]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
12 //un_comment to allow debug print calls when used not on device
13 void dummy ( char * fmt
, ...){}
14 void dummy_sgc ( int clock
, int startidx
) {}
18 # include "cmdparser.h"
20 # define prnt PrintAndLog
21 # define sgc SetGraphClock
23 uint8_t g_debugMode
= 0 ;
25 # define sgc dummy_sgc
28 void SetGraphClock ( int clock
, int startidx
){
30 PlockClockStartIndex
= startidx
;
33 //test samples are not just noise
34 uint8_t justNoise ( uint8_t * bits
, size_t size
) {
37 for ( size_t idx
= 0 ; idx
< size
&& val
; idx
++)
38 val
= bits
[ idx
] < THRESHOLD
;
43 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
44 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
48 // get high and low thresholds
49 for ( size_t i
= 0 ; i
< size
; i
++){
50 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
51 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
53 if (* high
< 123 ) return - 1 ; // just noise
54 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
55 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
60 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
61 // returns 1 if passed
62 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
65 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
66 ans
^= (( bits
>> i
) & 1 );
68 if ( g_debugMode
) prnt ( "DEBUG: ans: %d, ptype: %d, bits: %08X" , ans
, pType
, bits
);
69 return ( ans
== pType
);
73 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
74 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
75 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
77 uint32_t parityWd
= 0 ;
78 size_t j
= 0 , bitCnt
= 0 ;
79 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
){
80 for ( int bit
= 0 ; bit
< pLen
; bit
++){
81 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
82 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
84 if ( word
+ pLen
> bLen
) break ;
86 j
--; // overwrite parity with next data
87 // if parity fails then return 0
89 case 3 : if ( BitStream
[ j
]== 1 ) { return 0 ; } break ; //should be 0 spacer bit
90 case 2 : if ( BitStream
[ j
]== 0 ) { return 0 ; } break ; //should be 1 spacer bit
91 default : if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) { return 0 ; } break ; //test parity
96 // if we got here then all the parities passed
97 //return ID start index and size
102 // takes a array of binary values, length of bits per parity (includes parity bit),
103 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
104 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
105 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
107 uint32_t parityWd
= 0 ;
108 size_t j
= 0 , bitCnt
= 0 ;
109 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
110 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
111 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
112 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
115 // if parity fails then return 0
117 case 3 : dest
[ j
++]= 0 ; break ; // marker bit which should be a 0
118 case 2 : dest
[ j
++]= 1 ; break ; // marker bit which should be a 1
120 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
126 // if we got here then all the parities passed
127 //return ID start index and size
131 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
)
134 for ( int i
= 0 ; i
< numbits
; i
++) {
135 num
= ( num
<< 1 ) | (* src
);
141 //least significant bit first
142 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
)
145 for ( int i
= 0 ; i
< numbits
; i
++) {
146 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
152 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found)
153 bool preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
){
154 return preambleSearchEx ( BitStream
, preamble
, pLen
, size
, startIdx
, false );
157 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
158 // param @findone: look for a repeating preamble or only the first.
159 // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits
160 bool preambleSearchEx ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
, bool findone
)
162 // Sanity check. If preamble length is bigger than bitstream length.
163 if ( * size
<= pLen
) return false ;
165 uint8_t foundCnt
= 0 ;
166 for ( int idx
= 0 ; idx
< * size
- pLen
; idx
++){
167 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ){
168 if ( g_debugMode
) prnt ( "DEBUG: preamble found at %i" , idx
);
173 if ( findone
) return true ;
176 * size
= idx
- * startIdx
;
184 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
185 size_t findModStart ( uint8_t dest
[], size_t size
, uint8_t threshold_value
, uint8_t expWaveSize
) {
187 size_t waveSizeCnt
= 0 ;
188 uint8_t thresholdCnt
= 0 ;
189 bool isAboveThreshold
= dest
[ i
++] >= threshold_value
;
190 for (; i
< size
- 20 ; i
++ ) {
191 if ( dest
[ i
] < threshold_value
&& isAboveThreshold
) {
193 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
194 isAboveThreshold
= false ;
196 } else if ( dest
[ i
] >= threshold_value
&& ! isAboveThreshold
) {
198 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
199 isAboveThreshold
= true ;
204 if ( thresholdCnt
> 10 ) break ;
206 if ( g_debugMode
== 2 ) prnt ( "DEBUG: threshold Count reached at %u, count: %u" , i
, thresholdCnt
);
211 //takes 1s and 0s and searches for EM410x format - output EM ID
212 // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
213 int Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
216 if (* size
< 64 ) return - 3 ;
217 if ( BitStream
[ 1 ] > 1 ) return - 1 ;
222 // preamble 0111111111
223 // include 0 in front to help get start pos
224 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
225 if (! preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
))
228 //XL and normal size.
229 if (* size
!= 64 && * size
!= 128 ) return - 3 ;
231 fmtlen
= (* size
== 128 ) ? 22 : 10 ;
233 //skip last 4bit parity row for simplicity
234 * size
= removeParity ( BitStream
, * startIdx
+ sizeof ( preamble
), 5 , 0 , fmtlen
* 5 );
240 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
, 8 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 8 , 32 ));
245 * hi
= ( bytebits_to_byte ( BitStream
, 24 ));
246 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
+ 24 , 32 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 24 + 32 , 32 ));
255 //demodulates strong heavily clipped samples
256 //RETURN: num of errors. if 0, is ok.
257 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
)
259 size_t bitCnt
= 0 , smplCnt
= 0 , errCnt
= 0 ;
260 uint8_t waveHigh
= 0 ;
261 for ( size_t i
= 0 ; i
< * size
; i
++){
262 if ( BinStream
[ i
] >= high
&& waveHigh
){
264 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
266 } else { //transition
267 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
269 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
270 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
272 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
273 BinStream
[ bitCnt
++] = 7 ;
274 } else if ( waveHigh
) {
275 BinStream
[ bitCnt
++] = invert
;
276 BinStream
[ bitCnt
++] = invert
;
277 } else if (! waveHigh
) {
278 BinStream
[ bitCnt
++] = invert
^ 1 ;
279 BinStream
[ bitCnt
++] = invert
^ 1 ;
283 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) {
285 BinStream
[ bitCnt
++] = invert
;
286 } else if (! waveHigh
) {
287 BinStream
[ bitCnt
++] = invert
^ 1 ;
291 } else if (! bitCnt
) {
293 waveHigh
= ( BinStream
[ i
] >= high
);
297 //transition bit oops
299 } else { //haven't hit new high or new low yet
309 void askAmp ( uint8_t * BitStream
, size_t size
)
312 for ( size_t i
= 1 ; i
< size
; ++ i
){
313 if ( BitStream
[ i
]- BitStream
[ i
- 1 ] >= 30 ) //large jump up
315 else if ( BitStream
[ i
- 1 ] - BitStream
[ i
] >= 20 ) //large jump down
323 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
324 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
326 if (* size
== 0 ) return - 1 ;
327 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
328 if (* clk
== 0 || start
< 0 ) return - 3 ;
329 if (* invert
!= 1 ) * invert
= 0 ;
330 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
331 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, beststart %d, amp %d" , * clk
, start
, amp
);
335 uint8_t initLoopMax
= 255 ;
336 if ( initLoopMax
> * size
) initLoopMax
= * size
;
337 // Detect high and lows
338 //25% clip in case highs and lows aren't clipped [marshmellow]
340 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
341 return - 2 ; //just noise
344 // if clean clipped waves detected run alternate demod
345 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
346 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Clean Wave Detected - using clean wave demod" );
347 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
);
348 if ( askType
) //askman
349 return manrawdecode ( BinStream
, size
, 0 );
353 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Weak Wave Detected - using weak wave demod" );
355 int lastBit
; //set first clock check - can go negative
356 size_t i
, bitnum
= 0 ; //output counter
358 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
359 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
360 size_t MaxBits
= 3072 ; //max bits to collect
361 lastBit
= start
- * clk
;
363 for ( i
= start
; i
< * size
; ++ i
) {
364 if ( i
- lastBit
>= * clk
- tol
){
365 if ( BinStream
[ i
] >= high
) {
366 BinStream
[ bitnum
++] = * invert
;
367 } else if ( BinStream
[ i
] <= low
) {
368 BinStream
[ bitnum
++] = * invert
^ 1 ;
369 } else if ( i
- lastBit
>= * clk
+ tol
) {
371 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
372 BinStream
[ bitnum
++]= 7 ;
375 } else { //in tolerance - looking for peak
380 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
381 if ( BinStream
[ i
] >= high
) {
382 BinStream
[ bitnum
++] = * invert
;
383 } else if ( BinStream
[ i
] <= low
) {
384 BinStream
[ bitnum
++] = * invert
^ 1 ;
385 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
386 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
388 } else { //in tolerance - looking for peak
393 if ( bitnum
>= MaxBits
) break ;
399 //take 10 and 01 and manchester decode
400 //run through 2 times and take least errCnt
401 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
){
404 if (* size
< 16 ) return - 1 ;
406 int errCnt
= 0 , bestErr
= 1000 ;
407 uint16_t bitnum
= 0 , MaxBits
= 512 , bestRun
= 0 ;
410 //find correct start position [alignment]
411 for ( k
= 0 ; k
< 2 ; ++ k
){
412 for ( i
= k
; i
< * size
- 3 ; i
+= 2 ) {
413 if ( BitStream
[ i
] == BitStream
[ i
+ 1 ])
416 if ( bestErr
> errCnt
){
424 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
425 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
426 BitStream
[ bitnum
++] = invert
;
427 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
428 BitStream
[ bitnum
++] = invert
^ 1 ;
430 BitStream
[ bitnum
++] = 7 ;
432 if ( bitnum
> MaxBits
) break ;
438 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
441 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
442 curBit
= ( datain
>> ( 15 - i
) & 1 );
443 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
449 //encode binary data into binary manchester
450 int ManchesterEncode ( uint8_t * BitStream
, size_t size
)
452 size_t modIdx
= 20000 , i
= 0 ;
453 if ( size
> modIdx
) return - 1 ;
454 for ( size_t idx
= 0 ; idx
< size
; idx
++){
455 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
456 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
458 for (; i
<( size
* 2 ); i
++){
459 BitStream
[ i
] = BitStream
[ i
+ 20000 ];
465 //take 01 or 10 = 1 and 11 or 00 = 0
466 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
467 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
468 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
)
473 uint16_t MaxBits
= 512 ;
474 //if not enough samples - error
475 if (* size
< 51 ) return - 1 ;
476 //check for phase change faults - skip one sample if faulty
477 uint8_t offsetA
= 1 , offsetB
= 1 ;
479 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
480 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
482 if (! offsetA
&& offsetB
) offset
++;
483 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
484 //check for phase error
485 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
486 BitStream
[ bitnum
++]= 7 ;
489 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
490 BitStream
[ bitnum
++]= 1 ^ invert
;
491 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
492 BitStream
[ bitnum
++]= invert
;
494 BitStream
[ bitnum
++]= 7 ;
497 if ( bitnum
> MaxBits
) break ;
504 // demod gProxIIDemod
505 // error returns as -x
506 // success returns start position in BitStream
507 // BitStream must contain previously askrawdemod and biphasedemoded data
508 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
)
511 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
513 if (! preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
))
514 return - 3 ; //preamble not found
516 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
518 //check first 6 spacer bits to verify format
519 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
520 //confirmed proper separator bits found
521 //return start position
522 return ( int ) startIdx
;
524 return - 5 ; //spacer bits not found - not a valid gproxII
527 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
528 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
530 size_t last_transition
= 0 ;
532 if ( fchigh
== 0 ) fchigh
= 10 ;
533 if ( fclow
== 0 ) fclow
= 8 ;
534 //set the threshold close to 0 (graph) or 128 std to avoid static
535 uint8_t threshold_value
= 123 ;
536 size_t preLastSample
= 0 ;
537 size_t LastSample
= 0 ;
538 size_t currSample
= 0 ;
539 if ( size
< 1024 ) return 0 ; // not enough samples
541 //find start of modulating data in trace
542 idx
= findModStart ( dest
, size
, threshold_value
, fchigh
);
544 // Need to threshold first sample
545 if ( dest
[ idx
] < threshold_value
) dest
[ 0 ] = 0 ;
550 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
551 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
552 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
553 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
554 for (; idx
< size
- 20 ; idx
++) {
555 // threshold current value
557 if ( dest
[ idx
] < threshold_value
) dest
[ idx
] = 0 ;
560 // Check for 0->1 transition
561 if ( dest
[ idx
- 1 ] < dest
[ idx
]) {
562 preLastSample
= LastSample
;
563 LastSample
= currSample
;
564 currSample
= idx
- last_transition
;
565 if ( currSample
< ( fclow
- 2 )){ //0-5 = garbage noise (or 0-3)
566 //do nothing with extra garbage
567 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves (or 3-6 = 5)
568 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
569 if ( LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ))){
574 } else if ( currSample
> ( fchigh
+ 1 ) && numBits
< 3 ) { //12 + and first two bit = unusable garbage
575 //do nothing with beginning garbage and reset.. should be rare..
577 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
579 } else { //9+ = 10 sample waves (or 6+ = 7)
582 last_transition
= idx
;
585 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
588 //translate 11111100000 to 10
589 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
590 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
,
591 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
593 uint8_t lastval
= dest
[ 0 ];
597 for ( idx
= 1 ; idx
< size
; idx
++) {
599 if ( dest
[ idx
]== lastval
) continue ; //skip until we hit a transition
601 //find out how many bits (n) we collected
602 //if lastval was 1, we have a 1->0 crossing
603 if ( dest
[ idx
- 1 ]== 1 ) {
604 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
605 } else { // 0->1 crossing
606 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
610 //add to our destination the bits we collected
611 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
616 // if valid extra bits at the end were all the same frequency - add them in
617 if ( n
> rfLen
/ fchigh
) {
618 if ( dest
[ idx
- 2 ]== 1 ) {
619 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
621 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
623 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
629 //by marshmellow (from holiman's base)
630 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
631 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
634 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
);
635 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
);
639 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
640 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
642 if ( justNoise ( dest
, * size
)) return - 1 ;
644 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
646 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
647 if (* size
< 96 * 2 ) return - 2 ;
648 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
649 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
650 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
651 return - 3 ; //preamble not found
653 numStart
= startIdx
+ sizeof ( preamble
);
654 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
655 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
656 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
657 return - 4 ; //not manchester data
659 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
660 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
661 //Then, shift in a 0 or one into low
663 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
668 return ( int ) startIdx
;
671 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
672 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
674 if ( justNoise ( dest
, * size
)) return - 1 ;
676 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
678 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
679 if (* size
< 96 ) return - 2 ;
681 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
682 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
683 if ( preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
684 return - 3 ; //preamble not found
686 numStart
= startIdx
+ sizeof ( preamble
);
687 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
688 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
689 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
690 return - 4 ; //not manchester data
691 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
692 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
693 //Then, shift in a 0 or one into low
694 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
699 return ( int ) startIdx
;
702 int IOdemodFSK ( uint8_t * dest
, size_t size
)
704 if ( justNoise ( dest
, size
)) return - 1 ;
705 //make sure buffer has data
706 if ( size
< 66 * 64 ) return - 2 ;
708 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
709 if ( size
< 65 ) return - 3 ; //did we get a good demod?
711 //0 10 20 30 40 50 60
713 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
714 //-----------------------------------------------------------------------------
715 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
717 //XSF(version)facility:codeone+codetwo
720 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
721 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
))
722 return - 4 ; //preamble not found
724 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
725 //confirmed proper separator bits found
726 //return start position
727 return ( int ) startIdx
;
733 // find viking preamble 0xF200 in already demoded data
734 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
735 //make sure buffer has data
736 if (* size
< 64 * 2 ) return - 2 ;
738 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
739 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
740 return - 4 ; //preamble not found
742 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^
743 bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^
744 bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 ) ^
745 bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^
746 bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^
747 bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 ) ^
748 bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^
749 bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
750 if ( checkCalc
!= 0xA8 ) return - 5 ;
751 if (* size
!= 64 ) return - 6 ;
752 //return start position
753 return ( int ) startIdx
;
757 // find Visa2000 preamble in already demoded data
758 int Visa2kDemod_AM ( uint8_t * dest
, size_t * size
) {
759 if (* size
< 96 ) return - 1 ; //make sure buffer has data
761 uint8_t preamble
[] = { 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 };
762 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
763 return - 2 ; //preamble not found
764 if (* size
!= 96 ) return - 3 ; //wrong demoded size
765 //return start position
766 return ( int ) startIdx
;
769 // find Noralsy preamble in already demoded data
770 int NoralsyDemod_AM ( uint8_t * dest
, size_t * size
) {
771 if (* size
< 96 ) return - 1 ; //make sure buffer has data
773 uint8_t preamble
[] = { 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 };
774 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
775 return - 2 ; //preamble not found
776 if (* size
!= 96 ) return - 3 ; //wrong demoded size
777 //return start position
778 return ( int ) startIdx
;
780 // find presco preamble 0x10D in already demoded data
781 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
782 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has data
784 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
785 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
786 return - 2 ; //preamble not found
787 if (* size
!= 128 ) return - 3 ; //wrong demoded size
788 //return start position
789 return ( int ) startIdx
;
792 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
793 // BitStream must contain previously askrawdemod and biphasedemoded data
794 int FDXBdemodBI ( uint8_t * dest
, size_t * size
) {
795 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has enough data
797 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
798 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
799 return - 2 ; //preamble not found
800 if (* size
!= 128 ) return - 3 ; //wrong demoded size
801 //return start position
802 return ( int ) startIdx
;
805 // ASK/Diphase fc/64 (inverted Biphase)
806 // Note: this i s not a demod, this is only a detection
807 // the parameter *dest needs to be demoded before call
808 // 0xFFFF preamble, 64bits
809 int JablotronDemod ( uint8_t * dest
, size_t * size
){
810 if (* size
< 64 * 2 ) return - 1 ; //make sure buffer has enough data
812 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
813 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
814 return - 2 ; //preamble not found
815 if (* size
!= 64 ) return - 3 ; // wrong demoded size
817 uint8_t checkchksum
= 0 ;
818 for ( int i
= 16 ; i
< 56 ; i
+= 8 ) {
819 checkchksum
+= bytebits_to_byte ( dest
+ startIdx
+ i
, 8 );
822 uint8_t crc
= bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
823 if ( checkchksum
!= crc
) return - 5 ;
824 return ( int ) startIdx
;
828 // FSK Demod then try to locate an AWID ID
829 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
)
831 //make sure buffer has enough data
832 if (* size
< 96 * 50 ) return - 1 ;
834 if ( justNoise ( dest
, * size
)) return - 2 ;
837 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
838 if (* size
< 96 ) return - 3 ; //did we get a good demod?
840 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
842 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
843 return - 4 ; //preamble not found
844 if (* size
!= 96 ) return - 5 ;
845 return ( int ) startIdx
;
849 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
850 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
)
852 //make sure buffer has data
853 if (* size
< 128 * 50 ) return - 5 ;
855 //test samples are not just noise
856 if ( justNoise ( dest
, * size
)) return - 1 ;
859 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
860 if (* size
< 128 ) return - 2 ; //did we get a good demod?
862 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
863 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
864 return - 4 ; //preamble not found
865 if (* size
!= 128 ) return - 3 ;
866 return ( int ) startIdx
;
869 // find nedap preamble in already demoded data
870 int NedapDemod ( uint8_t * dest
, size_t * size
) {
871 //make sure buffer has data
872 if (* size
< 128 ) return - 3 ;
875 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
876 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
877 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
878 return - 4 ; //preamble not found
879 return ( int ) startIdx
;
882 // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits
884 int IdteckDemodPSK ( uint8_t * dest
, size_t * size
) {
885 //make sure buffer has data
886 if (* size
< 64 * 2 ) return - 1 ;
888 uint8_t preamble
[] = { 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 };
889 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
890 return - 2 ; //preamble not found
891 if (* size
!= 64 ) return - 3 ; // wrong demoded size
892 return ( int ) startIdx
;
896 // to detect a wave that has heavily clipped (clean) samples
897 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
899 bool allArePeaks
= true ;
901 size_t loopEnd
= 512 + 160 ;
902 if ( loopEnd
> size
) loopEnd
= size
;
903 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
904 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
910 if ( cntPeaks
> 300 ) return true ;
915 // to help detect clocks on heavily clipped samples
916 // based on count of low to low
917 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
, int * clock
)
919 uint8_t clocks
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
923 int shortestWaveIdx
= 0 ;
924 // get to first full low to prime loop and skip incomplete first pulse
925 while (( dest
[ i
] < high
) && ( i
< size
))
927 while (( dest
[ i
] > low
) && ( i
< size
))
930 // loop through all samples
932 // measure from low to low
933 while (( dest
[ i
] > low
) && ( i
< size
))
936 while (( dest
[ i
] < high
) && ( i
< size
))
938 while (( dest
[ i
] > low
) && ( i
< size
))
940 //get minimum measured distance
941 if ( i
- startwave
< minClk
&& i
< size
) {
942 minClk
= i
- startwave
;
943 shortestWaveIdx
= startwave
;
947 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectstrongASKclk smallest wave: %d" , minClk
);
948 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
949 if ( minClk
>= clocks
[ clkCnt
]-( clocks
[ clkCnt
]/ 8 ) && minClk
<= clocks
[ clkCnt
]+ 1 )
950 * clock
= clocks
[ clkCnt
];
951 return shortestWaveIdx
;
957 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
958 // maybe somehow adjust peak trimming value based on samples to fix?
959 // return start index of best starting position for that clock and return clock (by reference)
960 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
)
963 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
965 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
966 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
967 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
968 //if we already have a valid clock
969 uint8_t clockFnd
= 0 ;
970 for (; i
< clkEnd
; ++ i
)
971 if ( clk
[ i
] == * clock
) clockFnd
= i
;
972 //clock found but continue to find best startpos
974 //get high and low peak
976 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
978 //test for large clean peaks
980 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
981 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
, clock
);
982 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i" , clock
, ans
);
984 return ans
; // return shortest wave start pos
989 uint8_t clkCnt
, tol
= 0 ;
990 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
991 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
993 size_t arrLoc
, loopEnd
;
1002 //test each valid clock from smallest to greatest to see which lines up
1003 for (; clkCnt
< clkEnd
; clkCnt
++) {
1004 if ( clk
[ clkCnt
] <= 32 ) {
1009 //if no errors allowed - keep start within the first clock
1010 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 )
1011 loopCnt
= clk
[ clkCnt
] * 2 ;
1013 bestErr
[ clkCnt
] = 1000 ;
1015 //try lining up the peaks by moving starting point (try first few clocks)
1016 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
1017 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
1020 // now that we have the first one lined up test rest of wave array
1021 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
1022 for ( i
= 0 ; i
< loopEnd
; ++ i
){
1023 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
1024 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
1025 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
1026 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
1027 } else { //error no peak detected
1031 //if we found no errors then we can stop here and a low clock (common clocks)
1032 // this is correct one - return this clock
1033 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
1034 if ( errCnt
== 0 && clkCnt
< 7 ) {
1035 if (! clockFnd
) * clock
= clk
[ clkCnt
];
1038 //if we found errors see if it is lowest so far and save it as best run
1039 if ( errCnt
< bestErr
[ clkCnt
]) {
1040 bestErr
[ clkCnt
] = errCnt
;
1041 bestStart
[ clkCnt
] = ii
;
1047 for ( k
= 1 ; k
< clkEnd
; ++ k
){
1048 if ( bestErr
[ k
] < bestErr
[ best
]){
1049 if ( bestErr
[ k
] == 0 ) bestErr
[ k
]= 1 ;
1050 // current best bit to error ratio vs new bit to error ratio
1051 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ k
])/ bestErr
[ k
] ){
1055 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ k
], bestErr
[ k
], clk
[ best
], bestStart
[ best
]);
1057 if (! clockFnd
) * clock
= clk
[ best
];
1059 return bestStart
[ best
];
1062 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
) {
1063 int firstPhaseShift
= 0 ;
1064 return DetectPSKClock_ext ( dest
, size
, clock
, & firstPhaseShift
);
1068 //detect psk clock by reading each phase shift
1069 // a phase shift is determined by measuring the sample length of each wave
1070 int DetectPSKClock_ext ( uint8_t dest
[], size_t size
, int clock
, int * firstPhaseShift
) {
1071 uint8_t clk
[] = { 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
1072 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1074 //if we already have a valid clock quit
1077 if ( clk
[ i
] == clock
) return clock
;
1079 if ( size
< 160 + 20 ) return 0 ;
1080 // size must be larger than 20 here, and 160 later on.
1081 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1083 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1084 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1085 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
1086 uint16_t bestErr
[] = { 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
1087 uint16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1088 fc
= countFC ( dest
, size
, 0 );
1089 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1090 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
1092 //find first full wave
1093 for ( i
= 160 ; i
< loopCnt
; i
++){
1094 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1095 if ( waveStart
== 0 ) {
1097 //prnt("DEBUG: waveStart: %d",waveStart);
1100 //prnt("DEBUG: waveEnd: %d",waveEnd);
1101 waveLenCnt
= waveEnd
- waveStart
;
1102 if ( waveLenCnt
> fc
){
1103 firstFullWave
= waveStart
;
1104 fullWaveLen
= waveLenCnt
;
1111 * firstPhaseShift
= firstFullWave
;
1112 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
1114 //test each valid clock from greatest to smallest to see which lines up
1115 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
1116 lastClkBit
= firstFullWave
; //set end of wave as clock align
1120 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
1122 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
1123 //top edge of wave = start of new wave
1124 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1125 if ( waveStart
== 0 ) {
1130 waveLenCnt
= waveEnd
- waveStart
;
1131 if ( waveLenCnt
> fc
){
1132 //if this wave is a phase shift
1133 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
1134 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
1136 lastClkBit
+= clk
[ clkCnt
];
1137 } else if ( i
< lastClkBit
+ 8 ){
1138 //noise after a phase shift - ignore
1139 } else { //phase shift before supposed to based on clock
1142 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
1143 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
1149 if ( errCnt
== 0 ) return clk
[ clkCnt
];
1150 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
] = errCnt
;
1151 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
] = peakcnt
;
1153 //all tested with errors
1154 //return the highest clk with the most peaks found
1156 for ( i
= 7 ; i
>= 1 ; i
--){
1157 if ( peaksdet
[ i
] > peaksdet
[ best
])
1160 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
1165 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
1166 //find shortest transition from high to low
1168 size_t transition1
= 0 ;
1169 int lowestTransition
= 255 ;
1170 bool lastWasHigh
= false ;
1172 //find first valid beginning of a high or low wave
1173 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
1175 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
1177 lastWasHigh
= ( dest
[ i
] >= peak
);
1179 if ( i
== size
) return 0 ;
1182 for (; i
< size
; i
++) {
1183 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
1184 lastWasHigh
= ( dest
[ i
] >= peak
);
1185 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
1189 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
1190 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
1191 return lowestTransition
;
1194 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
) {
1196 return DetectNRZClock_ext ( dest
, size
, clock
, & bestStart
);
1200 //detect nrz clock by reading #peaks vs no peaks(or errors)
1201 int DetectNRZClock_ext ( uint8_t dest
[], size_t size
, int clock
, int * clockStartIdx
) {
1203 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
1204 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
1206 //if we already have a valid clock quit
1208 if ( clk
[ i
] == clock
) return clock
;
1210 if ( size
< 20 ) return 0 ;
1211 // size must be larger than 20 here
1212 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1214 //get high and low peak
1216 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
1218 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
1222 uint16_t smplCnt
= 0 ;
1223 int16_t peakcnt
= 0 ;
1224 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1225 uint16_t maxPeak
= 255 ;
1226 bool firstpeak
= false ;
1227 //test for large clipped waves
1228 for ( i
= 0 ; i
< loopCnt
; i
++){
1229 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
1230 if (! firstpeak
) continue ;
1235 if ( maxPeak
> smplCnt
){
1237 //prnt("maxPk: %d",maxPeak);
1240 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1245 bool errBitHigh
= 0 ;
1247 uint8_t ignoreCnt
= 0 ;
1248 uint8_t ignoreWindow
= 4 ;
1249 bool lastPeakHigh
= 0 ;
1251 int bestStart
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1253 //test each valid clock from smallest to greatest to see which lines up
1254 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
1255 //ignore clocks smaller than smallest peak
1256 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
1257 //try lining up the peaks by moving starting point (try first 256)
1258 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
1259 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
1263 lastBit
= ii
- clk
[ clkCnt
];
1264 //loop through to see if this start location works
1265 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
1266 //if we are at a clock bit
1267 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
1269 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
1270 //if same peak don't count it
1271 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
1274 lastPeakHigh
= ( dest
[ i
] >= peak
);
1277 ignoreCnt
= ignoreWindow
;
1278 lastBit
+= clk
[ clkCnt
];
1279 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
1280 lastBit
+= clk
[ clkCnt
];
1282 //else if not a clock bit and no peaks
1283 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
1284 if ( ignoreCnt
== 0 ){
1286 if ( errBitHigh
== true )
1292 // else if not a clock bit but we have a peak
1293 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
1294 //error bar found no clock...
1298 if ( peakcnt
> peaksdet
[ clkCnt
]) {
1299 bestStart
[ clkCnt
]= ii
;
1300 peaksdet
[ clkCnt
] = peakcnt
;
1307 for ( int m
= 7 ; m
> 0 ; m
--){
1308 if (( peaksdet
[ m
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ m
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
1309 if ( clk
[ m
] > ( lowestTransition
- ( clk
[ m
]/ 8 )) && clk
[ m
] < ( lowestTransition
+ ( clk
[ m
]/ 8 ))) {
1312 } else if ( peaksdet
[ m
] > peaksdet
[ best
]){
1315 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ m
], peaksdet
[ m
], maxPeak
, clk
[ best
], lowestTransition
);
1317 * clockStartIdx
= bestStart
[ best
];
1322 // convert psk1 demod to psk2 demod
1323 // only transition waves are 1s
1324 void psk1TOpsk2 ( uint8_t * bits
, size_t size
) {
1325 uint8_t lastBit
= bits
[ 0 ];
1326 for ( size_t i
= 1 ; i
< size
; i
++){
1328 if ( bits
[ i
] == 7 ) continue ;
1330 if ( lastBit
!= bits
[ i
]){
1340 // convert psk2 demod to psk1 demod
1341 // from only transition waves are 1s to phase shifts change bit
1342 void psk2TOpsk1 ( uint8_t * bits
, size_t size
) {
1344 for ( size_t i
= 0 ; i
< size
; i
++){
1352 // redesigned by marshmellow adjusted from existing decode functions
1353 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1354 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
)
1356 //26 bit 40134 format (don't know other formats)
1357 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1358 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1359 size_t startidx
= 0 ;
1360 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1361 // if didn't find preamble try again inverting
1362 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1365 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1367 for ( size_t i
= startidx
; i
< * size
; i
++)
1370 return ( int ) startidx
;
1373 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1374 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1375 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
){
1376 if ( justNoise ( dest
, * size
)) return - 1 ;
1377 * clk
= DetectNRZClock ( dest
, * size
, * clk
);
1378 if (* clk
== 0 ) return - 2 ;
1379 size_t i
, gLen
= 4096 ;
1380 if ( gLen
>* size
) gLen
= * size
- 20 ;
1382 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1385 //convert wave samples to 1's and 0's
1386 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1387 if ( dest
[ i
] >= high
) bit
= 1 ;
1388 if ( dest
[ i
] <= low
) bit
= 0 ;
1391 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1394 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1395 //if transition detected or large number of same bits - store the passed bits
1396 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1397 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1398 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1406 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
) {
1407 int firstClockEdge
= 0 ;
1408 return detectFSKClk_ext ( BitStream
, size
, fcHigh
, fcLow
, & firstClockEdge
);
1412 //detects the bit clock for FSK given the high and low Field Clocks
1413 uint8_t detectFSKClk_ext ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
, int * firstClockEdge
) {
1414 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
1415 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1416 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1417 uint8_t rfLensFnd
= 0 ;
1418 uint8_t lastFCcnt
= 0 ;
1419 uint16_t fcCounter
= 0 ;
1420 uint16_t rfCounter
= 0 ;
1421 uint8_t firstBitFnd
= 0 ;
1423 if ( size
== 0 ) return 0 ;
1425 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1430 //prnt("DEBUG: fcTol: %d",fcTol);
1431 // prime i to first peak / up transition
1432 for ( i
= 160 ; i
< size
- 20 ; i
++)
1433 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
1436 for (; i
< size
- 20 ; i
++){
1440 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
1443 // if we got less than the small fc + tolerance then set it to the small fc
1444 // if it is inbetween set it to the last counter
1445 if ( fcCounter
< fcHigh
&& fcCounter
> fcLow
)
1446 fcCounter
= lastFCcnt
;
1447 else if ( fcCounter
< fcLow
+ fcTol
)
1449 else //set it to the large fc
1452 //look for bit clock (rf/xx)
1453 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1454 //not the same size as the last wave - start of new bit sequence
1455 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
1456 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1457 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
1463 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
1464 //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1465 rfCnts
[ rfLensFnd
]++;
1466 rfLens
[ rfLensFnd
++] = rfCounter
;
1469 * firstClockEdge
= i
;
1473 lastFCcnt
= fcCounter
;
1477 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
1479 for ( i
= 0 ; i
< 15 ; i
++){
1480 //get highest 2 RF values (might need to get more values to compare or compare all?)
1481 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
1482 rfHighest3
= rfHighest2
;
1483 rfHighest2
= rfHighest
;
1485 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
1486 rfHighest3
= rfHighest2
;
1488 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
1491 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
1493 // set allowed clock remainder tolerance to be 1 large field clock length+1
1494 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1495 uint8_t tol1
= fcHigh
+ 1 ;
1497 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
1499 // loop to find the highest clock that has a remainder less than the tolerance
1500 // compare samples counted divided by
1501 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1503 for (; ii
>= 2 ; ii
--){
1504 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1505 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1506 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1507 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
1514 if ( ii
< 2 ) return 0 ; // oops we went too far
1520 //countFC is to detect the field clock lengths.
1521 //counts and returns the 2 most common wave lengths
1522 //mainly used for FSK field clock detection
1523 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
)
1525 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1526 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1527 uint8_t fcLensFnd
= 0 ;
1528 uint8_t lastFCcnt
= 0 ;
1529 uint8_t fcCounter
= 0 ;
1531 if ( size
< 180 ) return 0 ;
1533 // prime i to first up transition
1534 for ( i
= 160 ; i
< size
- 20 ; i
++)
1535 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
1538 for (; i
< size
- 20 ; i
++){
1539 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
1540 // new up transition
1543 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1544 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
1545 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1546 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
1547 // save last field clock count (fc/xx)
1548 lastFCcnt
= fcCounter
;
1550 // find which fcLens to save it to:
1551 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1552 if ( fcLens
[ ii
]== fcCounter
){
1558 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
1560 fcCnts
[ fcLensFnd
]++;
1561 fcLens
[ fcLensFnd
++]= fcCounter
;
1570 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
1572 // go through fclens and find which ones are bigest 2
1573 for ( i
= 0 ; i
< 15 ; i
++){
1574 // get the 3 best FC values
1575 if ( fcCnts
[ i
]> maxCnt1
) {
1580 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
1583 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
1586 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
1588 if ( fcLens
[ best1
]== 0 ) return 0 ;
1589 uint8_t fcH
= 0 , fcL
= 0 ;
1590 if ( fcLens
[ best1
]> fcLens
[ best2
]){
1597 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
1598 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
1599 return 0 ; //lots of waves not psk or fsk
1601 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1603 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
1604 if ( fskAdj
) return fcs
;
1605 return fcLens
[ best1
];
1608 //by marshmellow - demodulate PSK1 wave
1609 //uses wave lengths (# Samples)
1610 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
)
1612 if ( size
== 0 ) return - 1 ;
1613 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1614 if (* size
< loopCnt
) loopCnt
= * size
;
1617 uint8_t curPhase
= * invert
;
1618 size_t i
= 0 , waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1619 uint16_t fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1620 uint16_t errCnt
= 0 , waveLenCnt
= 0 , errCnt2
= 0 ;
1621 fc
= countFC ( dest
, * size
, 1 );
1622 uint8_t fc2
= fc
>> 8 ;
1623 if ( fc2
== 10 ) return - 1 ; //fsk found - quit
1625 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1626 //prnt("DEBUG: FC: %d",fc);
1627 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1628 if (* clock
== 0 ) return - 1 ;
1630 //find start of modulating data in trace
1631 uint8_t threshold_value
= 123 ; //-5
1632 i
= findModStart ( dest
, * size
, threshold_value
, fc
);
1634 //find first phase shift
1635 int avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1637 for (; i
< loopCnt
; i
++){
1639 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1641 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: waveEnd: %u, waveStart: %u" , waveEnd
, waveStart
);
1642 waveLenCnt
= waveEnd
- waveStart
;
1643 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 3 )){ //not first peak and is a large wave but not out of whack
1644 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1645 firstFullWave
= waveStart
;
1646 fullWaveLen
= waveLenCnt
;
1647 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1648 if ( lastAvgWaveVal
> threshold_value
) curPhase
^= 1 ;
1654 avgWaveVal
+= dest
[ i
+ 2 ];
1656 if ( firstFullWave
== 0 ) {
1657 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1658 // so skip a little to ensure we are past any Start Signal
1659 firstFullWave
= 160 ;
1660 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1662 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1665 numBits
+= ( firstFullWave
/ * clock
);
1666 //set start of wave as clock align
1667 lastClkBit
= firstFullWave
;
1668 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %u, waveLen: %u" , firstFullWave
, fullWaveLen
);
1669 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u" , * clock
, lastClkBit
,( unsigned int ) fc
);
1671 dest
[ numBits
++] = curPhase
; //set first read bit
1672 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1673 //top edge of wave = start of new wave
1674 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1675 if ( waveStart
== 0 ) {
1678 avgWaveVal
= dest
[ i
+ 1 ];
1681 waveLenCnt
= waveEnd
- waveStart
;
1682 lastAvgWaveVal
= avgWaveVal
/ waveLenCnt
;
1683 if ( waveLenCnt
> fc
){
1684 //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1685 //this wave is a phase shift
1686 //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1687 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1689 dest
[ numBits
++] = curPhase
;
1690 lastClkBit
+= * clock
;
1691 } else if ( i
< lastClkBit
+ 10 + fc
){
1692 //noise after a phase shift - ignore
1693 } else { //phase shift before supposed to based on clock
1695 dest
[ numBits
++] = 7 ;
1697 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1698 lastClkBit
+= * clock
; //no phase shift but clock bit
1699 dest
[ numBits
++] = curPhase
;
1700 } else if ( waveLenCnt
< fc
- 1 ) { //wave is smaller than field clock (shouldn't happen often)
1702 if ( errCnt2
> 101 ) return errCnt2
;
1708 avgWaveVal
+= dest
[ i
+ 1 ];
1714 bool DetectST ( uint8_t buffer
[], size_t * size
, int * foundclock
) {
1715 size_t ststart
= 0 , stend
= 0 ;
1716 return DetectST_ext ( buffer
, size
, foundclock
, & ststart
, & stend
);
1720 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1721 bool DetectST_ext ( uint8_t buffer
[], size_t * size
, int * foundclock
, size_t * ststart
, size_t * stend
) {
1722 size_t bufsize
= * size
;
1723 //need to loop through all samples and identify our clock, look for the ST pattern
1724 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
1727 int i
, j
, skip
, start
, end
, low
, high
, minClk
, waveStart
;
1728 bool complete
= false ;
1729 int tmpbuff
[ bufsize
/ 32 ]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1730 int waveLen
[ bufsize
/ 32 ]; // if clock is larger then we waste memory in array size that is not needed...
1731 size_t testsize
= ( bufsize
< 512 ) ? bufsize
: 512 ;
1734 memset ( tmpbuff
, 0 , sizeof ( tmpbuff
));
1735 memset ( waveLen
, 0 , sizeof ( waveLen
));
1738 if ( getHiLo ( buffer
, testsize
, & high
, & low
, 80 , 80 ) == - 1 ) {
1739 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: just noise detected - quitting" );
1740 return false ; //just noise
1745 // get to first full low to prime loop and skip incomplete first pulse
1746 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1748 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1752 // populate tmpbuff buffer with pulse lengths
1753 while ( i
< bufsize
) {
1754 // measure from low to low
1755 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1758 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1760 //first high point for this wave
1762 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1764 if ( j
>= ( bufsize
/ 32 )) {
1767 waveLen
[ j
] = i
- waveStart
; //first high to first low
1768 tmpbuff
[ j
++] = i
- start
;
1769 if ( i
- start
< minClk
&& i
< bufsize
) {
1773 // set clock - might be able to get this externally and remove this work...
1775 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
1776 tol
= fndClk
[ clkCnt
]/ 8 ;
1777 if ( minClk
>= fndClk
[ clkCnt
]- tol
&& minClk
<= fndClk
[ clkCnt
]+ 1 ) {
1782 // clock not found - ERROR
1784 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: clock not found - quitting" );
1791 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1793 for ( i
= 0 ; i
< j
- 4 ; ++ i
) {
1795 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1796 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1797 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1798 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1806 // first ST not found - ERROR
1808 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT not found - quitting" );
1811 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT found at: %d, j=%d" , start
, j
);
1813 if ( waveLen
[ i
+ 2 ] > clk
* 1 + tol
)
1818 // skip over the remainder of ST
1819 skip
+= clk
* 7 / 2 ; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1821 // now do it again to find the end
1823 for ( i
+= 3 ; i
< j
- 4 ; ++ i
) {
1825 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1826 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1827 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1828 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1837 //didn't find second ST - ERROR
1839 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: second STT not found - quitting" );
1842 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d" , skip
, end
, end
- skip
, clk
, ( end
- skip
)/ clk
, phaseoff
);
1843 //now begin to trim out ST so we can use normal demod cmds
1845 size_t datalen
= end
- start
;
1846 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1847 if ( clk
- ( datalen
% clk
) <= clk
/ 8 ) {
1848 // padd the amount off - could be problematic... but shouldn't happen often
1849 datalen
+= clk
- ( datalen
% clk
);
1850 } else if ( ( datalen
% clk
) <= clk
/ 8 ) {
1851 // padd the amount off - could be problematic... but shouldn't happen often
1852 datalen
-= datalen
% clk
;
1854 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting" , datalen
, clk
, datalen
% clk
);
1857 // if datalen is less than one t55xx block - ERROR
1858 if ( datalen
/ clk
< 8 * 4 ) {
1859 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen is less than 1 full t55xx block - quitting" );
1862 size_t dataloc
= start
;
1863 if ( buffer
[ dataloc
-( clk
* 4 )-( clk
/ 8 )] <= low
&& buffer
[ dataloc
] <= low
&& buffer
[ dataloc
-( clk
* 4 )] >= high
) {
1864 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1865 for ( i
= 0 ; i
<= ( clk
/ 8 ); ++ i
) {
1866 if ( buffer
[ dataloc
- ( clk
* 4 ) - i
] <= low
) {
1875 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: Starting STT trim - start: %d, datalen: %d " , dataloc
, datalen
);
1876 bool firstrun
= true ;
1877 // warning - overwriting buffer given with raw wave data with ST removed...
1878 while ( dataloc
< bufsize
-( clk
/ 2 ) ) {
1879 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1880 if ( buffer
[ dataloc
]< high
&& buffer
[ dataloc
]> low
&& buffer
[ dataloc
+ 3 ]< high
&& buffer
[ dataloc
+ 3 ]> low
) {
1881 for ( i
= 0 ; i
< clk
/ 2 - tol
; ++ i
) {
1882 buffer
[ dataloc
+ i
] = high
+ 5 ;
1884 } //test for single sample outlier (high between two lows) in the case of very strong waves
1885 if ( buffer
[ dataloc
] >= high
&& buffer
[ dataloc
+ 2 ] <= low
) {
1886 buffer
[ dataloc
] = buffer
[ dataloc
+ 2 ];
1887 buffer
[ dataloc
+ 1 ] = buffer
[ dataloc
+ 2 ];
1891 * ststart
= dataloc
-( clk
* 4 );
1894 for ( i
= 0 ; i
< datalen
; ++ i
) {
1895 if ( i
+ newloc
< bufsize
) {
1896 if ( i
+ newloc
< dataloc
)
1897 buffer
[ i
+ newloc
] = buffer
[ dataloc
];
1903 //skip next ST - we just assume it will be there from now on...
1904 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: skipping STT at %d to %d" , dataloc
, dataloc
+( clk
* 4 ));