1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
29 #define abs(x) ( ((x)<0) ? -(x) : (x) )
31 //=============================================================================
32 // A buffer where we can queue things up to be sent through the FPGA, for
33 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
34 // is the order in which they go out on the wire.
35 //=============================================================================
40 struct common_area common_area
__attribute__((section(".commonarea")));
42 void BufferClear(void)
44 memset(BigBuf
,0,sizeof(BigBuf
));
45 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
48 void ToSendReset(void)
54 void ToSendStuffBit(int b
)
58 ToSend
[ToSendMax
] = 0;
63 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
68 if(ToSendBit
>= sizeof(ToSend
)) {
70 DbpString("ToSendStuffBit overflowed!");
74 //=============================================================================
75 // Debug print functions, to go out over USB, to the usual PC-side client.
76 //=============================================================================
78 void DbpString(char *str
)
80 /* this holds up stuff unless we're connected to usb */
85 c
.cmd
= CMD_DEBUG_PRINT_STRING
;
86 c
.arg
[0] = strlen(str
);
87 if(c
.arg
[0] > sizeof(c
.d
.asBytes
)) {
88 c
.arg
[0] = sizeof(c
.d
.asBytes
);
90 memcpy(c
.d
.asBytes
, str
, c
.arg
[0]);
92 UsbSendPacket((uint8_t *)&c
, sizeof(c
));
93 // TODO fix USB so stupid things like this aren't req'd
98 void DbpIntegers(int x1
, int x2
, int x3
)
100 /* this holds up stuff unless we're connected to usb */
105 c
.cmd
= CMD_DEBUG_PRINT_INTEGERS
;
110 UsbSendPacket((uint8_t *)&c
, sizeof(c
));
116 void Dbprintf(const char *fmt
, ...) {
117 // should probably limit size here; oh well, let's just use a big buffer
118 char output_string
[128];
122 kvsprintf(fmt
, output_string
, 10, ap
);
125 DbpString(output_string
);
128 // prints HEX & ASCII
129 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
142 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
145 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
147 Dbprintf("%*D",l
,d
," ");
155 //-----------------------------------------------------------------------------
156 // Read an ADC channel and block till it completes, then return the result
157 // in ADC units (0 to 1023). Also a routine to average 32 samples and
159 //-----------------------------------------------------------------------------
160 static int ReadAdc(int ch
)
164 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
165 AT91C_BASE_ADC
->ADC_MR
=
166 ADC_MODE_PRESCALE(32) |
167 ADC_MODE_STARTUP_TIME(16) |
168 ADC_MODE_SAMPLE_HOLD_TIME(8);
169 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
171 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
172 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
174 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
179 int AvgAdc(int ch
) // was static - merlok
184 for(i
= 0; i
< 32; i
++) {
188 return (a
+ 15) >> 5;
191 void MeasureAntennaTuning(void)
193 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
194 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
195 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
200 DbpString("Measuring antenna characteristics, please wait...");
201 memset(dest
,0,sizeof(FREE_BUFFER_SIZE
));
204 * Sweeps the useful LF range of the proxmark from
205 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
206 * read the voltage in the antenna, the result left
207 * in the buffer is a graph which should clearly show
208 * the resonating frequency of your LF antenna
209 * ( hopefully around 95 if it is tuned to 125kHz!)
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
213 for (i
=255; i
>19; i
--) {
215 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
217 // Vref = 3.3V, and a 10000:240 voltage divider on the input
218 // can measure voltages up to 137500 mV
219 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
220 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
221 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
223 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
236 // Vref = 3300mV, and an 10:1 voltage divider on the input
237 // can measure voltages up to 33000 mV
238 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
240 c
.cmd
= CMD_MEASURED_ANTENNA_TUNING
;
241 c
.arg
[0] = (vLf125
<< 0) | (vLf134
<< 16);
243 c
.arg
[2] = peakf
| (peakv
<< 16);
245 DbpString("Measuring complete, sending report back to host");
247 UsbSendPacket((uint8_t *)&c
, sizeof(c
));
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
254 void MeasureAntennaTuningHf(void)
256 int vHf
= 0; // in mV
258 DbpString("Measuring HF antenna, press button to exit");
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
264 // Vref = 3300mV, and an 10:1 voltage divider on the input
265 // can measure voltages up to 33000 mV
266 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
268 Dbprintf("%d mV",vHf
);
269 if (BUTTON_PRESS()) break;
271 DbpString("cancelled");
275 void SimulateTagHfListen(void)
277 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
282 // We're using this mode just so that I can test it out; the simulated
283 // tag mode would work just as well and be simpler.
284 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
286 // We need to listen to the high-frequency, peak-detected path.
287 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
293 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
294 AT91C_BASE_SSC
->SSC_THR
= 0xff;
296 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
297 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
311 if(i
>= FREE_BUFFER_SIZE
) {
317 DbpString("simulate tag (now type bitsamples)");
320 void ReadMem(int addr
)
322 const uint8_t *data
= ((uint8_t *)addr
);
324 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
325 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
328 /* osimage version information is linked in */
329 extern struct version_information version_information
;
330 /* bootrom version information is pointed to from _bootphase1_version_pointer */
331 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
332 void SendVersion(void)
334 char temp
[48]; /* Limited data payload in USB packets */
335 DbpString("Prox/RFID mark3 RFID instrument");
337 /* Try to find the bootrom version information. Expect to find a pointer at
338 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
339 * pointer, then use it.
341 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
342 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
343 DbpString("bootrom version information appears invalid");
345 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
349 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
352 FpgaGatherVersion(temp
, sizeof(temp
));
357 // samy's sniff and repeat routine
360 DbpString("Stand-alone mode! No PC necessary.");
362 // 3 possible options? no just 2 for now
365 int high
[OPTS
], low
[OPTS
];
367 // Oooh pretty -- notify user we're in elite samy mode now
369 LED(LED_ORANGE
, 200);
371 LED(LED_ORANGE
, 200);
373 LED(LED_ORANGE
, 200);
375 LED(LED_ORANGE
, 200);
381 // Turn on selected LED
382 LED(selected
+ 1, 0);
389 // Was our button held down or pressed?
390 int button_pressed
= BUTTON_HELD(1000);
393 // Button was held for a second, begin recording
394 if (button_pressed
> 0)
397 LED(selected
+ 1, 0);
401 DbpString("Starting recording");
403 // wait for button to be released
404 while(BUTTON_PRESS())
407 /* need this delay to prevent catching some weird data */
410 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
411 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
414 LED(selected
+ 1, 0);
415 // Finished recording
417 // If we were previously playing, set playing off
418 // so next button push begins playing what we recorded
422 // Change where to record (or begin playing)
423 else if (button_pressed
)
425 // Next option if we were previously playing
427 selected
= (selected
+ 1) % OPTS
;
431 LED(selected
+ 1, 0);
433 // Begin transmitting
437 DbpString("Playing");
438 // wait for button to be released
439 while(BUTTON_PRESS())
441 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
442 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
443 DbpString("Done playing");
444 if (BUTTON_HELD(1000) > 0)
446 DbpString("Exiting");
451 /* We pressed a button so ignore it here with a delay */
454 // when done, we're done playing, move to next option
455 selected
= (selected
+ 1) % OPTS
;
458 LED(selected
+ 1, 0);
461 while(BUTTON_PRESS())
470 Listen and detect an external reader. Determine the best location
474 Inside the ListenReaderField() function, there is two mode.
475 By default, when you call the function, you will enter mode 1.
476 If you press the PM3 button one time, you will enter mode 2.
477 If you press the PM3 button a second time, you will exit the function.
479 DESCRIPTION OF MODE 1:
480 This mode just listens for an external reader field and lights up green
481 for HF and/or red for LF. This is the original mode of the detectreader
484 DESCRIPTION OF MODE 2:
485 This mode will visually represent, using the LEDs, the actual strength of the
486 current compared to the maximum current detected. Basically, once you know
487 what kind of external reader is present, it will help you spot the best location to place
488 your antenna. You will probably not get some good results if there is a LF and a HF reader
489 at the same place! :-)
493 static const char LIGHT_SCHEME
[] = {
494 0x0, /* ---- | No field detected */
495 0x1, /* X--- | 14% of maximum current detected */
496 0x2, /* -X-- | 29% of maximum current detected */
497 0x4, /* --X- | 43% of maximum current detected */
498 0x8, /* ---X | 57% of maximum current detected */
499 0xC, /* --XX | 71% of maximum current detected */
500 0xE, /* -XXX | 86% of maximum current detected */
501 0xF, /* XXXX | 100% of maximum current detected */
503 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
505 void ListenReaderField(int limit
)
507 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
508 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
509 int mode
=1, display_val
, display_max
, i
;
516 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
518 if(limit
!= HF_ONLY
) {
519 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
523 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
525 if (limit
!= LF_ONLY
) {
526 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
531 if (BUTTON_PRESS()) {
536 DbpString("Signal Strength Mode");
540 DbpString("Stopped");
548 if (limit
!= HF_ONLY
) {
550 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
555 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
556 // see if there's a significant change
557 if(abs(lf_av
- lf_av_new
) > 10) {
558 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
566 if (limit
!= LF_ONLY
) {
568 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
573 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
574 // see if there's a significant change
575 if(abs(hf_av
- hf_av_new
) > 10) {
576 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
585 if (limit
== LF_ONLY
) {
587 display_max
= lf_max
;
588 } else if (limit
== HF_ONLY
) {
590 display_max
= hf_max
;
591 } else { /* Pick one at random */
592 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
594 display_max
= hf_max
;
597 display_max
= lf_max
;
600 for (i
=0; i
<LIGHT_LEN
; i
++) {
601 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
602 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
603 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
604 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
605 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
613 void UsbPacketReceived(uint8_t *packet
, int len
)
615 UsbCommand
*c
= (UsbCommand
*)packet
;
621 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
622 AcquireRawAdcSamples125k(c
->arg
[0]);
623 UsbSendPacket((uint8_t*)&ack
, sizeof(ack
));
625 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
626 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
628 case CMD_HID_DEMOD_FSK
:
629 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
631 case CMD_HID_SIM_TAG
:
632 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
634 case CMD_HID_CLONE_TAG
:
635 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1]); // Clone HID tag by ID to T55x7
637 case CMD_EM410X_WRITE_TAG
:
638 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
640 case CMD_READ_TI_TYPE
:
643 case CMD_WRITE_TI_TYPE
:
644 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
646 case CMD_SIMULATE_TAG_125K
:
648 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
651 case CMD_LF_SIMULATE_BIDIR
:
652 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
654 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
655 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
657 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
658 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
663 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
664 SnoopHitag(c
->arg
[0]);
666 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
667 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
669 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
670 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
675 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
676 AcquireRawAdcSamplesIso15693();
678 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
679 RecordRawAdcSamplesIso15693();
682 case CMD_ISO_15693_COMMAND
:
683 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
686 case CMD_ISO_15693_FIND_AFI
:
687 BruteforceIso15693Afi(c
->arg
[0]);
690 case CMD_ISO_15693_DEBUG
:
691 SetDebugIso15693(c
->arg
[0]);
694 case CMD_READER_ISO_15693
:
695 ReaderIso15693(c
->arg
[0]);
697 case CMD_SIMTAG_ISO_15693
:
698 SimTagIso15693(c
->arg
[0]);
703 case CMD_SIMULATE_TAG_LEGIC_RF
:
704 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
707 case CMD_WRITER_LEGIC_RF
:
708 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
711 case CMD_READER_LEGIC_RF
:
712 LegicRfReader(c
->arg
[0], c
->arg
[1]);
716 #ifdef WITH_ISO14443b
717 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
718 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
720 case CMD_READ_SRI512_TAG
:
721 ReadSRI512Iso14443(c
->arg
[0]);
723 case CMD_READ_SRIX4K_TAG
:
724 ReadSRIX4KIso14443(c
->arg
[0]);
726 case CMD_SNOOP_ISO_14443
:
729 case CMD_SIMULATE_TAG_ISO_14443
:
730 SimulateIso14443Tag();
734 #ifdef WITH_ISO14443a
735 case CMD_SNOOP_ISO_14443a
:
736 SnoopIso14443a(c
->arg
[0]);
738 case CMD_READER_ISO_14443a
:
739 ReaderIso14443a(c
, &ack
);
741 case CMD_SIMULATE_TAG_ISO_14443a
:
742 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2]); // ## Simulate iso14443a tag - pass tag type & UID
744 case CMD_EPA_PACE_COLLECT_NONCE
:
745 EPA_PACE_Collect_Nonce(c
, &ack
);
748 case CMD_READER_MIFARE
:
749 ReaderMifare(c
->arg
[0]);
751 case CMD_MIFARE_READBL
:
752 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
754 case CMD_MIFARE_READSC
:
755 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
757 case CMD_MIFARE_WRITEBL
:
758 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
760 case CMD_MIFARE_NESTED
:
761 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
763 case CMD_MIFARE_CHKKEYS
:
764 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
766 case CMD_SIMULATE_MIFARE_CARD
:
767 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
771 case CMD_MIFARE_SET_DBGMODE
:
772 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
774 case CMD_MIFARE_EML_MEMCLR
:
775 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
777 case CMD_MIFARE_EML_MEMSET
:
778 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
780 case CMD_MIFARE_EML_MEMGET
:
781 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
783 case CMD_MIFARE_EML_CARDLOAD
:
784 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
787 // Work with "magic Chinese" card
788 case CMD_MIFARE_EML_CSETBLOCK
:
789 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
791 case CMD_MIFARE_EML_CGETBLOCK
:
792 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
796 case CMD_MIFARE_SNIFFER
:
797 SniffMifare(c
->arg
[0]);
802 // Makes use of ISO14443a FPGA Firmware
803 case CMD_SNOOP_ICLASS
:
806 case CMD_SIMULATE_TAG_ICLASS
:
807 SimulateIClass(c
->arg
[0], c
->d
.asBytes
);
809 case CMD_READER_ICLASS
:
810 ReaderIClass(c
->arg
[0]);
814 case CMD_SIMULATE_TAG_HF_LISTEN
:
815 SimulateTagHfListen();
822 case CMD_MEASURE_ANTENNA_TUNING
:
823 MeasureAntennaTuning();
826 case CMD_MEASURE_ANTENNA_TUNING_HF
:
827 MeasureAntennaTuningHf();
830 case CMD_LISTEN_READER_FIELD
:
831 ListenReaderField(c
->arg
[0]);
834 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
835 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
837 LED_D_OFF(); // LED D indicates field ON or OFF
840 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
842 if(c
->cmd
== CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
) {
843 n
.cmd
= CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
;
845 n
.cmd
= CMD_DOWNLOADED_RAW_BITS_TI_TYPE
;
847 n
.arg
[0] = c
->arg
[0];
848 memcpy(n
.d
.asDwords
, BigBuf
+c
->arg
[0], 12*sizeof(uint32_t));
850 UsbSendPacket((uint8_t *)&n
, sizeof(n
));
854 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
855 uint8_t *b
= (uint8_t *)BigBuf
;
856 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
857 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
858 UsbSendPacket((uint8_t*)&ack
, sizeof(ack
));
865 case CMD_SET_LF_DIVISOR
:
866 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
869 case CMD_SET_ADC_MUX
:
871 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
872 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
873 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
874 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
890 case CMD_SETUP_WRITE
:
891 case CMD_FINISH_WRITE
:
892 case CMD_HARDWARE_RESET
: {
893 USB_D_PLUS_PULLUP_OFF();
896 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
898 // We're going to reset, and the bootrom will take control.
902 case CMD_START_FLASH
: {
903 if(common_area
.flags
.bootrom_present
) {
904 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
906 USB_D_PLUS_PULLUP_OFF();
907 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
911 case CMD_DEVICE_INFO
: {
913 c
.cmd
= CMD_DEVICE_INFO
;
914 c
.arg
[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
915 if(common_area
.flags
.bootrom_present
) c
.arg
[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
916 UsbSendPacket((uint8_t*)&c
, sizeof(c
));
920 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
925 void __attribute__((noreturn
)) AppMain(void)
929 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
930 /* Initialize common area */
931 memset(&common_area
, 0, sizeof(common_area
));
932 common_area
.magic
= COMMON_AREA_MAGIC
;
933 common_area
.version
= 1;
935 common_area
.flags
.osimage_present
= 1;
944 // The FPGA gets its clock from us from PCK0 output, so set that up.
945 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
946 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
947 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
948 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
949 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
950 AT91C_PMC_PRES_CLK_4
;
951 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
954 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
956 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
958 // Load the FPGA image, which we have stored in our flash.
967 // test text on different colored backgrounds
968 LCDString(" The quick brown fox ", (char *)&FONT6x8
,1,1+8*0,WHITE
,BLACK
);
969 LCDString(" jumped over the ", (char *)&FONT6x8
,1,1+8*1,BLACK
,WHITE
);
970 LCDString(" lazy dog. ", (char *)&FONT6x8
,1,1+8*2,YELLOW
,RED
);
971 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8
,1,1+8*3,RED
,GREEN
);
972 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8
,1,1+8*4,MAGENTA
,BLUE
);
973 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8
,1,1+8*5,BLUE
,YELLOW
);
974 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8
,1,1+8*6,BLACK
,CYAN
);
975 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8
,1,1+8*7,BLUE
,MAGENTA
);
978 LCDFill(0, 1+8* 8, 132, 8, BLACK
);
979 LCDFill(0, 1+8* 9, 132, 8, WHITE
);
980 LCDFill(0, 1+8*10, 132, 8, RED
);
981 LCDFill(0, 1+8*11, 132, 8, GREEN
);
982 LCDFill(0, 1+8*12, 132, 8, BLUE
);
983 LCDFill(0, 1+8*13, 132, 8, YELLOW
);
984 LCDFill(0, 1+8*14, 132, 8, CYAN
);
985 LCDFill(0, 1+8*15, 132, 8, MAGENTA
);
994 if (BUTTON_HELD(1000) > 0)