]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
12 //un_comment to allow debug print calls when used not on device
13 void dummy ( char * fmt
, ...){}
14 void dummy_sgc ( int clock
, int startidx
) {}
17 # include "ui.h" // plotclock, plotclockstartindex
18 # include "cmdparser.h"
20 # define prnt PrintAndLog
21 # define sgc SetGraphClock
22 void SetGraphClock ( int clock
, int startidx
){
24 PlockClockStartIndex
= startidx
;
27 uint8_t g_debugMode
= 0 ;
29 # define sgc dummy_sgc
32 //test samples are not just noise
33 uint8_t justNoise ( uint8_t * bits
, size_t size
) {
36 for ( size_t idx
= 0 ; idx
< size
&& val
; idx
++)
37 val
= bits
[ idx
] < THRESHOLD
;
42 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
43 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
47 // get high and low thresholds
48 for ( size_t i
= 0 ; i
< size
; i
++){
49 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
50 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
52 if (* high
< 123 ) return - 1 ; // just noise
53 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
54 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
59 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
60 // returns 1 if passed
61 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
64 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
65 ans
^= (( bits
>> i
) & 1 );
67 if ( g_debugMode
) prnt ( "DEBUG: ans: %d, ptype: %d, bits: %08X" , ans
, pType
, bits
);
68 return ( ans
== pType
);
72 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
73 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
74 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
76 uint32_t parityWd
= 0 ;
77 size_t j
= 0 , bitCnt
= 0 ;
78 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
){
79 for ( int bit
= 0 ; bit
< pLen
; bit
++){
80 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
81 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
83 if ( word
+ pLen
> bLen
) break ;
85 j
--; // overwrite parity with next data
86 // if parity fails then return 0
88 case 3 : if ( BitStream
[ j
]== 1 ) { return 0 ; } break ; //should be 0 spacer bit
89 case 2 : if ( BitStream
[ j
]== 0 ) { return 0 ; } break ; //should be 1 spacer bit
90 default : if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) { return 0 ; } break ; //test parity
95 // if we got here then all the parities passed
96 //return ID start index and size
101 // takes a array of binary values, length of bits per parity (includes parity bit),
102 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
103 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
104 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
106 uint32_t parityWd
= 0 ;
107 size_t j
= 0 , bitCnt
= 0 ;
108 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
109 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
110 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
111 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
114 // if parity fails then return 0
116 case 3 : dest
[ j
++]= 0 ; break ; // marker bit which should be a 0
117 case 2 : dest
[ j
++]= 1 ; break ; // marker bit which should be a 1
119 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
125 // if we got here then all the parities passed
126 //return ID start index and size
130 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
)
133 for ( int i
= 0 ; i
< numbits
; i
++) {
134 num
= ( num
<< 1 ) | (* src
);
140 //least significant bit first
141 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
)
144 for ( int i
= 0 ; i
< numbits
; i
++) {
145 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
151 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found)
152 bool preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
){
153 return preambleSearchEx ( BitStream
, preamble
, pLen
, size
, startIdx
, false );
156 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
157 // param @findone: look for a repeating preamble or only the first.
158 // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits
159 bool preambleSearchEx ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
, bool findone
)
161 // Sanity check. If preamble length is bigger than bitstream length.
162 if ( * size
<= pLen
) return false ;
164 uint8_t foundCnt
= 0 ;
165 for ( int idx
= 0 ; idx
< * size
- pLen
; idx
++){
166 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ){
167 if ( g_debugMode
) prnt ( "DEBUG: preamble found at %i" , idx
);
172 if ( findone
) return true ;
175 * size
= idx
- * startIdx
;
183 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
184 size_t findModStart ( uint8_t dest
[], size_t size
, uint8_t threshold_value
, uint8_t expWaveSize
) {
186 size_t waveSizeCnt
= 0 ;
187 uint8_t thresholdCnt
= 0 ;
188 bool isAboveThreshold
= dest
[ i
++] >= threshold_value
;
189 for (; i
< size
- 20 ; i
++ ) {
190 if ( dest
[ i
] < threshold_value
&& isAboveThreshold
) {
192 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
193 isAboveThreshold
= false ;
195 } else if ( dest
[ i
] >= threshold_value
&& ! isAboveThreshold
) {
197 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
198 isAboveThreshold
= true ;
203 if ( thresholdCnt
> 10 ) break ;
205 if ( g_debugMode
== 2 ) prnt ( "DEBUG: threshold Count reached at %u, count: %u" , i
, thresholdCnt
);
210 //takes 1s and 0s and searches for EM410x format - output EM ID
211 // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
212 int Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
215 if (* size
< 64 ) return - 3 ;
216 if ( BitStream
[ 1 ] > 1 ) return - 1 ;
221 // preamble 0111111111
222 // include 0 in front to help get start pos
223 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
224 if (! preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
))
227 //XL and normal size.
228 if (* size
!= 64 && * size
!= 128 ) return - 3 ;
230 fmtlen
= (* size
== 128 ) ? 22 : 10 ;
232 //skip last 4bit parity row for simplicity
233 * size
= removeParity ( BitStream
, * startIdx
+ sizeof ( preamble
), 5 , 0 , fmtlen
* 5 );
239 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
, 8 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 8 , 32 ));
244 * hi
= ( bytebits_to_byte ( BitStream
, 24 ));
245 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
+ 24 , 32 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 24 + 32 , 32 ));
254 //demodulates strong heavily clipped samples
255 //RETURN: num of errors. if 0, is ok.
256 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
)
258 size_t bitCnt
= 0 , smplCnt
= 0 , errCnt
= 0 ;
259 uint8_t waveHigh
= 0 ;
260 for ( size_t i
= 0 ; i
< * size
; i
++){
261 if ( BinStream
[ i
] >= high
&& waveHigh
){
263 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
265 } else { //transition
266 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
268 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
269 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
271 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
272 BinStream
[ bitCnt
++] = 7 ;
273 } else if ( waveHigh
) {
274 BinStream
[ bitCnt
++] = invert
;
275 BinStream
[ bitCnt
++] = invert
;
276 } else if (! waveHigh
) {
277 BinStream
[ bitCnt
++] = invert
^ 1 ;
278 BinStream
[ bitCnt
++] = invert
^ 1 ;
282 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) {
284 BinStream
[ bitCnt
++] = invert
;
285 } else if (! waveHigh
) {
286 BinStream
[ bitCnt
++] = invert
^ 1 ;
290 } else if (! bitCnt
) {
292 waveHigh
= ( BinStream
[ i
] >= high
);
296 //transition bit oops
298 } else { //haven't hit new high or new low yet
308 void askAmp ( uint8_t * BitStream
, size_t size
)
311 for ( size_t i
= 1 ; i
< size
; ++ i
){
312 if ( BitStream
[ i
]- BitStream
[ i
- 1 ] >= 30 ) //large jump up
314 else if ( BitStream
[ i
- 1 ] - BitStream
[ i
] >= 20 ) //large jump down
322 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
323 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
325 if (* size
== 0 ) return - 1 ;
326 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
327 if (* clk
== 0 || start
< 0 ) return - 3 ;
328 if (* invert
!= 1 ) * invert
= 0 ;
329 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
330 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, beststart %d, amp %d" , * clk
, start
, amp
);
334 uint8_t initLoopMax
= 255 ;
335 if ( initLoopMax
> * size
) initLoopMax
= * size
;
336 // Detect high and lows
337 //25% clip in case highs and lows aren't clipped [marshmellow]
339 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
340 return - 2 ; //just noise
343 // if clean clipped waves detected run alternate demod
344 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
345 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Clean Wave Detected - using clean wave demod" );
346 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
);
347 if ( askType
) //askman
348 return manrawdecode ( BinStream
, size
, 0 );
352 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Weak Wave Detected - using weak wave demod" );
354 int lastBit
; //set first clock check - can go negative
355 size_t i
, bitnum
= 0 ; //output counter
357 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
358 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
359 size_t MaxBits
= 3072 ; //max bits to collect
360 lastBit
= start
- * clk
;
362 for ( i
= start
; i
< * size
; ++ i
) {
363 if ( i
- lastBit
>= * clk
- tol
){
364 if ( BinStream
[ i
] >= high
) {
365 BinStream
[ bitnum
++] = * invert
;
366 } else if ( BinStream
[ i
] <= low
) {
367 BinStream
[ bitnum
++] = * invert
^ 1 ;
368 } else if ( i
- lastBit
>= * clk
+ tol
) {
370 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
371 BinStream
[ bitnum
++]= 7 ;
374 } else { //in tolerance - looking for peak
379 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
380 if ( BinStream
[ i
] >= high
) {
381 BinStream
[ bitnum
++] = * invert
;
382 } else if ( BinStream
[ i
] <= low
) {
383 BinStream
[ bitnum
++] = * invert
^ 1 ;
384 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
385 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
387 } else { //in tolerance - looking for peak
392 if ( bitnum
>= MaxBits
) break ;
398 //take 10 and 01 and manchester decode
399 //run through 2 times and take least errCnt
400 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
){
403 if (* size
< 16 ) return - 1 ;
405 int errCnt
= 0 , bestErr
= 1000 ;
406 uint16_t bitnum
= 0 , MaxBits
= 512 , bestRun
= 0 ;
409 //find correct start position [alignment]
410 for ( k
= 0 ; k
< 2 ; ++ k
){
411 for ( i
= k
; i
< * size
- 3 ; i
+= 2 ) {
412 if ( BitStream
[ i
] == BitStream
[ i
+ 1 ])
415 if ( bestErr
> errCnt
){
423 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
424 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
425 BitStream
[ bitnum
++] = invert
;
426 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
427 BitStream
[ bitnum
++] = invert
^ 1 ;
429 BitStream
[ bitnum
++] = 7 ;
431 if ( bitnum
> MaxBits
) break ;
437 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
440 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
441 curBit
= ( datain
>> ( 15 - i
) & 1 );
442 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
448 //encode binary data into binary manchester
449 int ManchesterEncode ( uint8_t * BitStream
, size_t size
)
451 size_t modIdx
= 20000 , i
= 0 ;
452 if ( size
> modIdx
) return - 1 ;
453 for ( size_t idx
= 0 ; idx
< size
; idx
++){
454 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
455 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
457 for (; i
<( size
* 2 ); i
++){
458 BitStream
[ i
] = BitStream
[ i
+ 20000 ];
464 //take 01 or 10 = 1 and 11 or 00 = 0
465 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
466 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
467 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
)
472 uint16_t MaxBits
= 512 ;
473 //if not enough samples - error
474 if (* size
< 51 ) return - 1 ;
475 //check for phase change faults - skip one sample if faulty
476 uint8_t offsetA
= 1 , offsetB
= 1 ;
478 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
479 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
481 if (! offsetA
&& offsetB
) offset
++;
482 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
483 //check for phase error
484 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
485 BitStream
[ bitnum
++]= 7 ;
488 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
489 BitStream
[ bitnum
++]= 1 ^ invert
;
490 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
491 BitStream
[ bitnum
++]= invert
;
493 BitStream
[ bitnum
++]= 7 ;
496 if ( bitnum
> MaxBits
) break ;
503 // demod gProxIIDemod
504 // error returns as -x
505 // success returns start position in BitStream
506 // BitStream must contain previously askrawdemod and biphasedemoded data
507 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
)
510 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
512 if (! preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
))
513 return - 3 ; //preamble not found
515 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
517 //check first 6 spacer bits to verify format
518 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
519 //confirmed proper separator bits found
520 //return start position
521 return ( int ) startIdx
;
523 return - 5 ; //spacer bits not found - not a valid gproxII
526 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
527 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
529 size_t last_transition
= 0 ;
531 if ( fchigh
== 0 ) fchigh
= 10 ;
532 if ( fclow
== 0 ) fclow
= 8 ;
533 //set the threshold close to 0 (graph) or 128 std to avoid static
534 uint8_t threshold_value
= 123 ;
535 size_t preLastSample
= 0 ;
536 size_t LastSample
= 0 ;
537 size_t currSample
= 0 ;
538 if ( size
< 1024 ) return 0 ; // not enough samples
540 //find start of modulating data in trace
541 idx
= findModStart ( dest
, size
, threshold_value
, fchigh
);
543 // Need to threshold first sample
544 if ( dest
[ idx
] < threshold_value
) dest
[ 0 ] = 0 ;
549 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
550 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
551 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
552 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
553 for (; idx
< size
- 20 ; idx
++) {
554 // threshold current value
556 if ( dest
[ idx
] < threshold_value
) dest
[ idx
] = 0 ;
559 // Check for 0->1 transition
560 if ( dest
[ idx
- 1 ] < dest
[ idx
]) {
561 preLastSample
= LastSample
;
562 LastSample
= currSample
;
563 currSample
= idx
- last_transition
;
564 if ( currSample
< ( fclow
- 2 )){ //0-5 = garbage noise (or 0-3)
565 //do nothing with extra garbage
566 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves (or 3-6 = 5)
567 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
568 if ( LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ))){
573 } else if ( currSample
> ( fchigh
+ 1 ) && numBits
< 3 ) { //12 + and first two bit = unusable garbage
574 //do nothing with beginning garbage and reset.. should be rare..
576 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
578 } else { //9+ = 10 sample waves (or 6+ = 7)
581 last_transition
= idx
;
584 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
587 //translate 11111100000 to 10
588 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
589 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
,
590 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
592 uint8_t lastval
= dest
[ 0 ];
596 for ( idx
= 1 ; idx
< size
; idx
++) {
598 if ( dest
[ idx
]== lastval
) continue ; //skip until we hit a transition
600 //find out how many bits (n) we collected
601 //if lastval was 1, we have a 1->0 crossing
602 if ( dest
[ idx
- 1 ]== 1 ) {
603 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
604 } else { // 0->1 crossing
605 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
609 //add to our destination the bits we collected
610 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
615 // if valid extra bits at the end were all the same frequency - add them in
616 if ( n
> rfLen
/ fchigh
) {
617 if ( dest
[ idx
- 2 ]== 1 ) {
618 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
620 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
622 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
628 //by marshmellow (from holiman's base)
629 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
630 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
633 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
);
634 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
);
638 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
639 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
641 if ( justNoise ( dest
, * size
)) return - 1 ;
643 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
645 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
646 if (* size
< 96 * 2 ) return - 2 ;
647 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
648 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
649 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
650 return - 3 ; //preamble not found
652 numStart
= startIdx
+ sizeof ( preamble
);
653 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
654 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
655 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
656 return - 4 ; //not manchester data
658 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
659 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
660 //Then, shift in a 0 or one into low
662 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
667 return ( int ) startIdx
;
670 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
671 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
673 if ( justNoise ( dest
, * size
)) return - 1 ;
675 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
677 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
678 if (* size
< 96 ) return - 2 ;
680 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
681 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
682 if ( preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
683 return - 3 ; //preamble not found
685 numStart
= startIdx
+ sizeof ( preamble
);
686 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
687 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
688 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
689 return - 4 ; //not manchester data
690 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
691 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
692 //Then, shift in a 0 or one into low
693 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
698 return ( int ) startIdx
;
701 int IOdemodFSK ( uint8_t * dest
, size_t size
)
703 if ( justNoise ( dest
, size
)) return - 1 ;
704 //make sure buffer has data
705 if ( size
< 66 * 64 ) return - 2 ;
707 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
708 if ( size
< 65 ) return - 3 ; //did we get a good demod?
710 //0 10 20 30 40 50 60
712 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
713 //-----------------------------------------------------------------------------
714 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
716 //XSF(version)facility:codeone+codetwo
719 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
720 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
))
721 return - 4 ; //preamble not found
723 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
724 //confirmed proper separator bits found
725 //return start position
726 return ( int ) startIdx
;
732 // find viking preamble 0xF200 in already demoded data
733 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
734 //make sure buffer has data
735 if (* size
< 64 * 2 ) return - 2 ;
737 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
738 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
739 return - 4 ; //preamble not found
741 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^
742 bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^
743 bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 ) ^
744 bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^
745 bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^
746 bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 ) ^
747 bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^
748 bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
749 if ( checkCalc
!= 0xA8 ) return - 5 ;
750 if (* size
!= 64 ) return - 6 ;
751 //return start position
752 return ( int ) startIdx
;
756 // find Visa2000 preamble in already demoded data
757 int Visa2kDemod_AM ( uint8_t * dest
, size_t * size
) {
758 if (* size
< 96 ) return - 1 ; //make sure buffer has data
760 uint8_t preamble
[] = { 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 };
761 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
762 return - 2 ; //preamble not found
763 if (* size
!= 96 ) return - 3 ; //wrong demoded size
764 //return start position
765 return ( int ) startIdx
;
768 // find Noralsy preamble in already demoded data
769 int NoralsyDemod_AM ( uint8_t * dest
, size_t * size
) {
770 if (* size
< 96 ) return - 1 ; //make sure buffer has data
772 uint8_t preamble
[] = { 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 };
773 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
774 return - 2 ; //preamble not found
775 if (* size
!= 96 ) return - 3 ; //wrong demoded size
776 //return start position
777 return ( int ) startIdx
;
779 // find presco preamble 0x10D in already demoded data
780 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
781 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has data
783 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
784 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
785 return - 2 ; //preamble not found
786 if (* size
!= 128 ) return - 3 ; //wrong demoded size
787 //return start position
788 return ( int ) startIdx
;
791 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
792 // BitStream must contain previously askrawdemod and biphasedemoded data
793 int FDXBdemodBI ( uint8_t * dest
, size_t * size
) {
794 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has enough data
796 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
797 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
798 return - 2 ; //preamble not found
799 if (* size
!= 128 ) return - 3 ; //wrong demoded size
800 //return start position
801 return ( int ) startIdx
;
804 // ASK/Diphase fc/64 (inverted Biphase)
805 // Note: this i s not a demod, this is only a detection
806 // the parameter *dest needs to be demoded before call
807 // 0xFFFF preamble, 64bits
808 int JablotronDemod ( uint8_t * dest
, size_t * size
){
809 if (* size
< 64 * 2 ) return - 1 ; //make sure buffer has enough data
811 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
812 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
813 return - 2 ; //preamble not found
814 if (* size
!= 64 ) return - 3 ; // wrong demoded size
816 uint8_t checkchksum
= 0 ;
817 for ( int i
= 16 ; i
< 56 ; i
+= 8 ) {
818 checkchksum
+= bytebits_to_byte ( dest
+ startIdx
+ i
, 8 );
821 uint8_t crc
= bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
822 if ( checkchksum
!= crc
) return - 5 ;
823 return ( int ) startIdx
;
827 // FSK Demod then try to locate an AWID ID
828 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
)
830 //make sure buffer has enough data
831 if (* size
< 96 * 50 ) return - 1 ;
833 if ( justNoise ( dest
, * size
)) return - 2 ;
836 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
837 if (* size
< 96 ) return - 3 ; //did we get a good demod?
839 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
841 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
842 return - 4 ; //preamble not found
843 if (* size
!= 96 ) return - 5 ;
844 return ( int ) startIdx
;
848 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
849 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
)
851 //make sure buffer has data
852 if (* size
< 128 * 50 ) return - 5 ;
854 //test samples are not just noise
855 if ( justNoise ( dest
, * size
)) return - 1 ;
858 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
859 if (* size
< 128 ) return - 2 ; //did we get a good demod?
861 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
862 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
863 return - 4 ; //preamble not found
864 if (* size
!= 128 ) return - 3 ;
865 return ( int ) startIdx
;
868 // find nedap preamble in already demoded data
869 int NedapDemod ( uint8_t * dest
, size_t * size
) {
870 //make sure buffer has data
871 if (* size
< 128 ) return - 3 ;
874 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
875 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
876 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
877 return - 4 ; //preamble not found
878 return ( int ) startIdx
;
881 // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits
883 int IdteckDemodPSK ( uint8_t * dest
, size_t * size
) {
884 //make sure buffer has data
885 if (* size
< 64 * 2 ) return - 1 ;
887 uint8_t preamble
[] = { 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 };
888 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
889 return - 2 ; //preamble not found
890 if (* size
!= 64 ) return - 3 ; // wrong demoded size
891 return ( int ) startIdx
;
895 // to detect a wave that has heavily clipped (clean) samples
896 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
898 bool allArePeaks
= true ;
900 size_t loopEnd
= 512 + 160 ;
901 if ( loopEnd
> size
) loopEnd
= size
;
902 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
903 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
909 if ( cntPeaks
> 300 ) return true ;
914 // to help detect clocks on heavily clipped samples
915 // based on count of low to low
916 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
, int * clock
)
918 uint8_t clocks
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
922 int shortestWaveIdx
= 0 ;
923 // get to first full low to prime loop and skip incomplete first pulse
924 while (( dest
[ i
] < high
) && ( i
< size
))
926 while (( dest
[ i
] > low
) && ( i
< size
))
929 // loop through all samples
931 // measure from low to low
932 while (( dest
[ i
] > low
) && ( i
< size
))
935 while (( dest
[ i
] < high
) && ( i
< size
))
937 while (( dest
[ i
] > low
) && ( i
< size
))
939 //get minimum measured distance
940 if ( i
- startwave
< minClk
&& i
< size
) {
941 minClk
= i
- startwave
;
942 shortestWaveIdx
= startwave
;
946 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectstrongASKclk smallest wave: %d" , minClk
);
947 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
948 if ( minClk
>= clocks
[ clkCnt
]-( clocks
[ clkCnt
]/ 8 ) && minClk
<= clocks
[ clkCnt
]+ 1 )
949 * clock
= clocks
[ clkCnt
];
950 return shortestWaveIdx
;
956 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
957 // maybe somehow adjust peak trimming value based on samples to fix?
958 // return start index of best starting position for that clock and return clock (by reference)
959 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
)
962 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
964 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
965 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
966 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
967 //if we already have a valid clock
968 uint8_t clockFnd
= 0 ;
969 for (; i
< clkEnd
; ++ i
)
970 if ( clk
[ i
] == * clock
) clockFnd
= i
;
971 //clock found but continue to find best startpos
973 //get high and low peak
975 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
977 //test for large clean peaks
979 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
980 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
, clock
);
981 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i" , clock
, ans
);
983 return ans
; // return shortest wave start pos
988 uint8_t clkCnt
, tol
= 0 ;
989 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
990 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
992 size_t arrLoc
, loopEnd
;
1001 //test each valid clock from smallest to greatest to see which lines up
1002 for (; clkCnt
< clkEnd
; clkCnt
++) {
1003 if ( clk
[ clkCnt
] <= 32 ) {
1008 //if no errors allowed - keep start within the first clock
1009 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 )
1010 loopCnt
= clk
[ clkCnt
] * 2 ;
1012 bestErr
[ clkCnt
] = 1000 ;
1014 //try lining up the peaks by moving starting point (try first few clocks)
1015 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
1016 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
1019 // now that we have the first one lined up test rest of wave array
1020 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
1021 for ( i
= 0 ; i
< loopEnd
; ++ i
){
1022 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
1023 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
1024 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
1025 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
1026 } else { //error no peak detected
1030 //if we found no errors then we can stop here and a low clock (common clocks)
1031 // this is correct one - return this clock
1032 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
1033 if ( errCnt
== 0 && clkCnt
< 7 ) {
1034 if (! clockFnd
) * clock
= clk
[ clkCnt
];
1037 //if we found errors see if it is lowest so far and save it as best run
1038 if ( errCnt
< bestErr
[ clkCnt
]) {
1039 bestErr
[ clkCnt
] = errCnt
;
1040 bestStart
[ clkCnt
] = ii
;
1046 for ( k
= 1 ; k
< clkEnd
; ++ k
){
1047 if ( bestErr
[ k
] < bestErr
[ best
]){
1048 if ( bestErr
[ k
] == 0 ) bestErr
[ k
]= 1 ;
1049 // current best bit to error ratio vs new bit to error ratio
1050 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ k
])/ bestErr
[ k
] ){
1054 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ k
], bestErr
[ k
], clk
[ best
], bestStart
[ best
]);
1056 if (! clockFnd
) * clock
= clk
[ best
];
1058 return bestStart
[ best
];
1061 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
) {
1062 int firstPhaseShift
= 0 ;
1063 return DetectPSKClock_ext ( dest
, size
, clock
, & firstPhaseShift
);
1067 //detect psk clock by reading each phase shift
1068 // a phase shift is determined by measuring the sample length of each wave
1069 int DetectPSKClock_ext ( uint8_t dest
[], size_t size
, int clock
, int * firstPhaseShift
) {
1070 uint8_t clk
[] = { 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
1071 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1073 //if we already have a valid clock quit
1076 if ( clk
[ i
] == clock
) return clock
;
1078 if ( size
< 160 + 20 ) return 0 ;
1079 // size must be larger than 20 here, and 160 later on.
1080 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1082 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1083 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1084 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
1085 uint16_t bestErr
[] = { 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
1086 uint16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1087 fc
= countFC ( dest
, size
, 0 );
1088 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1089 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
1091 //find first full wave
1092 for ( i
= 160 ; i
< loopCnt
; i
++){
1093 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1094 if ( waveStart
== 0 ) {
1096 //prnt("DEBUG: waveStart: %d",waveStart);
1099 //prnt("DEBUG: waveEnd: %d",waveEnd);
1100 waveLenCnt
= waveEnd
- waveStart
;
1101 if ( waveLenCnt
> fc
){
1102 firstFullWave
= waveStart
;
1103 fullWaveLen
= waveLenCnt
;
1110 * firstPhaseShift
= firstFullWave
;
1111 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
1113 //test each valid clock from greatest to smallest to see which lines up
1114 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
1115 lastClkBit
= firstFullWave
; //set end of wave as clock align
1119 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
1121 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
1122 //top edge of wave = start of new wave
1123 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1124 if ( waveStart
== 0 ) {
1129 waveLenCnt
= waveEnd
- waveStart
;
1130 if ( waveLenCnt
> fc
){
1131 //if this wave is a phase shift
1132 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
1133 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
1135 lastClkBit
+= clk
[ clkCnt
];
1136 } else if ( i
< lastClkBit
+ 8 ){
1137 //noise after a phase shift - ignore
1138 } else { //phase shift before supposed to based on clock
1141 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
1142 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
1148 if ( errCnt
== 0 ) return clk
[ clkCnt
];
1149 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
] = errCnt
;
1150 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
] = peakcnt
;
1152 //all tested with errors
1153 //return the highest clk with the most peaks found
1155 for ( i
= 7 ; i
>= 1 ; i
--){
1156 if ( peaksdet
[ i
] > peaksdet
[ best
])
1159 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
1164 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
1165 //find shortest transition from high to low
1167 size_t transition1
= 0 ;
1168 int lowestTransition
= 255 ;
1169 bool lastWasHigh
= false ;
1171 //find first valid beginning of a high or low wave
1172 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
1174 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
1176 lastWasHigh
= ( dest
[ i
] >= peak
);
1178 if ( i
== size
) return 0 ;
1181 for (; i
< size
; i
++) {
1182 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
1183 lastWasHigh
= ( dest
[ i
] >= peak
);
1184 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
1188 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
1189 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
1190 return lowestTransition
;
1193 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
) {
1195 return DetectNRZClock_ext ( dest
, size
, clock
, & bestStart
);
1199 //detect nrz clock by reading #peaks vs no peaks(or errors)
1200 int DetectNRZClock_ext ( uint8_t dest
[], size_t size
, int clock
, int * clockStartIdx
) {
1202 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
1203 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
1205 //if we already have a valid clock quit
1207 if ( clk
[ i
] == clock
) return clock
;
1209 if ( size
< 20 ) return 0 ;
1210 // size must be larger than 20 here
1211 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1213 //get high and low peak
1215 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
1217 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
1221 uint16_t smplCnt
= 0 ;
1222 int16_t peakcnt
= 0 ;
1223 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1224 uint16_t maxPeak
= 255 ;
1225 bool firstpeak
= false ;
1226 //test for large clipped waves
1227 for ( i
= 0 ; i
< loopCnt
; i
++){
1228 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
1229 if (! firstpeak
) continue ;
1234 if ( maxPeak
> smplCnt
){
1236 //prnt("maxPk: %d",maxPeak);
1239 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1244 bool errBitHigh
= 0 ;
1246 uint8_t ignoreCnt
= 0 ;
1247 uint8_t ignoreWindow
= 4 ;
1248 bool lastPeakHigh
= 0 ;
1250 int bestStart
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1252 //test each valid clock from smallest to greatest to see which lines up
1253 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
1254 //ignore clocks smaller than smallest peak
1255 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
1256 //try lining up the peaks by moving starting point (try first 256)
1257 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
1258 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
1262 lastBit
= ii
- clk
[ clkCnt
];
1263 //loop through to see if this start location works
1264 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
1265 //if we are at a clock bit
1266 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
1268 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
1269 //if same peak don't count it
1270 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
1273 lastPeakHigh
= ( dest
[ i
] >= peak
);
1276 ignoreCnt
= ignoreWindow
;
1277 lastBit
+= clk
[ clkCnt
];
1278 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
1279 lastBit
+= clk
[ clkCnt
];
1281 //else if not a clock bit and no peaks
1282 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
1283 if ( ignoreCnt
== 0 ){
1285 if ( errBitHigh
== true )
1291 // else if not a clock bit but we have a peak
1292 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
1293 //error bar found no clock...
1297 if ( peakcnt
> peaksdet
[ clkCnt
]) {
1298 bestStart
[ clkCnt
]= ii
;
1299 peaksdet
[ clkCnt
] = peakcnt
;
1306 for ( int m
= 7 ; m
> 0 ; m
--){
1307 if (( peaksdet
[ m
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ m
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
1308 if ( clk
[ m
] > ( lowestTransition
- ( clk
[ m
]/ 8 )) && clk
[ m
] < ( lowestTransition
+ ( clk
[ m
]/ 8 ))) {
1311 } else if ( peaksdet
[ m
] > peaksdet
[ best
]){
1314 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ m
], peaksdet
[ m
], maxPeak
, clk
[ best
], lowestTransition
);
1316 * clockStartIdx
= bestStart
[ best
];
1321 // convert psk1 demod to psk2 demod
1322 // only transition waves are 1s
1323 void psk1TOpsk2 ( uint8_t * bits
, size_t size
) {
1324 uint8_t lastBit
= bits
[ 0 ];
1325 for ( size_t i
= 1 ; i
< size
; i
++){
1327 if ( bits
[ i
] == 7 ) continue ;
1329 if ( lastBit
!= bits
[ i
]){
1339 // convert psk2 demod to psk1 demod
1340 // from only transition waves are 1s to phase shifts change bit
1341 void psk2TOpsk1 ( uint8_t * bits
, size_t size
) {
1343 for ( size_t i
= 0 ; i
< size
; i
++){
1351 // redesigned by marshmellow adjusted from existing decode functions
1352 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1353 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
)
1355 //26 bit 40134 format (don't know other formats)
1356 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1357 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1358 size_t startidx
= 0 ;
1359 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1360 // if didn't find preamble try again inverting
1361 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1364 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1366 for ( size_t i
= startidx
; i
< * size
; i
++)
1369 return ( int ) startidx
;
1372 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1373 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1374 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
){
1375 if ( justNoise ( dest
, * size
)) return - 1 ;
1376 * clk
= DetectNRZClock ( dest
, * size
, * clk
);
1377 if (* clk
== 0 ) return - 2 ;
1378 size_t i
, gLen
= 4096 ;
1379 if ( gLen
>* size
) gLen
= * size
- 20 ;
1381 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1384 //convert wave samples to 1's and 0's
1385 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1386 if ( dest
[ i
] >= high
) bit
= 1 ;
1387 if ( dest
[ i
] <= low
) bit
= 0 ;
1390 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1393 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1394 //if transition detected or large number of same bits - store the passed bits
1395 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1396 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1397 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1405 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
) {
1406 int firstClockEdge
= 0 ;
1407 return detectFSKClk_ext ( BitStream
, size
, fcHigh
, fcLow
, & firstClockEdge
);
1411 //detects the bit clock for FSK given the high and low Field Clocks
1412 uint8_t detectFSKClk_ext ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
, int * firstClockEdge
) {
1413 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
1414 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1415 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1416 uint8_t rfLensFnd
= 0 ;
1417 uint8_t lastFCcnt
= 0 ;
1418 uint16_t fcCounter
= 0 ;
1419 uint16_t rfCounter
= 0 ;
1420 uint8_t firstBitFnd
= 0 ;
1422 if ( size
== 0 ) return 0 ;
1424 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1429 //prnt("DEBUG: fcTol: %d",fcTol);
1430 // prime i to first peak / up transition
1431 for ( i
= 160 ; i
< size
- 20 ; i
++)
1432 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
1435 for (; i
< size
- 20 ; i
++){
1439 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
1442 // if we got less than the small fc + tolerance then set it to the small fc
1443 // if it is inbetween set it to the last counter
1444 if ( fcCounter
< fcHigh
&& fcCounter
> fcLow
)
1445 fcCounter
= lastFCcnt
;
1446 else if ( fcCounter
< fcLow
+ fcTol
)
1448 else //set it to the large fc
1451 //look for bit clock (rf/xx)
1452 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1453 //not the same size as the last wave - start of new bit sequence
1454 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
1455 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1456 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
1462 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
1463 //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1464 rfCnts
[ rfLensFnd
]++;
1465 rfLens
[ rfLensFnd
++] = rfCounter
;
1468 * firstClockEdge
= i
;
1472 lastFCcnt
= fcCounter
;
1476 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
1478 for ( i
= 0 ; i
< 15 ; i
++){
1479 //get highest 2 RF values (might need to get more values to compare or compare all?)
1480 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
1481 rfHighest3
= rfHighest2
;
1482 rfHighest2
= rfHighest
;
1484 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
1485 rfHighest3
= rfHighest2
;
1487 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
1490 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
1492 // set allowed clock remainder tolerance to be 1 large field clock length+1
1493 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1494 uint8_t tol1
= fcHigh
+ 1 ;
1496 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
1498 // loop to find the highest clock that has a remainder less than the tolerance
1499 // compare samples counted divided by
1500 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1502 for (; ii
>= 2 ; ii
--){
1503 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1504 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1505 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1506 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
1513 if ( ii
< 2 ) return 0 ; // oops we went too far
1519 //countFC is to detect the field clock lengths.
1520 //counts and returns the 2 most common wave lengths
1521 //mainly used for FSK field clock detection
1522 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
)
1524 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1525 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1526 uint8_t fcLensFnd
= 0 ;
1527 uint8_t lastFCcnt
= 0 ;
1528 uint8_t fcCounter
= 0 ;
1530 if ( size
< 180 ) return 0 ;
1532 // prime i to first up transition
1533 for ( i
= 160 ; i
< size
- 20 ; i
++)
1534 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
1537 for (; i
< size
- 20 ; i
++){
1538 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
1539 // new up transition
1542 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1543 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
1544 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1545 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
1546 // save last field clock count (fc/xx)
1547 lastFCcnt
= fcCounter
;
1549 // find which fcLens to save it to:
1550 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1551 if ( fcLens
[ ii
]== fcCounter
){
1557 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
1559 fcCnts
[ fcLensFnd
]++;
1560 fcLens
[ fcLensFnd
++]= fcCounter
;
1569 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
1571 // go through fclens and find which ones are bigest 2
1572 for ( i
= 0 ; i
< 15 ; i
++){
1573 // get the 3 best FC values
1574 if ( fcCnts
[ i
]> maxCnt1
) {
1579 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
1582 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
1585 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
1587 if ( fcLens
[ best1
]== 0 ) return 0 ;
1588 uint8_t fcH
= 0 , fcL
= 0 ;
1589 if ( fcLens
[ best1
]> fcLens
[ best2
]){
1596 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
1597 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
1598 return 0 ; //lots of waves not psk or fsk
1600 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1602 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
1603 if ( fskAdj
) return fcs
;
1604 return fcLens
[ best1
];
1607 //by marshmellow - demodulate PSK1 wave
1608 //uses wave lengths (# Samples)
1609 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
)
1611 if ( size
== 0 ) return - 1 ;
1612 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1613 if (* size
< loopCnt
) loopCnt
= * size
;
1616 uint8_t curPhase
= * invert
;
1617 size_t i
= 0 , waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1618 uint16_t fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1619 uint16_t errCnt
= 0 , waveLenCnt
= 0 , errCnt2
= 0 ;
1620 fc
= countFC ( dest
, * size
, 1 );
1621 uint8_t fc2
= fc
>> 8 ;
1622 if ( fc2
== 10 ) return - 1 ; //fsk found - quit
1624 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1625 //prnt("DEBUG: FC: %d",fc);
1626 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1627 if (* clock
== 0 ) return - 1 ;
1629 //find start of modulating data in trace
1630 uint8_t threshold_value
= 123 ; //-5
1631 i
= findModStart ( dest
, * size
, threshold_value
, fc
);
1633 //find first phase shift
1634 int avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1636 for (; i
< loopCnt
; i
++){
1638 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1640 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: waveEnd: %u, waveStart: %u" , waveEnd
, waveStart
);
1641 waveLenCnt
= waveEnd
- waveStart
;
1642 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 3 )){ //not first peak and is a large wave but not out of whack
1643 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1644 firstFullWave
= waveStart
;
1645 fullWaveLen
= waveLenCnt
;
1646 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1647 if ( lastAvgWaveVal
> threshold_value
) curPhase
^= 1 ;
1653 avgWaveVal
+= dest
[ i
+ 2 ];
1655 if ( firstFullWave
== 0 ) {
1656 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1657 // so skip a little to ensure we are past any Start Signal
1658 firstFullWave
= 160 ;
1659 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1661 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1664 numBits
+= ( firstFullWave
/ * clock
);
1665 //set start of wave as clock align
1666 lastClkBit
= firstFullWave
;
1667 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %u, waveLen: %u" , firstFullWave
, fullWaveLen
);
1668 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u" , * clock
, lastClkBit
,( unsigned int ) fc
);
1670 dest
[ numBits
++] = curPhase
; //set first read bit
1671 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1672 //top edge of wave = start of new wave
1673 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1674 if ( waveStart
== 0 ) {
1677 avgWaveVal
= dest
[ i
+ 1 ];
1680 waveLenCnt
= waveEnd
- waveStart
;
1681 lastAvgWaveVal
= avgWaveVal
/ waveLenCnt
;
1682 if ( waveLenCnt
> fc
){
1683 //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1684 //this wave is a phase shift
1685 //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1686 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1688 dest
[ numBits
++] = curPhase
;
1689 lastClkBit
+= * clock
;
1690 } else if ( i
< lastClkBit
+ 10 + fc
){
1691 //noise after a phase shift - ignore
1692 } else { //phase shift before supposed to based on clock
1694 dest
[ numBits
++] = 7 ;
1696 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1697 lastClkBit
+= * clock
; //no phase shift but clock bit
1698 dest
[ numBits
++] = curPhase
;
1699 } else if ( waveLenCnt
< fc
- 1 ) { //wave is smaller than field clock (shouldn't happen often)
1701 if ( errCnt2
> 101 ) return errCnt2
;
1707 avgWaveVal
+= dest
[ i
+ 1 ];
1713 bool DetectST ( uint8_t buffer
[], size_t * size
, int * foundclock
) {
1714 size_t ststart
= 0 , stend
= 0 ;
1715 return DetectST_ext ( buffer
, size
, foundclock
, & ststart
, & stend
);
1719 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1720 bool DetectST_ext ( uint8_t buffer
[], size_t * size
, int * foundclock
, size_t * ststart
, size_t * stend
) {
1721 size_t bufsize
= * size
;
1722 //need to loop through all samples and identify our clock, look for the ST pattern
1723 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
1726 int i
, j
, skip
, start
, end
, low
, high
, minClk
, waveStart
;
1727 bool complete
= false ;
1728 int tmpbuff
[ bufsize
/ 32 ]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1729 int waveLen
[ bufsize
/ 32 ]; // if clock is larger then we waste memory in array size that is not needed...
1730 size_t testsize
= ( bufsize
< 512 ) ? bufsize
: 512 ;
1733 memset ( tmpbuff
, 0 , sizeof ( tmpbuff
));
1734 memset ( waveLen
, 0 , sizeof ( waveLen
));
1737 if ( getHiLo ( buffer
, testsize
, & high
, & low
, 80 , 80 ) == - 1 ) {
1738 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: just noise detected - quitting" );
1739 return false ; //just noise
1744 // get to first full low to prime loop and skip incomplete first pulse
1745 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1747 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1751 // populate tmpbuff buffer with pulse lengths
1752 while ( i
< bufsize
) {
1753 // measure from low to low
1754 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1757 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1759 //first high point for this wave
1761 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1763 if ( j
>= ( bufsize
/ 32 )) {
1766 waveLen
[ j
] = i
- waveStart
; //first high to first low
1767 tmpbuff
[ j
++] = i
- start
;
1768 if ( i
- start
< minClk
&& i
< bufsize
) {
1772 // set clock - might be able to get this externally and remove this work...
1774 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
1775 tol
= fndClk
[ clkCnt
]/ 8 ;
1776 if ( minClk
>= fndClk
[ clkCnt
]- tol
&& minClk
<= fndClk
[ clkCnt
]+ 1 ) {
1781 // clock not found - ERROR
1783 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: clock not found - quitting" );
1790 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1792 for ( i
= 0 ; i
< j
- 4 ; ++ i
) {
1794 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1795 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1796 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1797 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1805 // first ST not found - ERROR
1807 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT not found - quitting" );
1810 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT found at: %d, j=%d" , start
, j
);
1812 if ( waveLen
[ i
+ 2 ] > clk
* 1 + tol
)
1817 // skip over the remainder of ST
1818 skip
+= clk
* 7 / 2 ; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1820 // now do it again to find the end
1822 for ( i
+= 3 ; i
< j
- 4 ; ++ i
) {
1824 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1825 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1826 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1827 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1836 //didn't find second ST - ERROR
1838 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: second STT not found - quitting" );
1841 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d" , skip
, end
, end
- skip
, clk
, ( end
- skip
)/ clk
, phaseoff
);
1842 //now begin to trim out ST so we can use normal demod cmds
1844 size_t datalen
= end
- start
;
1845 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1846 if ( clk
- ( datalen
% clk
) <= clk
/ 8 ) {
1847 // padd the amount off - could be problematic... but shouldn't happen often
1848 datalen
+= clk
- ( datalen
% clk
);
1849 } else if ( ( datalen
% clk
) <= clk
/ 8 ) {
1850 // padd the amount off - could be problematic... but shouldn't happen often
1851 datalen
-= datalen
% clk
;
1853 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting" , datalen
, clk
, datalen
% clk
);
1856 // if datalen is less than one t55xx block - ERROR
1857 if ( datalen
/ clk
< 8 * 4 ) {
1858 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen is less than 1 full t55xx block - quitting" );
1861 size_t dataloc
= start
;
1862 if ( buffer
[ dataloc
-( clk
* 4 )-( clk
/ 8 )] <= low
&& buffer
[ dataloc
] <= low
&& buffer
[ dataloc
-( clk
* 4 )] >= high
) {
1863 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1864 for ( i
= 0 ; i
<= ( clk
/ 8 ); ++ i
) {
1865 if ( buffer
[ dataloc
- ( clk
* 4 ) - i
] <= low
) {
1874 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: Starting STT trim - start: %d, datalen: %d " , dataloc
, datalen
);
1875 bool firstrun
= true ;
1876 // warning - overwriting buffer given with raw wave data with ST removed...
1877 while ( dataloc
< bufsize
-( clk
/ 2 ) ) {
1878 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1879 if ( buffer
[ dataloc
]< high
&& buffer
[ dataloc
]> low
&& buffer
[ dataloc
+ 3 ]< high
&& buffer
[ dataloc
+ 3 ]> low
) {
1880 for ( i
= 0 ; i
< clk
/ 2 - tol
; ++ i
) {
1881 buffer
[ dataloc
+ i
] = high
+ 5 ;
1883 } //test for single sample outlier (high between two lows) in the case of very strong waves
1884 if ( buffer
[ dataloc
] >= high
&& buffer
[ dataloc
+ 2 ] <= low
) {
1885 buffer
[ dataloc
] = buffer
[ dataloc
+ 2 ];
1886 buffer
[ dataloc
+ 1 ] = buffer
[ dataloc
+ 2 ];
1890 * ststart
= dataloc
-( clk
* 4 );
1893 for ( i
= 0 ; i
< datalen
; ++ i
) {
1894 if ( i
+ newloc
< bufsize
) {
1895 if ( i
+ newloc
< dataloc
)
1896 buffer
[ i
+ newloc
] = buffer
[ dataloc
];
1902 //skip next ST - we just assume it will be there from now on...
1903 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: skipping STT at %d to %d" , dataloc
, dataloc
+( clk
* 4 ));