_READBL
:
1130 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1132 case CMD_MIFAREUC_AUTH
:
1133 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1135 case CMD_MIFAREU_READCARD
:
1136 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1138 case CMD_MIFAREUC_SETPWD
:
1139 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1141 case CMD_MIFARE_READSC
:
1142 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1144 case CMD_MIFARE_WRITEBL
:
1145 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1147 //case CMD_MIFAREU_WRITEBL_COMPAT:
1148 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1150 case CMD_MIFAREU_WRITEBL
:
1151 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1153 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1154 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1156 case CMD_MIFARE_NESTED
:
1157 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1159 case CMD_MIFARE_CHKKEYS
:
1160 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1162 case CMD_SIMULATE_MIFARE_CARD
:
1163 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1167 case CMD_MIFARE_SET_DBGMODE
:
1168 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1170 case CMD_MIFARE_EML_MEMCLR
:
1171 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1173 case CMD_MIFARE_EML_MEMSET
:
1174 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1176 case CMD_MIFARE_EML_MEMGET
:
1177 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1179 case CMD_MIFARE_EML_CARDLOAD
:
1180 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1183 // Work with "magic Chinese" card
1184 case CMD_MIFARE_CSETBLOCK
:
1185 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1187 case CMD_MIFARE_CGETBLOCK
:
1188 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1190 case CMD_MIFARE_CIDENT
:
1195 case CMD_MIFARE_SNIFFER
:
1196 SniffMifare(c
->arg
[0]);
1200 case CMD_MIFARE_DESFIRE_READBL
: break;
1201 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1202 case CMD_MIFARE_DESFIRE_AUTH1
:
1203 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1205 case CMD_MIFARE_DESFIRE_AUTH2
:
1206 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1208 case CMD_MIFARE_DES_READER
:
1209 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1211 case CMD_MIFARE_DESFIRE_INFO
:
1212 MifareDesfireGetInformation();
1214 case CMD_MIFARE_DESFIRE
:
1215 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1217 case CMD_MIFARE_COLLECT_NONCES
:
1221 case CMD_EMV_TRANSACTION
:
1224 case CMD_EMV_GET_RANDOM_NUM
:
1227 case CMD_EMV_LOAD_VALUE
:
1228 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1230 case CMD_EMV_DUMP_CARD
:
1234 case CMD_EMV_READ_RECORD:
1235 EMVReadRecord(c->arg[0], c->arg[1], NULL);
1238 EMVClone(c->arg[0], c->arg[1]);
1246 case CMD_EMV_FUZZ_RATS:
1247 EMVFuzz_RATS(c->arg[0],c->d.asBytes);
1252 // Makes use of ISO14443a FPGA Firmware
1253 case CMD_SNOOP_ICLASS
:
1256 case CMD_SIMULATE_TAG_ICLASS
:
1257 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1259 case CMD_READER_ICLASS
:
1260 ReaderIClass(c
->arg
[0]);
1262 case CMD_READER_ICLASS_REPLAY
:
1263 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1265 case CMD_ICLASS_EML_MEMSET
:
1266 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1268 case CMD_ICLASS_WRITEBLOCK
:
1269 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1271 case CMD_ICLASS_READCHECK
: // auth step 1
1272 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1274 case CMD_ICLASS_READBLOCK
:
1275 iClass_ReadBlk(c
->arg
[0]);
1277 case CMD_ICLASS_AUTHENTICATION
: //check
1278 iClass_Authentication(c
->d
.asBytes
);
1280 case CMD_ICLASS_DUMP
:
1281 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1283 case CMD_ICLASS_CLONE
:
1284 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1288 case CMD_HF_SNIFFER
:
1289 HfSnoop(c
->arg
[0], c
->arg
[1]);
1293 case CMD_BUFF_CLEAR
:
1297 case CMD_MEASURE_ANTENNA_TUNING
:
1298 MeasureAntennaTuning();
1301 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1302 MeasureAntennaTuningHf();
1305 case CMD_LISTEN_READER_FIELD
:
1306 ListenReaderField(c
->arg
[0]);
1309 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1310 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1312 LED_D_OFF(); // LED D indicates field ON or OFF
1315 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1317 uint8_t *BigBuf
= BigBuf_get_addr();
1319 size_t startidx
= c
->arg
[0];
1320 uint8_t isok
= FALSE
;
1321 // arg0 = startindex
1322 // arg1 = length bytes to transfer
1324 //Dbprintf("transfer to client parameters: %" PRIu64 " | %" PRIu64 " | %" PRIu64, c->arg[0], c->arg[1], c->arg[2]);
1326 for(size_t i
= 0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1327 len
= MIN( (c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1328 isok
= cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, i
, len
, BigBuf_get_traceLen(), BigBuf
+ startidx
+ i
, len
);
1330 Dbprintf("transfer to client failed :: | bytes %d", len
);
1332 // Trigger a finish downloading signal with an ACK frame
1333 cmd_send(CMD_ACK
, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config
));
1337 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1338 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1339 // to be able to use this one for uploading data to device
1340 // arg1 = 0 upload for LF usage
1341 // 1 upload for HF usage
1342 if ( c
->arg
[1] == 0 )
1343 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1345 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1346 uint8_t *b
= BigBuf_get_addr();
1347 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1348 cmd_send(CMD_ACK
,1,0,0,0,0);
1351 case CMD_DOWNLOAD_EML_BIGBUF
: {
1353 uint8_t *cardmem
= BigBuf_get_EM_addr();
1355 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1356 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1357 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1359 // Trigger a finish downloading signal with an ACK frame
1360 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1368 case CMD_SET_LF_DIVISOR
:
1369 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1370 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1373 case CMD_SET_ADC_MUX
:
1375 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1376 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1377 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1378 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1389 cmd_send(CMD_ACK
,0,0,0,0,0);
1399 case CMD_SETUP_WRITE
:
1400 case CMD_FINISH_WRITE
:
1401 case CMD_HARDWARE_RESET
:
1404 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1406 // We're going to reset, and the bootrom will take control.
1410 case CMD_START_FLASH
:
1411 if(common_area
.flags
.bootrom_present
) {
1412 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1415 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1419 case CMD_DEVICE_INFO
: {
1420 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1421 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1422 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1426 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1431 void __attribute__((noreturn
)) AppMain(void)
1435 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1436 /* Initialize common area */
1437 memset(&common_area
, 0, sizeof(common_area
));
1438 common_area
.magic
= COMMON_AREA_MAGIC
;
1439 common_area
.version
= 1;
1441 common_area
.flags
.osimage_present
= 1;
1448 // The FPGA gets its clock from us from PCK0 output, so set that up.
1449 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1450 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1451 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1452 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1453 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
| AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1454 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1457 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1459 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1461 // Load the FPGA image, which we have stored in our flash.
1462 // (the HF version by default)
1463 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1471 byte_t rx
[sizeof(UsbCommand
)];
1475 if ( usb_poll_validate_length() ) {
1476 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1479 UsbPacketReceived(rx
, rx_len
);
1484 #ifndef WITH_ISO14443a_StandAlone
1485 if (BUTTON_HELD(1000) > 0)
1489 #ifdef WITH_ISO14443a
1490 #ifdef WITH_ISO14443a_StandAlone
1491 if (BUTTON_HELD(1000) > 0)
1492 StandAloneMode14a();