]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
Fix Issue #843 - hf mf chk - t Doesnt save to emulator memory
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 #include "cmd.h"
45 #include "iso14443a.h"
46 // Needed for CRC in emulation mode;
47 // same construction as in ISO 14443;
48 // different initial value (CRC_ICLASS)
49 #include "iso14443crc.h"
50 #include "iso15693tools.h"
51 #include "protocols.h"
52 #include "optimized_cipher.h"
53 #include "usb_cdc.h" // for usb_poll_validate_length
54 #include "fpgaloader.h"
55
56 static int timeout = 4096;
57
58
59 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
60
61 //-----------------------------------------------------------------------------
62 // The software UART that receives commands from the reader, and its state
63 // variables.
64 //-----------------------------------------------------------------------------
65 static struct {
66 enum {
67 STATE_UNSYNCD,
68 STATE_START_OF_COMMUNICATION,
69 STATE_RECEIVING
70 } state;
71 uint16_t shiftReg;
72 int bitCnt;
73 int byteCnt;
74 int byteCntMax;
75 int posCnt;
76 int nOutOfCnt;
77 int OutOfCnt;
78 int syncBit;
79 int samples;
80 int highCnt;
81 int swapper;
82 int counter;
83 int bitBuffer;
84 int dropPosition;
85 uint8_t *output;
86 } Uart;
87
88 static RAMFUNC int OutOfNDecoding(int bit)
89 {
90 //int error = 0;
91 int bitright;
92
93 if(!Uart.bitBuffer) {
94 Uart.bitBuffer = bit ^ 0xFF0;
95 return false;
96 }
97 else {
98 Uart.bitBuffer <<= 4;
99 Uart.bitBuffer ^= bit;
100 }
101
102 /*if(Uart.swapper) {
103 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
104 Uart.byteCnt++;
105 Uart.swapper = 0;
106 if(Uart.byteCnt > 15) { return true; }
107 }
108 else {
109 Uart.swapper = 1;
110 }*/
111
112 if(Uart.state != STATE_UNSYNCD) {
113 Uart.posCnt++;
114
115 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
116 bit = 0x00;
117 }
118 else {
119 bit = 0x01;
120 }
121 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
122 bitright = 0x00;
123 }
124 else {
125 bitright = 0x01;
126 }
127 if(bit != bitright) { bit = bitright; }
128
129
130 // So, now we only have to deal with *bit*, lets see...
131 if(Uart.posCnt == 1) {
132 // measurement first half bitperiod
133 if(!bit) {
134 // Drop in first half means that we are either seeing
135 // an SOF or an EOF.
136
137 if(Uart.nOutOfCnt == 1) {
138 // End of Communication
139 Uart.state = STATE_UNSYNCD;
140 Uart.highCnt = 0;
141 if(Uart.byteCnt == 0) {
142 // Its not straightforward to show single EOFs
143 // So just leave it and do not return true
144 Uart.output[0] = 0xf0;
145 Uart.byteCnt++;
146 }
147 else {
148 return true;
149 }
150 }
151 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
152 // When not part of SOF or EOF, it is an error
153 Uart.state = STATE_UNSYNCD;
154 Uart.highCnt = 0;
155 //error = 4;
156 }
157 }
158 }
159 else {
160 // measurement second half bitperiod
161 // Count the bitslot we are in... (ISO 15693)
162 Uart.nOutOfCnt++;
163
164 if(!bit) {
165 if(Uart.dropPosition) {
166 if(Uart.state == STATE_START_OF_COMMUNICATION) {
167 //error = 1;
168 }
169 else {
170 //error = 7;
171 }
172 // It is an error if we already have seen a drop in current frame
173 Uart.state = STATE_UNSYNCD;
174 Uart.highCnt = 0;
175 }
176 else {
177 Uart.dropPosition = Uart.nOutOfCnt;
178 }
179 }
180
181 Uart.posCnt = 0;
182
183
184 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
185 Uart.nOutOfCnt = 0;
186
187 if(Uart.state == STATE_START_OF_COMMUNICATION) {
188 if(Uart.dropPosition == 4) {
189 Uart.state = STATE_RECEIVING;
190 Uart.OutOfCnt = 256;
191 }
192 else if(Uart.dropPosition == 3) {
193 Uart.state = STATE_RECEIVING;
194 Uart.OutOfCnt = 4;
195 //Uart.output[Uart.byteCnt] = 0xdd;
196 //Uart.byteCnt++;
197 }
198 else {
199 Uart.state = STATE_UNSYNCD;
200 Uart.highCnt = 0;
201 }
202 Uart.dropPosition = 0;
203 }
204 else {
205 // RECEIVING DATA
206 // 1 out of 4
207 if(!Uart.dropPosition) {
208 Uart.state = STATE_UNSYNCD;
209 Uart.highCnt = 0;
210 //error = 9;
211 }
212 else {
213 Uart.shiftReg >>= 2;
214
215 // Swap bit order
216 Uart.dropPosition--;
217 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
218 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
219
220 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
221 Uart.bitCnt += 2;
222 Uart.dropPosition = 0;
223
224 if(Uart.bitCnt == 8) {
225 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
226 Uart.byteCnt++;
227 Uart.bitCnt = 0;
228 Uart.shiftReg = 0;
229 }
230 }
231 }
232 }
233 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
234 // RECEIVING DATA
235 // 1 out of 256
236 if(!Uart.dropPosition) {
237 Uart.state = STATE_UNSYNCD;
238 Uart.highCnt = 0;
239 //error = 3;
240 }
241 else {
242 Uart.dropPosition--;
243 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
244 Uart.byteCnt++;
245 Uart.bitCnt = 0;
246 Uart.shiftReg = 0;
247 Uart.nOutOfCnt = 0;
248 Uart.dropPosition = 0;
249 }
250 }
251
252 /*if(error) {
253 Uart.output[Uart.byteCnt] = 0xAA;
254 Uart.byteCnt++;
255 Uart.output[Uart.byteCnt] = error & 0xFF;
256 Uart.byteCnt++;
257 Uart.output[Uart.byteCnt] = 0xAA;
258 Uart.byteCnt++;
259 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
260 Uart.byteCnt++;
261 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
262 Uart.byteCnt++;
263 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
264 Uart.byteCnt++;
265 Uart.output[Uart.byteCnt] = 0xAA;
266 Uart.byteCnt++;
267 return true;
268 }*/
269 }
270
271 }
272 else {
273 bit = Uart.bitBuffer & 0xf0;
274 bit >>= 4;
275 bit ^= 0x0F; // drops become 1s ;-)
276 if(bit) {
277 // should have been high or at least (4 * 128) / fc
278 // according to ISO this should be at least (9 * 128 + 20) / fc
279 if(Uart.highCnt == 8) {
280 // we went low, so this could be start of communication
281 // it turns out to be safer to choose a less significant
282 // syncbit... so we check whether the neighbour also represents the drop
283 Uart.posCnt = 1; // apparently we are busy with our first half bit period
284 Uart.syncBit = bit & 8;
285 Uart.samples = 3;
286 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
287 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
288 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
289 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
290 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
291 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
292 Uart.syncBit = 8;
293
294 // the first half bit period is expected in next sample
295 Uart.posCnt = 0;
296 Uart.samples = 3;
297 }
298 }
299 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
300
301 Uart.syncBit <<= 4;
302 Uart.state = STATE_START_OF_COMMUNICATION;
303 Uart.bitCnt = 0;
304 Uart.byteCnt = 0;
305 Uart.nOutOfCnt = 0;
306 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
307 Uart.dropPosition = 0;
308 Uart.shiftReg = 0;
309 //error = 0;
310 }
311 else {
312 Uart.highCnt = 0;
313 }
314 }
315 else {
316 if(Uart.highCnt < 8) {
317 Uart.highCnt++;
318 }
319 }
320 }
321
322 return false;
323 }
324
325 //=============================================================================
326 // Manchester
327 //=============================================================================
328
329 static struct {
330 enum {
331 DEMOD_UNSYNCD,
332 DEMOD_START_OF_COMMUNICATION,
333 DEMOD_START_OF_COMMUNICATION2,
334 DEMOD_START_OF_COMMUNICATION3,
335 DEMOD_SOF_COMPLETE,
336 DEMOD_MANCHESTER_D,
337 DEMOD_MANCHESTER_E,
338 DEMOD_END_OF_COMMUNICATION,
339 DEMOD_END_OF_COMMUNICATION2,
340 DEMOD_MANCHESTER_F,
341 DEMOD_ERROR_WAIT
342 } state;
343 int bitCount;
344 int posCount;
345 int syncBit;
346 uint16_t shiftReg;
347 int buffer;
348 int buffer2;
349 int buffer3;
350 int buff;
351 int samples;
352 int len;
353 enum {
354 SUB_NONE,
355 SUB_FIRST_HALF,
356 SUB_SECOND_HALF,
357 SUB_BOTH
358 } sub;
359 uint8_t *output;
360 } Demod;
361
362 static RAMFUNC int ManchesterDecoding(int v)
363 {
364 int bit;
365 int modulation;
366 int error = 0;
367
368 bit = Demod.buffer;
369 Demod.buffer = Demod.buffer2;
370 Demod.buffer2 = Demod.buffer3;
371 Demod.buffer3 = v;
372
373 if(Demod.buff < 3) {
374 Demod.buff++;
375 return false;
376 }
377
378 if(Demod.state==DEMOD_UNSYNCD) {
379 Demod.output[Demod.len] = 0xfa;
380 Demod.syncBit = 0;
381 //Demod.samples = 0;
382 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
383
384 if(bit & 0x08) {
385 Demod.syncBit = 0x08;
386 }
387
388 if(bit & 0x04) {
389 if(Demod.syncBit) {
390 bit <<= 4;
391 }
392 Demod.syncBit = 0x04;
393 }
394
395 if(bit & 0x02) {
396 if(Demod.syncBit) {
397 bit <<= 2;
398 }
399 Demod.syncBit = 0x02;
400 }
401
402 if(bit & 0x01 && Demod.syncBit) {
403 Demod.syncBit = 0x01;
404 }
405
406 if(Demod.syncBit) {
407 Demod.len = 0;
408 Demod.state = DEMOD_START_OF_COMMUNICATION;
409 Demod.sub = SUB_FIRST_HALF;
410 Demod.bitCount = 0;
411 Demod.shiftReg = 0;
412 Demod.samples = 0;
413 if(Demod.posCount) {
414 //if(trigger) LED_A_OFF(); // Not useful in this case...
415 switch(Demod.syncBit) {
416 case 0x08: Demod.samples = 3; break;
417 case 0x04: Demod.samples = 2; break;
418 case 0x02: Demod.samples = 1; break;
419 case 0x01: Demod.samples = 0; break;
420 }
421 // SOF must be long burst... otherwise stay unsynced!!!
422 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
423 Demod.state = DEMOD_UNSYNCD;
424 }
425 }
426 else {
427 // SOF must be long burst... otherwise stay unsynced!!!
428 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
429 Demod.state = DEMOD_UNSYNCD;
430 error = 0x88;
431 }
432
433 }
434 error = 0;
435
436 }
437 }
438 else {
439 modulation = bit & Demod.syncBit;
440 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
441
442 Demod.samples += 4;
443
444 if(Demod.posCount==0) {
445 Demod.posCount = 1;
446 if(modulation) {
447 Demod.sub = SUB_FIRST_HALF;
448 }
449 else {
450 Demod.sub = SUB_NONE;
451 }
452 }
453 else {
454 Demod.posCount = 0;
455 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
456 if(Demod.state!=DEMOD_ERROR_WAIT) {
457 Demod.state = DEMOD_ERROR_WAIT;
458 Demod.output[Demod.len] = 0xaa;
459 error = 0x01;
460 }
461 }*/
462 //else if(modulation) {
463 if(modulation) {
464 if(Demod.sub == SUB_FIRST_HALF) {
465 Demod.sub = SUB_BOTH;
466 }
467 else {
468 Demod.sub = SUB_SECOND_HALF;
469 }
470 }
471 else if(Demod.sub == SUB_NONE) {
472 if(Demod.state == DEMOD_SOF_COMPLETE) {
473 Demod.output[Demod.len] = 0x0f;
474 Demod.len++;
475 Demod.state = DEMOD_UNSYNCD;
476 // error = 0x0f;
477 return true;
478 }
479 else {
480 Demod.state = DEMOD_ERROR_WAIT;
481 error = 0x33;
482 }
483 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
484 Demod.state = DEMOD_ERROR_WAIT;
485 Demod.output[Demod.len] = 0xaa;
486 error = 0x01;
487 }*/
488 }
489
490 switch(Demod.state) {
491 case DEMOD_START_OF_COMMUNICATION:
492 if(Demod.sub == SUB_BOTH) {
493 //Demod.state = DEMOD_MANCHESTER_D;
494 Demod.state = DEMOD_START_OF_COMMUNICATION2;
495 Demod.posCount = 1;
496 Demod.sub = SUB_NONE;
497 }
498 else {
499 Demod.output[Demod.len] = 0xab;
500 Demod.state = DEMOD_ERROR_WAIT;
501 error = 0xd2;
502 }
503 break;
504 case DEMOD_START_OF_COMMUNICATION2:
505 if(Demod.sub == SUB_SECOND_HALF) {
506 Demod.state = DEMOD_START_OF_COMMUNICATION3;
507 }
508 else {
509 Demod.output[Demod.len] = 0xab;
510 Demod.state = DEMOD_ERROR_WAIT;
511 error = 0xd3;
512 }
513 break;
514 case DEMOD_START_OF_COMMUNICATION3:
515 if(Demod.sub == SUB_SECOND_HALF) {
516 // Demod.state = DEMOD_MANCHESTER_D;
517 Demod.state = DEMOD_SOF_COMPLETE;
518 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
519 //Demod.len++;
520 }
521 else {
522 Demod.output[Demod.len] = 0xab;
523 Demod.state = DEMOD_ERROR_WAIT;
524 error = 0xd4;
525 }
526 break;
527 case DEMOD_SOF_COMPLETE:
528 case DEMOD_MANCHESTER_D:
529 case DEMOD_MANCHESTER_E:
530 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
531 // 00001111 = 1 (0 in 14443)
532 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
533 Demod.bitCount++;
534 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
535 Demod.state = DEMOD_MANCHESTER_D;
536 }
537 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
538 Demod.bitCount++;
539 Demod.shiftReg >>= 1;
540 Demod.state = DEMOD_MANCHESTER_E;
541 }
542 else if(Demod.sub == SUB_BOTH) {
543 Demod.state = DEMOD_MANCHESTER_F;
544 }
545 else {
546 Demod.state = DEMOD_ERROR_WAIT;
547 error = 0x55;
548 }
549 break;
550
551 case DEMOD_MANCHESTER_F:
552 // Tag response does not need to be a complete byte!
553 if(Demod.len > 0 || Demod.bitCount > 0) {
554 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
555 Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
556 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
557 Demod.len++;
558 }
559
560 Demod.state = DEMOD_UNSYNCD;
561 return true;
562 }
563 else {
564 Demod.output[Demod.len] = 0xad;
565 Demod.state = DEMOD_ERROR_WAIT;
566 error = 0x03;
567 }
568 break;
569
570 case DEMOD_ERROR_WAIT:
571 Demod.state = DEMOD_UNSYNCD;
572 break;
573
574 default:
575 Demod.output[Demod.len] = 0xdd;
576 Demod.state = DEMOD_UNSYNCD;
577 break;
578 }
579
580 /*if(Demod.bitCount>=9) {
581 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
582 Demod.len++;
583
584 Demod.parityBits <<= 1;
585 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
586
587 Demod.bitCount = 0;
588 Demod.shiftReg = 0;
589 }*/
590 if(Demod.bitCount>=8) {
591 Demod.shiftReg >>= 1;
592 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
593 Demod.len++;
594 Demod.bitCount = 0;
595 Demod.shiftReg = 0;
596 }
597
598 if(error) {
599 Demod.output[Demod.len] = 0xBB;
600 Demod.len++;
601 Demod.output[Demod.len] = error & 0xFF;
602 Demod.len++;
603 Demod.output[Demod.len] = 0xBB;
604 Demod.len++;
605 Demod.output[Demod.len] = bit & 0xFF;
606 Demod.len++;
607 Demod.output[Demod.len] = Demod.buffer & 0xFF;
608 Demod.len++;
609 // Look harder ;-)
610 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
611 Demod.len++;
612 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
613 Demod.len++;
614 Demod.output[Demod.len] = 0xBB;
615 Demod.len++;
616 return true;
617 }
618
619 }
620
621 } // end (state != UNSYNCED)
622
623 return false;
624 }
625
626 //=============================================================================
627 // Finally, a `sniffer' for iClass communication
628 // Both sides of communication!
629 //=============================================================================
630
631 //-----------------------------------------------------------------------------
632 // Record the sequence of commands sent by the reader to the tag, with
633 // triggering so that we start recording at the point that the tag is moved
634 // near the reader.
635 //-----------------------------------------------------------------------------
636 void RAMFUNC SnoopIClass(void)
637 {
638
639
640 // We won't start recording the frames that we acquire until we trigger;
641 // a good trigger condition to get started is probably when we see a
642 // response from the tag.
643 //int triggered = false; // false to wait first for card
644
645 // The command (reader -> tag) that we're receiving.
646 // The length of a received command will in most cases be no more than 18 bytes.
647 // So 32 should be enough!
648 #define ICLASS_BUFFER_SIZE 32
649 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
650 // The response (tag -> reader) that we're receiving.
651 uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
652
653 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
654
655 // free all BigBuf memory
656 BigBuf_free();
657 // The DMA buffer, used to stream samples from the FPGA
658 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
659
660 set_tracing(true);
661 clear_trace();
662 iso14a_set_trigger(false);
663
664 int lastRxCounter;
665 uint8_t *upTo;
666 int smpl;
667 int maxBehindBy = 0;
668
669 // Count of samples received so far, so that we can include timing
670 // information in the trace buffer.
671 int samples = 0;
672 rsamples = 0;
673
674 // Set up the demodulator for tag -> reader responses.
675 Demod.output = tagToReaderResponse;
676 Demod.len = 0;
677 Demod.state = DEMOD_UNSYNCD;
678
679 // Setup for the DMA.
680 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
681 upTo = dmaBuf;
682 lastRxCounter = DMA_BUFFER_SIZE;
683 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
684
685 // And the reader -> tag commands
686 memset(&Uart, 0, sizeof(Uart));
687 Uart.output = readerToTagCmd;
688 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
689 Uart.state = STATE_UNSYNCD;
690
691 // And put the FPGA in the appropriate mode
692 // Signal field is off with the appropriate LED
693 LED_D_OFF();
694 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
695 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
696
697 uint32_t time_0 = GetCountSspClk();
698 uint32_t time_start = 0;
699 uint32_t time_stop = 0;
700
701 int div = 0;
702 //int div2 = 0;
703 int decbyte = 0;
704 int decbyter = 0;
705
706 // And now we loop, receiving samples.
707 for(;;) {
708 LED_A_ON();
709 WDT_HIT();
710 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
711 (DMA_BUFFER_SIZE-1);
712 if(behindBy > maxBehindBy) {
713 maxBehindBy = behindBy;
714 if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
715 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
716 goto done;
717 }
718 }
719 if(behindBy < 1) continue;
720
721 LED_A_OFF();
722 smpl = upTo[0];
723 upTo++;
724 lastRxCounter -= 1;
725 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
726 upTo -= DMA_BUFFER_SIZE;
727 lastRxCounter += DMA_BUFFER_SIZE;
728 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
729 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
730 }
731
732 //samples += 4;
733 samples += 1;
734
735 if(smpl & 0xF) {
736 decbyte ^= (1 << (3 - div));
737 }
738
739 // FOR READER SIDE COMMUMICATION...
740
741 decbyter <<= 2;
742 decbyter ^= (smpl & 0x30);
743
744 div++;
745
746 if((div + 1) % 2 == 0) {
747 smpl = decbyter;
748 if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
749 rsamples = samples - Uart.samples;
750 time_stop = (GetCountSspClk()-time_0) << 4;
751 LED_C_ON();
752
753 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
754 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
755 uint8_t parity[MAX_PARITY_SIZE];
756 GetParity(Uart.output, Uart.byteCnt, parity);
757 LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, true);
758
759 /* And ready to receive another command. */
760 Uart.state = STATE_UNSYNCD;
761 /* And also reset the demod code, which might have been */
762 /* false-triggered by the commands from the reader. */
763 Demod.state = DEMOD_UNSYNCD;
764 LED_B_OFF();
765 Uart.byteCnt = 0;
766 }else{
767 time_start = (GetCountSspClk()-time_0) << 4;
768 }
769 decbyter = 0;
770 }
771
772 if(div > 3) {
773 smpl = decbyte;
774 if(ManchesterDecoding(smpl & 0x0F)) {
775 time_stop = (GetCountSspClk()-time_0) << 4;
776
777 rsamples = samples - Demod.samples;
778 LED_B_ON();
779
780 uint8_t parity[MAX_PARITY_SIZE];
781 GetParity(Demod.output, Demod.len, parity);
782 LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
783
784 // And ready to receive another response.
785 memset(&Demod, 0, sizeof(Demod));
786 Demod.output = tagToReaderResponse;
787 Demod.state = DEMOD_UNSYNCD;
788 LED_C_OFF();
789 }else{
790 time_start = (GetCountSspClk()-time_0) << 4;
791 }
792
793 div = 0;
794 decbyte = 0x00;
795 }
796 //}
797
798 if(BUTTON_PRESS()) {
799 DbpString("cancelled_a");
800 goto done;
801 }
802 }
803
804 DbpString("COMMAND FINISHED");
805
806 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
807 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
808
809 done:
810 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
811 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
812 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
813 LEDsoff();
814 }
815
816 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
817 int i;
818 for(i = 0; i < 8; i++) {
819 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
820 }
821 }
822
823 //-----------------------------------------------------------------------------
824 // Wait for commands from reader
825 // Stop when button is pressed
826 // Or return true when command is captured
827 //-----------------------------------------------------------------------------
828 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
829 {
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
833 LED_D_OFF();
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
835
836 // Now run a `software UART' on the stream of incoming samples.
837 Uart.output = received;
838 Uart.byteCntMax = maxLen;
839 Uart.state = STATE_UNSYNCD;
840
841 for(;;) {
842 WDT_HIT();
843
844 if(BUTTON_PRESS()) return false;
845
846 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
847 AT91C_BASE_SSC->SSC_THR = 0x00;
848 }
849 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
850 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
851
852 if(OutOfNDecoding(b & 0x0f)) {
853 *len = Uart.byteCnt;
854 return true;
855 }
856 }
857 }
858 }
859
860 static uint8_t encode4Bits(const uint8_t b)
861 {
862 uint8_t c = b & 0xF;
863 // OTA, the least significant bits first
864 // The columns are
865 // 1 - Bit value to send
866 // 2 - Reversed (big-endian)
867 // 3 - Encoded
868 // 4 - Hex values
869
870 switch(c){
871 // 1 2 3 4
872 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
873 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
874 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
875 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
876 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
877 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
878 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
879 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
880 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
881 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
882 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
883 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
884 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
885 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
886 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
887 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
888
889 }
890 }
891
892 //-----------------------------------------------------------------------------
893 // Prepare tag messages
894 //-----------------------------------------------------------------------------
895 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
896 {
897
898 /*
899 * SOF comprises 3 parts;
900 * * An unmodulated time of 56.64 us
901 * * 24 pulses of 423.75 KHz (fc/32)
902 * * A logic 1, which starts with an unmodulated time of 18.88us
903 * followed by 8 pulses of 423.75kHz (fc/32)
904 *
905 *
906 * EOF comprises 3 parts:
907 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
908 * time of 18.88us.
909 * - 24 pulses of fc/32
910 * - An unmodulated time of 56.64 us
911 *
912 *
913 * A logic 0 starts with 8 pulses of fc/32
914 * followed by an unmodulated time of 256/fc (~18,88us).
915 *
916 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
917 * 8 pulses of fc/32 (also 18.88us)
918 *
919 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
920 * works like this.
921 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
922 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
923 *
924 * In this mode the SOF can be written as 00011101 = 0x1D
925 * The EOF can be written as 10111000 = 0xb8
926 * A logic 1 is 01
927 * A logic 0 is 10
928 *
929 * */
930
931 int i;
932
933 ToSendReset();
934
935 // Send SOF
936 ToSend[++ToSendMax] = 0x1D;
937
938 for(i = 0; i < len; i++) {
939 uint8_t b = cmd[i];
940 ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
941 ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
942 }
943
944 // Send EOF
945 ToSend[++ToSendMax] = 0xB8;
946 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
947 // Convert from last byte pos to length
948 ToSendMax++;
949 }
950
951 // Only SOF
952 static void CodeIClassTagSOF()
953 {
954 //So far a dummy implementation, not used
955 //int lastProxToAirDuration =0;
956
957 ToSendReset();
958 // Send SOF
959 ToSend[++ToSendMax] = 0x1D;
960 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
961
962 // Convert from last byte pos to length
963 ToSendMax++;
964 }
965 #define MODE_SIM_CSN 0
966 #define MODE_EXIT_AFTER_MAC 1
967 #define MODE_FULLSIM 2
968
969 int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
970 /**
971 * @brief SimulateIClass simulates an iClass card.
972 * @param arg0 type of simulation
973 * - 0 uses the first 8 bytes in usb data as CSN
974 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
975 * in the usb data. This mode collects MAC from the reader, in order to do an offline
976 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
977 * - Other : Uses the default CSN (031fec8af7ff12e0)
978 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
979 * @param arg2
980 * @param datain
981 */
982 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
983 {
984 uint32_t simType = arg0;
985 uint32_t numberOfCSNS = arg1;
986 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
987
988 // Enable and clear the trace
989 set_tracing(true);
990 clear_trace();
991 //Use the emulator memory for SIM
992 uint8_t *emulator = BigBuf_get_EM_addr();
993
994 if(simType == 0) {
995 // Use the CSN from commandline
996 memcpy(emulator, datain, 8);
997 doIClassSimulation(MODE_SIM_CSN,NULL);
998 }else if(simType == 1)
999 {
1000 //Default CSN
1001 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1002 // Use the CSN from commandline
1003 memcpy(emulator, csn_crc, 8);
1004 doIClassSimulation(MODE_SIM_CSN,NULL);
1005 }
1006 else if(simType == 2)
1007 {
1008
1009 uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
1010 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
1011 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1012 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1013 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1014 int i = 0;
1015 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
1016 {
1017 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1018
1019 memcpy(emulator, datain+(i*8), 8);
1020 if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
1021 {
1022 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1023 return; // Button pressed
1024 }
1025 }
1026 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1027
1028 }else if(simType == 3){
1029 //This is 'full sim' mode, where we use the emulator storage for data.
1030 doIClassSimulation(MODE_FULLSIM, NULL);
1031 }
1032 else{
1033 // We may want a mode here where we hardcode the csns to use (from proxclone).
1034 // That will speed things up a little, but not required just yet.
1035 Dbprintf("The mode is not implemented, reserved for future use");
1036 }
1037 Dbprintf("Done...");
1038
1039 }
1040 void AppendCrc(uint8_t* data, int len)
1041 {
1042 ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
1043 }
1044
1045 /**
1046 * @brief Does the actual simulation
1047 * @param csn - csn to use
1048 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1049 */
1050 int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
1051 {
1052 // free eventually allocated BigBuf memory
1053 BigBuf_free_keep_EM();
1054
1055 State cipher_state;
1056 // State cipher_state_reserve;
1057 uint8_t *csn = BigBuf_get_EM_addr();
1058 uint8_t *emulator = csn;
1059 uint8_t sof_data[] = { 0x0F} ;
1060 // CSN followed by two CRC bytes
1061 uint8_t anticoll_data[10] = { 0 };
1062 uint8_t csn_data[10] = { 0 };
1063 memcpy(csn_data,csn,sizeof(csn_data));
1064 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1065
1066 // Construct anticollision-CSN
1067 rotateCSN(csn_data,anticoll_data);
1068
1069 // Compute CRC on both CSNs
1070 ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
1071 ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
1072
1073 uint8_t diversified_key[8] = { 0 };
1074 // e-Purse
1075 uint8_t card_challenge_data[8] = { 0x00 };
1076 if(simulationMode == MODE_FULLSIM)
1077 {
1078 //The diversified key should be stored on block 3
1079 //Get the diversified key from emulator memory
1080 memcpy(diversified_key, emulator+(8*3),8);
1081
1082 //Card challenge, a.k.a e-purse is on block 2
1083 memcpy(card_challenge_data,emulator + (8 * 2) , 8);
1084 //Precalculate the cipher state, feeding it the CC
1085 cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
1086
1087 }
1088
1089 int exitLoop = 0;
1090 // Reader 0a
1091 // Tag 0f
1092 // Reader 0c
1093 // Tag anticoll. CSN
1094 // Reader 81 anticoll. CSN
1095 // Tag CSN
1096
1097 uint8_t *modulated_response;
1098 int modulated_response_size = 0;
1099 uint8_t* trace_data = NULL;
1100 int trace_data_size = 0;
1101
1102
1103 // Respond SOF -- takes 1 bytes
1104 uint8_t *resp_sof = BigBuf_malloc(2);
1105 int resp_sof_Len;
1106
1107 // Anticollision CSN (rotated CSN)
1108 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1109 uint8_t *resp_anticoll = BigBuf_malloc(28);
1110 int resp_anticoll_len;
1111
1112 // CSN
1113 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1114 uint8_t *resp_csn = BigBuf_malloc(30);
1115 int resp_csn_len;
1116
1117 // e-Purse
1118 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1119 uint8_t *resp_cc = BigBuf_malloc(20);
1120 int resp_cc_len;
1121
1122 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1123 int len;
1124
1125 // Prepare card messages
1126 ToSendMax = 0;
1127
1128 // First card answer: SOF
1129 CodeIClassTagSOF();
1130 memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
1131
1132 // Anticollision CSN
1133 CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
1134 memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
1135
1136 // CSN
1137 CodeIClassTagAnswer(csn_data, sizeof(csn_data));
1138 memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
1139
1140 // e-Purse
1141 CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
1142 memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
1143
1144 //This is used for responding to READ-block commands or other data which is dynamically generated
1145 //First the 'trace'-data, not encoded for FPGA
1146 uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1147 //Then storage for the modulated data
1148 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1149 uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
1150
1151 // Start from off (no field generated)
1152 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1153 //SpinDelay(200);
1154 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1155 SpinDelay(100);
1156 StartCountSspClk();
1157 // We need to listen to the high-frequency, peak-detected path.
1158 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1159 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
1160
1161 // To control where we are in the protocol
1162 int cmdsRecvd = 0;
1163 uint32_t time_0 = GetCountSspClk();
1164 uint32_t t2r_time =0;
1165 uint32_t r2t_time =0;
1166
1167 LED_A_ON();
1168 bool buttonPressed = false;
1169 uint8_t response_delay = 1;
1170 while(!exitLoop) {
1171 response_delay = 1;
1172 LED_B_OFF();
1173 //Signal tracer
1174 // Can be used to get a trigger for an oscilloscope..
1175 LED_C_OFF();
1176
1177 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1178 buttonPressed = true;
1179 break;
1180 }
1181 r2t_time = GetCountSspClk();
1182 //Signal tracer
1183 LED_C_ON();
1184
1185 // Okay, look at the command now.
1186 if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
1187 // Reader in anticollission phase
1188 modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
1189 trace_data = sof_data;
1190 trace_data_size = sizeof(sof_data);
1191 } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
1192 // Reader asks for anticollission CSN
1193 modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
1194 trace_data = anticoll_data;
1195 trace_data_size = sizeof(anticoll_data);
1196 //DbpString("Reader requests anticollission CSN:");
1197 } else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
1198 // Reader selects anticollission CSN.
1199 // Tag sends the corresponding real CSN
1200 modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
1201 trace_data = csn_data;
1202 trace_data_size = sizeof(csn_data);
1203 //DbpString("Reader selects anticollission CSN:");
1204 } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
1205 // Read e-purse (88 02)
1206 modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
1207 trace_data = card_challenge_data;
1208 trace_data_size = sizeof(card_challenge_data);
1209 LED_B_ON();
1210 } else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
1211 // Reader random and reader MAC!!!
1212 if(simulationMode == MODE_FULLSIM)
1213 {
1214 //NR, from reader, is in receivedCmd +1
1215 opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
1216
1217 trace_data = data_generic_trace;
1218 trace_data_size = 4;
1219 CodeIClassTagAnswer(trace_data , trace_data_size);
1220 memcpy(data_response, ToSend, ToSendMax);
1221 modulated_response = data_response;
1222 modulated_response_size = ToSendMax;
1223 response_delay = 0;//We need to hurry here...
1224 //exitLoop = true;
1225 }else
1226 { //Not fullsim, we don't respond
1227 // We do not know what to answer, so lets keep quiet
1228 modulated_response = resp_sof; modulated_response_size = 0;
1229 trace_data = NULL;
1230 trace_data_size = 0;
1231 if (simulationMode == MODE_EXIT_AFTER_MAC){
1232 // dbprintf:ing ...
1233 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1234 ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1235 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1236 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1237 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1238 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1239 if (reader_mac_buf != NULL)
1240 {
1241 memcpy(reader_mac_buf,receivedCmd+1,8);
1242 }
1243 exitLoop = true;
1244 }
1245 }
1246
1247 } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
1248 // Reader ends the session
1249 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1250 trace_data = NULL;
1251 trace_data_size = 0;
1252 } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
1253 //Read block
1254 uint16_t blk = receivedCmd[1];
1255 //Take the data...
1256 memcpy(data_generic_trace, emulator+(blk << 3),8);
1257 //Add crc
1258 AppendCrc(data_generic_trace, 8);
1259 trace_data = data_generic_trace;
1260 trace_data_size = 10;
1261 CodeIClassTagAnswer(trace_data , trace_data_size);
1262 memcpy(data_response, ToSend, ToSendMax);
1263 modulated_response = data_response;
1264 modulated_response_size = ToSendMax;
1265 }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
1266 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1267 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1268 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1269 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1270
1271 //Take the data...
1272 memcpy(data_generic_trace, receivedCmd+2,8);
1273 //Add crc
1274 AppendCrc(data_generic_trace, 8);
1275 trace_data = data_generic_trace;
1276 trace_data_size = 10;
1277 CodeIClassTagAnswer(trace_data , trace_data_size);
1278 memcpy(data_response, ToSend, ToSendMax);
1279 modulated_response = data_response;
1280 modulated_response_size = ToSendMax;
1281 }
1282 else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
1283 {//Pagesel
1284 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1285 //Chips with a single page will not answer to this command
1286 // It appears we're fine ignoring this.
1287 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1288 }
1289 else {
1290 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1291 // Never seen this command before
1292 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1293 len,
1294 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1295 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1296 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1297 // Do not respond
1298 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1299 trace_data = NULL;
1300 trace_data_size = 0;
1301 }
1302
1303 if(cmdsRecvd > 100) {
1304 //DbpString("100 commands later...");
1305 //break;
1306 }
1307 else {
1308 cmdsRecvd++;
1309 }
1310 /**
1311 A legit tag has about 380us delay between reader EOT and tag SOF.
1312 **/
1313 if(modulated_response_size > 0) {
1314 SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
1315 t2r_time = GetCountSspClk();
1316 }
1317
1318 uint8_t parity[MAX_PARITY_SIZE];
1319 GetParity(receivedCmd, len, parity);
1320 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, true);
1321
1322 if (trace_data != NULL) {
1323 GetParity(trace_data, trace_data_size, parity);
1324 LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, false);
1325 }
1326 if(!get_tracing()) {
1327 DbpString("Trace full");
1328 //break;
1329 }
1330 }
1331
1332 //Dbprintf("%x", cmdsRecvd);
1333 LED_A_OFF();
1334 LED_B_OFF();
1335 LED_C_OFF();
1336
1337 if(buttonPressed)
1338 {
1339 DbpString("Button pressed");
1340 }
1341 return buttonPressed;
1342 }
1343
1344 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1345 {
1346 int i = 0, d=0;//, u = 0, d = 0;
1347 uint8_t b = 0;
1348
1349 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1350 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
1351
1352 AT91C_BASE_SSC->SSC_THR = 0x00;
1353 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
1354 while(!BUTTON_PRESS()) {
1355 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1356 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1357 }
1358 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1359 b = 0x00;
1360 if(d < delay) {
1361 d++;
1362 }
1363 else {
1364 if( i < respLen){
1365 b = resp[i];
1366 //Hack
1367 //b = 0xAC;
1368 }
1369 i++;
1370 }
1371 AT91C_BASE_SSC->SSC_THR = b;
1372 }
1373
1374 // if (i > respLen +4) break;
1375 if (i > respLen +1) break;
1376 }
1377
1378 return 0;
1379 }
1380
1381 /// THE READER CODE
1382
1383 //-----------------------------------------------------------------------------
1384 // Transmit the command (to the tag) that was placed in ToSend[].
1385 //-----------------------------------------------------------------------------
1386 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1387 {
1388 int c;
1389 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1390 AT91C_BASE_SSC->SSC_THR = 0x00;
1391 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
1392
1393 if (wait)
1394 {
1395 if(*wait < 10) *wait = 10;
1396
1397 for(c = 0; c < *wait;) {
1398 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1399 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1400 c++;
1401 }
1402 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1403 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1404 (void)r;
1405 }
1406 WDT_HIT();
1407 }
1408
1409 }
1410
1411
1412 uint8_t sendbyte;
1413 bool firstpart = true;
1414 c = 0;
1415 for(;;) {
1416 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1417
1418 // DOUBLE THE SAMPLES!
1419 if(firstpart) {
1420 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1421 }
1422 else {
1423 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1424 c++;
1425 }
1426 if(sendbyte == 0xff) {
1427 sendbyte = 0xfe;
1428 }
1429 AT91C_BASE_SSC->SSC_THR = sendbyte;
1430 firstpart = !firstpart;
1431
1432 if(c >= len) {
1433 break;
1434 }
1435 }
1436 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1437 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1438 (void)r;
1439 }
1440 WDT_HIT();
1441 }
1442 if (samples && wait) *samples = (c + *wait) << 3;
1443 }
1444
1445
1446 //-----------------------------------------------------------------------------
1447 // Prepare iClass reader command to send to FPGA
1448 //-----------------------------------------------------------------------------
1449 void CodeIClassCommand(const uint8_t * cmd, int len)
1450 {
1451 int i, j, k;
1452 uint8_t b;
1453
1454 ToSendReset();
1455
1456 // Start of Communication: 1 out of 4
1457 ToSend[++ToSendMax] = 0xf0;
1458 ToSend[++ToSendMax] = 0x00;
1459 ToSend[++ToSendMax] = 0x0f;
1460 ToSend[++ToSendMax] = 0x00;
1461
1462 // Modulate the bytes
1463 for (i = 0; i < len; i++) {
1464 b = cmd[i];
1465 for(j = 0; j < 4; j++) {
1466 for(k = 0; k < 4; k++) {
1467 if(k == (b & 3)) {
1468 ToSend[++ToSendMax] = 0xf0;
1469 }
1470 else {
1471 ToSend[++ToSendMax] = 0x00;
1472 }
1473 }
1474 b >>= 2;
1475 }
1476 }
1477
1478 // End of Communication
1479 ToSend[++ToSendMax] = 0x00;
1480 ToSend[++ToSendMax] = 0x00;
1481 ToSend[++ToSendMax] = 0xf0;
1482 ToSend[++ToSendMax] = 0x00;
1483
1484 // Convert from last character reference to length
1485 ToSendMax++;
1486 }
1487
1488 void ReaderTransmitIClass(uint8_t* frame, int len)
1489 {
1490 int wait = 0;
1491 int samples = 0;
1492
1493 // This is tied to other size changes
1494 CodeIClassCommand(frame,len);
1495
1496 // Select the card
1497 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1498 if(trigger)
1499 LED_A_ON();
1500
1501 // Store reader command in buffer
1502 uint8_t par[MAX_PARITY_SIZE];
1503 GetParity(frame, len, par);
1504 LogTrace(frame, len, rsamples, rsamples, par, true);
1505 }
1506
1507 //-----------------------------------------------------------------------------
1508 // Wait a certain time for tag response
1509 // If a response is captured return true
1510 // If it takes too long return false
1511 //-----------------------------------------------------------------------------
1512 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1513 {
1514 // buffer needs to be 512 bytes
1515 int c;
1516
1517 // Set FPGA mode to "reader listen mode", no modulation (listen
1518 // only, since we are receiving, not transmitting).
1519 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1520
1521 // Now get the answer from the card
1522 Demod.output = receivedResponse;
1523 Demod.len = 0;
1524 Demod.state = DEMOD_UNSYNCD;
1525
1526 uint8_t b;
1527 if (elapsed) *elapsed = 0;
1528
1529 bool skip = false;
1530
1531 c = 0;
1532 for(;;) {
1533 WDT_HIT();
1534
1535 if(BUTTON_PRESS()) return false;
1536
1537 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1538 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1539 if (elapsed) (*elapsed)++;
1540 }
1541 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1542 if(c < timeout) { c++; } else { return false; }
1543 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1544 skip = !skip;
1545 if(skip) continue;
1546
1547 if(ManchesterDecoding(b & 0x0f)) {
1548 *samples = c << 3;
1549 return true;
1550 }
1551 }
1552 }
1553 }
1554
1555 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1556 {
1557 int samples = 0;
1558 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return false;
1559 rsamples += samples;
1560 uint8_t parity[MAX_PARITY_SIZE];
1561 GetParity(receivedAnswer, Demod.len, parity);
1562 LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,false);
1563 if(samples == 0) return false;
1564 return Demod.len;
1565 }
1566
1567 void setupIclassReader()
1568 {
1569 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1570 // Reset trace buffer
1571 set_tracing(true);
1572 clear_trace();
1573
1574 // Setup SSC
1575 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
1576 // Start from off (no field generated)
1577 // Signal field is off with the appropriate LED
1578 LED_D_OFF();
1579 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1580 SpinDelay(200);
1581
1582 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1583
1584 // Now give it time to spin up.
1585 // Signal field is on with the appropriate LED
1586 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1587 SpinDelay(200);
1588 LED_A_ON();
1589
1590 }
1591
1592 bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
1593 {
1594 while(retries-- > 0)
1595 {
1596 ReaderTransmitIClass(command, cmdsize);
1597 if(expected_size == ReaderReceiveIClass(resp)){
1598 return true;
1599 }
1600 }
1601 return false;//Error
1602 }
1603
1604 /**
1605 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1606 * @param card_data where the CSN and CC are stored for return
1607 * @return 0 = fail
1608 * 1 = Got CSN
1609 * 2 = Got CSN and CC
1610 */
1611 uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
1612 {
1613 static uint8_t act_all[] = { 0x0a };
1614 //static uint8_t identify[] = { 0x0c };
1615 static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
1616 static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1617 static uint8_t readcheck_cc[]= { 0x88, 0x02 };
1618 if (use_credit_key)
1619 readcheck_cc[0] = 0x18;
1620 else
1621 readcheck_cc[0] = 0x88;
1622
1623 uint8_t resp[ICLASS_BUFFER_SIZE];
1624
1625 uint8_t read_status = 0;
1626
1627 // Send act_all
1628 ReaderTransmitIClass(act_all, 1);
1629 // Card present?
1630 if(!ReaderReceiveIClass(resp)) return read_status;//Fail
1631 //Send Identify
1632 ReaderTransmitIClass(identify, 1);
1633 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1634 uint8_t len = ReaderReceiveIClass(resp);
1635 if(len != 10) return read_status;//Fail
1636
1637 //Copy the Anti-collision CSN to our select-packet
1638 memcpy(&select[1],resp,8);
1639 //Select the card
1640 ReaderTransmitIClass(select, sizeof(select));
1641 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1642 len = ReaderReceiveIClass(resp);
1643 if(len != 10) return read_status;//Fail
1644
1645 //Success - level 1, we got CSN
1646 //Save CSN in response data
1647 memcpy(card_data,resp,8);
1648
1649 //Flag that we got to at least stage 1, read CSN
1650 read_status = 1;
1651
1652 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1653 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1654 if(ReaderReceiveIClass(resp) == 8) {
1655 //Save CC (e-purse) in response data
1656 memcpy(card_data+8,resp,8);
1657 read_status++;
1658 }
1659
1660 return read_status;
1661 }
1662 uint8_t handshakeIclassTag(uint8_t *card_data) {
1663 return handshakeIclassTag_ext(card_data, false);
1664 }
1665
1666
1667 // Reader iClass Anticollission
1668 void ReaderIClass(uint8_t arg0) {
1669
1670 uint8_t card_data[6 * 8]={0};
1671 memset(card_data, 0xFF, sizeof(card_data));
1672 uint8_t last_csn[8]={0,0,0,0,0,0,0,0};
1673 uint8_t resp[ICLASS_BUFFER_SIZE];
1674 memset(resp, 0xFF, sizeof(resp));
1675 //Read conf block CRC(0x01) => 0xfa 0x22
1676 uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
1677 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1678 uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
1679
1680 int read_status= 0;
1681 uint8_t result_status = 0;
1682 // flag to read until one tag is found successfully
1683 bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
1684 // flag to only try 5 times to find one tag then return
1685 bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
1686 // if neither abort_after_read nor try_once then continue reading until button pressed.
1687
1688 bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY;
1689 // test flags for what blocks to be sure to read
1690 uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF;
1691 uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC;
1692 uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
1693
1694 set_tracing(true);
1695 setupIclassReader();
1696
1697 uint16_t tryCnt=0;
1698 bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
1699 while(!userCancelled)
1700 {
1701 // if only looking for one card try 2 times if we missed it the first time
1702 if (try_once && tryCnt > 2) break;
1703 tryCnt++;
1704 if(!get_tracing()) {
1705 DbpString("Trace full");
1706 break;
1707 }
1708 WDT_HIT();
1709
1710 read_status = handshakeIclassTag_ext(card_data, use_credit_key);
1711
1712 if(read_status == 0) continue;
1713 if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
1714 if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
1715
1716 // handshakeIclass returns CSN|CC, but the actual block
1717 // layout is CSN|CONFIG|CC, so here we reorder the data,
1718 // moving CC forward 8 bytes
1719 memcpy(card_data+16,card_data+8, 8);
1720 //Read block 1, config
1721 if(flagReadConfig) {
1722 if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10))
1723 {
1724 result_status |= FLAG_ICLASS_READER_CONF;
1725 memcpy(card_data+8, resp, 8);
1726 } else {
1727 Dbprintf("Failed to dump config block");
1728 }
1729 }
1730
1731 //Read block 5, AA
1732 if(flagReadAA) {
1733 if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10))
1734 {
1735 result_status |= FLAG_ICLASS_READER_AA;
1736 memcpy(card_data+(8*5), resp, 8);
1737 } else {
1738 //Dbprintf("Failed to dump AA block");
1739 }
1740 }
1741
1742 // 0 : CSN
1743 // 1 : Configuration
1744 // 2 : e-purse
1745 // (3,4 write-only, kc and kd)
1746 // 5 Application issuer area
1747 //
1748 //Then we can 'ship' back the 8 * 6 bytes of data,
1749 // with 0xFF:s in block 3 and 4.
1750
1751 LED_B_ON();
1752 //Send back to client, but don't bother if we already sent this -
1753 // only useful if looping in arm (not try_once && not abort_after_read)
1754 if(memcmp(last_csn, card_data, 8) != 0)
1755 {
1756 // If caller requires that we get Conf, CC, AA, continue until we got it
1757 if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
1758 cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
1759 if(abort_after_read) {
1760 LED_A_OFF();
1761 LED_B_OFF();
1762 return;
1763 }
1764 //Save that we already sent this....
1765 memcpy(last_csn, card_data, 8);
1766 }
1767
1768 }
1769 LED_B_OFF();
1770 userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
1771 }
1772 if (userCancelled) {
1773 cmd_send(CMD_ACK,0xFF,0,0,card_data, 0);
1774 } else {
1775 cmd_send(CMD_ACK,0,0,0,card_data, 0);
1776 }
1777 LED_A_OFF();
1778 }
1779
1780 void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
1781
1782 uint8_t card_data[USB_CMD_DATA_SIZE]={0};
1783 uint16_t block_crc_LUT[255] = {0};
1784
1785 {//Generate a lookup table for block crc
1786 for(int block = 0; block < 255; block++){
1787 char bl = block;
1788 block_crc_LUT[block] = iclass_crc16(&bl ,1);
1789 }
1790 }
1791 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1792
1793 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1794 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1795
1796 uint16_t crc = 0;
1797 uint8_t cardsize=0;
1798 uint8_t mem=0;
1799
1800 static struct memory_t{
1801 int k16;
1802 int book;
1803 int k2;
1804 int lockauth;
1805 int keyaccess;
1806 } memory;
1807
1808 uint8_t resp[ICLASS_BUFFER_SIZE];
1809
1810 setupIclassReader();
1811 set_tracing(true);
1812
1813 while(!BUTTON_PRESS()) {
1814
1815 WDT_HIT();
1816
1817 if(!get_tracing()) {
1818 DbpString("Trace full");
1819 break;
1820 }
1821
1822 uint8_t read_status = handshakeIclassTag(card_data);
1823 if(read_status < 2) continue;
1824
1825 //for now replay captured auth (as cc not updated)
1826 memcpy(check+5,MAC,4);
1827
1828 if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
1829 {
1830 Dbprintf("Error: Authentication Fail!");
1831 continue;
1832 }
1833
1834 //first get configuration block (block 1)
1835 crc = block_crc_LUT[1];
1836 read[1]=1;
1837 read[2] = crc >> 8;
1838 read[3] = crc & 0xff;
1839
1840 if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
1841 {
1842 Dbprintf("Dump config (block 1) failed");
1843 continue;
1844 }
1845
1846 mem=resp[5];
1847 memory.k16= (mem & 0x80);
1848 memory.book= (mem & 0x20);
1849 memory.k2= (mem & 0x8);
1850 memory.lockauth= (mem & 0x2);
1851 memory.keyaccess= (mem & 0x1);
1852
1853 cardsize = memory.k16 ? 255 : 32;
1854 WDT_HIT();
1855 //Set card_data to all zeroes, we'll fill it with data
1856 memset(card_data,0x0,USB_CMD_DATA_SIZE);
1857 uint8_t failedRead =0;
1858 uint32_t stored_data_length =0;
1859 //then loop around remaining blocks
1860 for(int block=0; block < cardsize; block++){
1861
1862 read[1]= block;
1863 crc = block_crc_LUT[block];
1864 read[2] = crc >> 8;
1865 read[3] = crc & 0xff;
1866
1867 if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
1868 {
1869 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1870 block, resp[0], resp[1], resp[2],
1871 resp[3], resp[4], resp[5],
1872 resp[6], resp[7]);
1873
1874 //Fill up the buffer
1875 memcpy(card_data+stored_data_length,resp,8);
1876 stored_data_length += 8;
1877 if(stored_data_length +8 > USB_CMD_DATA_SIZE)
1878 {//Time to send this off and start afresh
1879 cmd_send(CMD_ACK,
1880 stored_data_length,//data length
1881 failedRead,//Failed blocks?
1882 0,//Not used ATM
1883 card_data, stored_data_length);
1884 //reset
1885 stored_data_length = 0;
1886 failedRead = 0;
1887 }
1888
1889 }else{
1890 failedRead = 1;
1891 stored_data_length +=8;//Otherwise, data becomes misaligned
1892 Dbprintf("Failed to dump block %d", block);
1893 }
1894 }
1895
1896 //Send off any remaining data
1897 if(stored_data_length > 0)
1898 {
1899 cmd_send(CMD_ACK,
1900 stored_data_length,//data length
1901 failedRead,//Failed blocks?
1902 0,//Not used ATM
1903 card_data, stored_data_length);
1904 }
1905 //If we got here, let's break
1906 break;
1907 }
1908 //Signal end of transmission
1909 cmd_send(CMD_ACK,
1910 0,//data length
1911 0,//Failed blocks?
1912 0,//Not used ATM
1913 card_data, 0);
1914
1915 LED_A_OFF();
1916 }
1917
1918 void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
1919 uint8_t readcheck[] = { keyType, blockNo };
1920 uint8_t resp[] = {0,0,0,0,0,0,0,0};
1921 size_t isOK = 0;
1922 isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
1923 cmd_send(CMD_ACK,isOK,0,0,0,0);
1924 }
1925
1926 void iClass_Authentication(uint8_t *MAC) {
1927 uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1928 uint8_t resp[ICLASS_BUFFER_SIZE];
1929 memcpy(check+5,MAC,4);
1930 bool isOK;
1931 isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
1932 cmd_send(CMD_ACK,isOK,0,0,0,0);
1933 }
1934 bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
1935 uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1936 char bl = blockNo;
1937 uint16_t rdCrc = iclass_crc16(&bl, 1);
1938 readcmd[2] = rdCrc >> 8;
1939 readcmd[3] = rdCrc & 0xff;
1940 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
1941 bool isOK = false;
1942
1943 //readcmd[1] = blockNo;
1944 isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
1945 memcpy(readdata, resp, sizeof(resp));
1946
1947 return isOK;
1948 }
1949
1950 void iClass_ReadBlk(uint8_t blockno) {
1951 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1952 bool isOK = false;
1953 isOK = iClass_ReadBlock(blockno, readblockdata);
1954 cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
1955 }
1956
1957 void iClass_Dump(uint8_t blockno, uint8_t numblks) {
1958 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1959 bool isOK = false;
1960 uint8_t blkCnt = 0;
1961
1962 BigBuf_free();
1963 uint8_t *dataout = BigBuf_malloc(255*8);
1964 if (dataout == NULL){
1965 Dbprintf("out of memory");
1966 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1967 LED_D_OFF();
1968 cmd_send(CMD_ACK,0,1,0,0,0);
1969 LED_A_OFF();
1970 return;
1971 }
1972 memset(dataout,0xFF,255*8);
1973
1974 for (;blkCnt < numblks; blkCnt++) {
1975 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1976 if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
1977 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1978 if (!isOK) {
1979 Dbprintf("Block %02X failed to read", blkCnt+blockno);
1980 break;
1981 }
1982 }
1983 memcpy(dataout+(blkCnt*8),readblockdata,8);
1984 }
1985 //return pointer to dump memory in arg3
1986 cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0);
1987 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1988 LEDsoff();
1989 BigBuf_free();
1990 }
1991
1992 bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
1993 uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1994 //uint8_t readblockdata[10];
1995 //write[1] = blockNo;
1996 memcpy(write+2, data, 12); // data + mac
1997 char *wrCmd = (char *)(write+1);
1998 uint16_t wrCrc = iclass_crc16(wrCmd, 13);
1999 write[14] = wrCrc >> 8;
2000 write[15] = wrCrc & 0xff;
2001 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
2002 bool isOK = false;
2003
2004 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
2005 if (isOK) { //if reader responded correctly
2006 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
2007 if (memcmp(write+2,resp,8)) { //if response is not equal to write values
2008 if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
2009 //error try again
2010 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
2011 }
2012
2013 }
2014 }
2015 return isOK;
2016 }
2017
2018 void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
2019 bool isOK = iClass_WriteBlock_ext(blockNo, data);
2020 if (isOK){
2021 Dbprintf("Write block [%02x] successful",blockNo);
2022 } else {
2023 Dbprintf("Write block [%02x] failed",blockNo);
2024 }
2025 cmd_send(CMD_ACK,isOK,0,0,0,0);
2026 }
2027
2028 void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
2029 int i;
2030 int written = 0;
2031 int total_block = (endblock - startblock) + 1;
2032 for (i = 0; i < total_block;i++){
2033 // block number
2034 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2035 Dbprintf("Write block [%02x] successful",i + startblock);
2036 written++;
2037 } else {
2038 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2039 Dbprintf("Write block [%02x] successful",i + startblock);
2040 written++;
2041 } else {
2042 Dbprintf("Write block [%02x] failed",i + startblock);
2043 }
2044 }
2045 }
2046 if (written == total_block)
2047 Dbprintf("Clone complete");
2048 else
2049 Dbprintf("Clone incomplete");
2050
2051 cmd_send(CMD_ACK,1,0,0,0,0);
2052 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2053 LEDsoff();
2054 }
Impressum, Datenschutz