]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
FIX: a suggested fix for #136 where the "lf t55x7 read" command when called with...
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "usb_cdc.h"
20
21
22 /**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
30 {
31
32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
34
35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
44 SpinDelay(2500);
45
46 LFSetupFPGAForADC(sc.divisor, 1);
47
48 // And a little more time for the tag to fully power up
49 SpinDelay(2000);
50
51 // now modulate the reader field
52 while(*command != '\0' && *command != ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
54 LED_D_OFF();
55 SpinDelayUs(delay_off);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
57
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
59 LED_D_ON();
60 if(*(command++) == '0')
61 SpinDelayUs(period_0);
62 else
63 SpinDelayUs(period_1);
64 }
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
66 LED_D_OFF();
67 SpinDelayUs(delay_off);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
69
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
71
72 // now do the read
73 DoAcquisition_config(false);
74 }
75
76 /* blank r/w tag data stream
77 ...0000000000000000 01111111
78 1010101010101010101010101010101010101010101010101010101010101010
79 0011010010100001
80 01111111
81 101010101010101[0]000...
82
83 [5555fe852c5555555555555555fe0000]
84 */
85 void ReadTItag(void)
86 {
87 // some hardcoded initial params
88 // when we read a TI tag we sample the zerocross line at 2Mhz
89 // TI tags modulate a 1 as 16 cycles of 123.2Khz
90 // TI tags modulate a 0 as 16 cycles of 134.2Khz
91 #define FSAMPLE 2000000
92 #define FREQLO 123200
93 #define FREQHI 134200
94
95 signed char *dest = (signed char *)BigBuf_get_addr();
96 uint16_t n = BigBuf_max_traceLen();
97 // 128 bit shift register [shift3:shift2:shift1:shift0]
98 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
99
100 int i, cycles=0, samples=0;
101 // how many sample points fit in 16 cycles of each frequency
102 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
103 // when to tell if we're close enough to one freq or another
104 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
105
106 // TI tags charge at 134.2Khz
107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
108 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
109
110 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
111 // connects to SSP_DIN and the SSP_DOUT logic level controls
112 // whether we're modulating the antenna (high)
113 // or listening to the antenna (low)
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
115
116 // get TI tag data into the buffer
117 AcquireTiType();
118
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
120
121 for (i=0; i<n-1; i++) {
122 // count cycles by looking for lo to hi zero crossings
123 if ( (dest[i]<0) && (dest[i+1]>0) ) {
124 cycles++;
125 // after 16 cycles, measure the frequency
126 if (cycles>15) {
127 cycles=0;
128 samples=i-samples; // number of samples in these 16 cycles
129
130 // TI bits are coming to us lsb first so shift them
131 // right through our 128 bit right shift register
132 shift0 = (shift0>>1) | (shift1 << 31);
133 shift1 = (shift1>>1) | (shift2 << 31);
134 shift2 = (shift2>>1) | (shift3 << 31);
135 shift3 >>= 1;
136
137 // check if the cycles fall close to the number
138 // expected for either the low or high frequency
139 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
140 // low frequency represents a 1
141 shift3 |= (1<<31);
142 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
143 // high frequency represents a 0
144 } else {
145 // probably detected a gay waveform or noise
146 // use this as gaydar or discard shift register and start again
147 shift3 = shift2 = shift1 = shift0 = 0;
148 }
149 samples = i;
150
151 // for each bit we receive, test if we've detected a valid tag
152
153 // if we see 17 zeroes followed by 6 ones, we might have a tag
154 // remember the bits are backwards
155 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
156 // if start and end bytes match, we have a tag so break out of the loop
157 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
158 cycles = 0xF0B; //use this as a flag (ugly but whatever)
159 break;
160 }
161 }
162 }
163 }
164 }
165
166 // if flag is set we have a tag
167 if (cycles!=0xF0B) {
168 DbpString("Info: No valid tag detected.");
169 } else {
170 // put 64 bit data into shift1 and shift0
171 shift0 = (shift0>>24) | (shift1 << 8);
172 shift1 = (shift1>>24) | (shift2 << 8);
173
174 // align 16 bit crc into lower half of shift2
175 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
176
177 // if r/w tag, check ident match
178 if (shift3 & (1<<15) ) {
179 DbpString("Info: TI tag is rewriteable");
180 // only 15 bits compare, last bit of ident is not valid
181 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
182 DbpString("Error: Ident mismatch!");
183 } else {
184 DbpString("Info: TI tag ident is valid");
185 }
186 } else {
187 DbpString("Info: TI tag is readonly");
188 }
189
190 // WARNING the order of the bytes in which we calc crc below needs checking
191 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
192 // bytes in reverse or something
193 // calculate CRC
194 uint32_t crc=0;
195
196 crc = update_crc16(crc, (shift0)&0xff);
197 crc = update_crc16(crc, (shift0>>8)&0xff);
198 crc = update_crc16(crc, (shift0>>16)&0xff);
199 crc = update_crc16(crc, (shift0>>24)&0xff);
200 crc = update_crc16(crc, (shift1)&0xff);
201 crc = update_crc16(crc, (shift1>>8)&0xff);
202 crc = update_crc16(crc, (shift1>>16)&0xff);
203 crc = update_crc16(crc, (shift1>>24)&0xff);
204
205 Dbprintf("Info: Tag data: %x%08x, crc=%x",
206 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
207 if (crc != (shift2&0xffff)) {
208 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
209 } else {
210 DbpString("Info: CRC is good");
211 }
212 }
213 }
214
215 void WriteTIbyte(uint8_t b)
216 {
217 int i = 0;
218
219 // modulate 8 bits out to the antenna
220 for (i=0; i<8; i++)
221 {
222 if (b&(1<<i)) {
223 // stop modulating antenna
224 LOW(GPIO_SSC_DOUT);
225 SpinDelayUs(1000);
226 // modulate antenna
227 HIGH(GPIO_SSC_DOUT);
228 SpinDelayUs(1000);
229 } else {
230 // stop modulating antenna
231 LOW(GPIO_SSC_DOUT);
232 SpinDelayUs(300);
233 // modulate antenna
234 HIGH(GPIO_SSC_DOUT);
235 SpinDelayUs(1700);
236 }
237 }
238 }
239
240 void AcquireTiType(void)
241 {
242 int i, j, n;
243 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
244 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
245 #define TIBUFLEN 1250
246
247 // clear buffer
248 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
249 memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
250
251 // Set up the synchronous serial port
252 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
253 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
254
255 // steal this pin from the SSP and use it to control the modulation
256 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
257 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
258
259 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
260 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
261
262 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
263 // 48/2 = 24 MHz clock must be divided by 12
264 AT91C_BASE_SSC->SSC_CMR = 12;
265
266 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
267 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
268 AT91C_BASE_SSC->SSC_TCMR = 0;
269 AT91C_BASE_SSC->SSC_TFMR = 0;
270
271 LED_D_ON();
272
273 // modulate antenna
274 HIGH(GPIO_SSC_DOUT);
275
276 // Charge TI tag for 50ms.
277 SpinDelay(50);
278
279 // stop modulating antenna and listen
280 LOW(GPIO_SSC_DOUT);
281
282 LED_D_OFF();
283
284 i = 0;
285 for(;;) {
286 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
287 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
288 i++; if(i >= TIBUFLEN) break;
289 }
290 WDT_HIT();
291 }
292
293 // return stolen pin to SSP
294 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
295 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
296
297 char *dest = (char *)BigBuf_get_addr();
298 n = TIBUFLEN*32;
299 // unpack buffer
300 for (i=TIBUFLEN-1; i>=0; i--) {
301 for (j=0; j<32; j++) {
302 if(BigBuf[i] & (1 << j)) {
303 dest[--n] = 1;
304 } else {
305 dest[--n] = -1;
306 }
307 }
308 }
309 }
310
311 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
312 // if crc provided, it will be written with the data verbatim (even if bogus)
313 // if not provided a valid crc will be computed from the data and written.
314 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
315 {
316 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
317 if(crc == 0) {
318 crc = update_crc16(crc, (idlo)&0xff);
319 crc = update_crc16(crc, (idlo>>8)&0xff);
320 crc = update_crc16(crc, (idlo>>16)&0xff);
321 crc = update_crc16(crc, (idlo>>24)&0xff);
322 crc = update_crc16(crc, (idhi)&0xff);
323 crc = update_crc16(crc, (idhi>>8)&0xff);
324 crc = update_crc16(crc, (idhi>>16)&0xff);
325 crc = update_crc16(crc, (idhi>>24)&0xff);
326 }
327 Dbprintf("Writing to tag: %x%08x, crc=%x",
328 (unsigned int) idhi, (unsigned int) idlo, crc);
329
330 // TI tags charge at 134.2Khz
331 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
332 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
333 // connects to SSP_DIN and the SSP_DOUT logic level controls
334 // whether we're modulating the antenna (high)
335 // or listening to the antenna (low)
336 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
337 LED_A_ON();
338
339 // steal this pin from the SSP and use it to control the modulation
340 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
341 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
342
343 // writing algorithm:
344 // a high bit consists of a field off for 1ms and field on for 1ms
345 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
346 // initiate a charge time of 50ms (field on) then immediately start writing bits
347 // start by writing 0xBB (keyword) and 0xEB (password)
348 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
349 // finally end with 0x0300 (write frame)
350 // all data is sent lsb firts
351 // finish with 15ms programming time
352
353 // modulate antenna
354 HIGH(GPIO_SSC_DOUT);
355 SpinDelay(50); // charge time
356
357 WriteTIbyte(0xbb); // keyword
358 WriteTIbyte(0xeb); // password
359 WriteTIbyte( (idlo )&0xff );
360 WriteTIbyte( (idlo>>8 )&0xff );
361 WriteTIbyte( (idlo>>16)&0xff );
362 WriteTIbyte( (idlo>>24)&0xff );
363 WriteTIbyte( (idhi )&0xff );
364 WriteTIbyte( (idhi>>8 )&0xff );
365 WriteTIbyte( (idhi>>16)&0xff );
366 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
367 WriteTIbyte( (crc )&0xff ); // crc lo
368 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
369 WriteTIbyte(0x00); // write frame lo
370 WriteTIbyte(0x03); // write frame hi
371 HIGH(GPIO_SSC_DOUT);
372 SpinDelay(50); // programming time
373
374 LED_A_OFF();
375
376 // get TI tag data into the buffer
377 AcquireTiType();
378
379 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
380 DbpString("Now use 'lf ti read' to check");
381 }
382
383 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
384 {
385 int i;
386 uint8_t *tab = BigBuf_get_addr();
387
388 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
389 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
390
391 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
392
393 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
394 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
395
396 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
397 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
398
399 i = 0;
400 for(;;) {
401 //wait until SSC_CLK goes HIGH
402 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
403 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
404 DbpString("Stopped");
405 return;
406 }
407 WDT_HIT();
408 }
409 if (ledcontrol)
410 LED_D_ON();
411
412 if(tab[i])
413 OPEN_COIL();
414 else
415 SHORT_COIL();
416
417 if (ledcontrol)
418 LED_D_OFF();
419 //wait until SSC_CLK goes LOW
420 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
421 if(BUTTON_PRESS()) {
422 DbpString("Stopped");
423 return;
424 }
425 WDT_HIT();
426 }
427
428 i++;
429 if(i == period) {
430
431 i = 0;
432 if (gap) {
433 SHORT_COIL();
434 SpinDelayUs(gap);
435 }
436 }
437 }
438 }
439
440 #define DEBUG_FRAME_CONTENTS 1
441 void SimulateTagLowFrequencyBidir(int divisor, int t0)
442 {
443 }
444
445 // compose fc/8 fc/10 waveform (FSK2)
446 static void fc(int c, int *n)
447 {
448 uint8_t *dest = BigBuf_get_addr();
449 int idx;
450
451 // for when we want an fc8 pattern every 4 logical bits
452 if(c==0) {
453 dest[((*n)++)]=1;
454 dest[((*n)++)]=1;
455 dest[((*n)++)]=1;
456 dest[((*n)++)]=1;
457 dest[((*n)++)]=0;
458 dest[((*n)++)]=0;
459 dest[((*n)++)]=0;
460 dest[((*n)++)]=0;
461 }
462
463 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
464 if(c==8) {
465 for (idx=0; idx<6; idx++) {
466 dest[((*n)++)]=1;
467 dest[((*n)++)]=1;
468 dest[((*n)++)]=1;
469 dest[((*n)++)]=1;
470 dest[((*n)++)]=0;
471 dest[((*n)++)]=0;
472 dest[((*n)++)]=0;
473 dest[((*n)++)]=0;
474 }
475 }
476
477 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
478 if(c==10) {
479 for (idx=0; idx<5; idx++) {
480 dest[((*n)++)]=1;
481 dest[((*n)++)]=1;
482 dest[((*n)++)]=1;
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=0;
486 dest[((*n)++)]=0;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
490 }
491 }
492 }
493 // compose fc/X fc/Y waveform (FSKx)
494 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
495 {
496 uint8_t *dest = BigBuf_get_addr();
497 uint8_t halfFC = fc/2;
498 uint8_t wavesPerClock = clock/fc;
499 uint8_t mod = clock % fc; //modifier
500 uint8_t modAdj = fc/mod; //how often to apply modifier
501 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
502 // loop through clock - step field clock
503 for (uint8_t idx=0; idx < wavesPerClock; idx++){
504 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
505 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
506 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
507 *n += fc;
508 }
509 if (mod>0) (*modCnt)++;
510 if ((mod>0) && modAdjOk){ //fsk2
511 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
512 memset(dest+(*n), 0, fc-halfFC);
513 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
514 *n += fc;
515 }
516 }
517 if (mod>0 && !modAdjOk){ //fsk1
518 memset(dest+(*n), 0, mod-(mod/2));
519 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
520 *n += mod;
521 }
522 }
523
524 // prepare a waveform pattern in the buffer based on the ID given then
525 // simulate a HID tag until the button is pressed
526 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
527 {
528 int n=0, i=0;
529 /*
530 HID tag bitstream format
531 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
532 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
533 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
534 A fc8 is inserted before every 4 bits
535 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
536 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
537 */
538
539 if (hi>0xFFF) {
540 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
541 return;
542 }
543 fc(0,&n);
544 // special start of frame marker containing invalid bit sequences
545 fc(8, &n); fc(8, &n); // invalid
546 fc(8, &n); fc(10, &n); // logical 0
547 fc(10, &n); fc(10, &n); // invalid
548 fc(8, &n); fc(10, &n); // logical 0
549
550 WDT_HIT();
551 // manchester encode bits 43 to 32
552 for (i=11; i>=0; i--) {
553 if ((i%4)==3) fc(0,&n);
554 if ((hi>>i)&1) {
555 fc(10, &n); fc(8, &n); // low-high transition
556 } else {
557 fc(8, &n); fc(10, &n); // high-low transition
558 }
559 }
560
561 WDT_HIT();
562 // manchester encode bits 31 to 0
563 for (i=31; i>=0; i--) {
564 if ((i%4)==3) fc(0,&n);
565 if ((lo>>i)&1) {
566 fc(10, &n); fc(8, &n); // low-high transition
567 } else {
568 fc(8, &n); fc(10, &n); // high-low transition
569 }
570 }
571
572 if (ledcontrol)
573 LED_A_ON();
574 SimulateTagLowFrequency(n, 0, ledcontrol);
575
576 if (ledcontrol)
577 LED_A_OFF();
578 }
579
580 // prepare a waveform pattern in the buffer based on the ID given then
581 // simulate a FSK tag until the button is pressed
582 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
583 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
584 {
585 int ledcontrol=1;
586 int n=0, i=0;
587 uint8_t fcHigh = arg1 >> 8;
588 uint8_t fcLow = arg1 & 0xFF;
589 uint16_t modCnt = 0;
590 uint8_t clk = arg2 & 0xFF;
591 uint8_t invert = (arg2 >> 8) & 1;
592
593 for (i=0; i<size; i++){
594 if (BitStream[i] == invert){
595 fcAll(fcLow, &n, clk, &modCnt);
596 } else {
597 fcAll(fcHigh, &n, clk, &modCnt);
598 }
599 }
600 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
601 /*Dbprintf("DEBUG: First 32:");
602 uint8_t *dest = BigBuf_get_addr();
603 i=0;
604 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
605 i+=16;
606 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
607 */
608 if (ledcontrol)
609 LED_A_ON();
610
611 SimulateTagLowFrequency(n, 0, ledcontrol);
612
613 if (ledcontrol)
614 LED_A_OFF();
615 }
616
617 // compose ask waveform for one bit(ASK)
618 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
619 {
620 uint8_t *dest = BigBuf_get_addr();
621 uint8_t halfClk = clock/2;
622 // c = current bit 1 or 0
623 if (manchester==1){
624 memset(dest+(*n), c, halfClk);
625 memset(dest+(*n) + halfClk, c^1, halfClk);
626 } else {
627 memset(dest+(*n), c, clock);
628 }
629 *n += clock;
630 }
631
632 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
633 {
634 uint8_t *dest = BigBuf_get_addr();
635 uint8_t halfClk = clock/2;
636 if (c){
637 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
638 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
639 } else {
640 memset(dest+(*n), c ^ *phase, clock);
641 *phase ^= 1;
642 }
643
644 }
645
646 // args clock, ask/man or askraw, invert, transmission separator
647 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
648 {
649 int ledcontrol = 1;
650 int n=0, i=0;
651 uint8_t clk = (arg1 >> 8) & 0xFF;
652 uint8_t encoding = arg1 & 0xFF;
653 uint8_t separator = arg2 & 1;
654 uint8_t invert = (arg2 >> 8) & 1;
655
656 if (encoding==2){ //biphase
657 uint8_t phase=0;
658 for (i=0; i<size; i++){
659 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
660 }
661 if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
662 for (i=0; i<size; i++){
663 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
664 }
665 }
666 } else { // ask/manchester || ask/raw
667 for (i=0; i<size; i++){
668 askSimBit(BitStream[i]^invert, &n, clk, encoding);
669 }
670 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
671 for (i=0; i<size; i++){
672 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
673 }
674 }
675 }
676
677 if (separator==1) Dbprintf("sorry but separator option not yet available");
678
679 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
680 //DEBUG
681 //Dbprintf("First 32:");
682 //uint8_t *dest = BigBuf_get_addr();
683 //i=0;
684 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
685 //i+=16;
686 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
687
688 if (ledcontrol)
689 LED_A_ON();
690
691 SimulateTagLowFrequency(n, 0, ledcontrol);
692
693 if (ledcontrol)
694 LED_A_OFF();
695 }
696
697 //carrier can be 2,4 or 8
698 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
699 {
700 uint8_t *dest = BigBuf_get_addr();
701 uint8_t halfWave = waveLen/2;
702 //uint8_t idx;
703 int i = 0;
704 if (phaseChg){
705 // write phase change
706 memset(dest+(*n), *curPhase^1, halfWave);
707 memset(dest+(*n) + halfWave, *curPhase, halfWave);
708 *n += waveLen;
709 *curPhase ^= 1;
710 i += waveLen;
711 }
712 //write each normal clock wave for the clock duration
713 for (; i < clk; i+=waveLen){
714 memset(dest+(*n), *curPhase, halfWave);
715 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
716 *n += waveLen;
717 }
718 }
719
720 // args clock, carrier, invert,
721 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
722 {
723 int ledcontrol=1;
724 int n=0, i=0;
725 uint8_t clk = arg1 >> 8;
726 uint8_t carrier = arg1 & 0xFF;
727 uint8_t invert = arg2 & 0xFF;
728 uint8_t curPhase = 0;
729 for (i=0; i<size; i++){
730 if (BitStream[i] == curPhase){
731 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
732 } else {
733 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
734 }
735 }
736 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
737 //Dbprintf("DEBUG: First 32:");
738 //uint8_t *dest = BigBuf_get_addr();
739 //i=0;
740 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
741 //i+=16;
742 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
743
744 if (ledcontrol)
745 LED_A_ON();
746 SimulateTagLowFrequency(n, 0, ledcontrol);
747
748 if (ledcontrol)
749 LED_A_OFF();
750 }
751
752 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
753 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
754 {
755 uint8_t *dest = BigBuf_get_addr();
756 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
757 size_t size = 0;
758 uint32_t hi2=0, hi=0, lo=0;
759 int idx=0;
760 // Configure to go in 125Khz listen mode
761 LFSetupFPGAForADC(95, true);
762
763 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
764
765 WDT_HIT();
766 if (ledcontrol) LED_A_ON();
767
768 DoAcquisition_default(-1,true);
769 // FSK demodulator
770 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
771 size = 50*128*2; //big enough to catch 2 sequences of largest format
772 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
773
774 if (idx>0 && lo>0 && (size==96 || size==192)){
775 // go over previously decoded manchester data and decode into usable tag ID
776 if (hi2 != 0){ //extra large HID tags 88/192 bits
777 Dbprintf("TAG ID: %x%08x%08x (%d)",
778 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
779 }else { //standard HID tags 44/96 bits
780 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
781 uint8_t bitlen = 0;
782 uint32_t fc = 0;
783 uint32_t cardnum = 0;
784 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
785 uint32_t lo2=0;
786 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
787 uint8_t idx3 = 1;
788 while(lo2 > 1){ //find last bit set to 1 (format len bit)
789 lo2=lo2 >> 1;
790 idx3++;
791 }
792 bitlen = idx3+19;
793 fc =0;
794 cardnum=0;
795 if(bitlen == 26){
796 cardnum = (lo>>1)&0xFFFF;
797 fc = (lo>>17)&0xFF;
798 }
799 if(bitlen == 37){
800 cardnum = (lo>>1)&0x7FFFF;
801 fc = ((hi&0xF)<<12)|(lo>>20);
802 }
803 if(bitlen == 34){
804 cardnum = (lo>>1)&0xFFFF;
805 fc= ((hi&1)<<15)|(lo>>17);
806 }
807 if(bitlen == 35){
808 cardnum = (lo>>1)&0xFFFFF;
809 fc = ((hi&1)<<11)|(lo>>21);
810 }
811 }
812 else { //if bit 38 is not set then 37 bit format is used
813 bitlen= 37;
814 fc =0;
815 cardnum=0;
816 if(bitlen==37){
817 cardnum = (lo>>1)&0x7FFFF;
818 fc = ((hi&0xF)<<12)|(lo>>20);
819 }
820 }
821 //Dbprintf("TAG ID: %x%08x (%d)",
822 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
823 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
824 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
825 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
826 }
827 if (findone){
828 if (ledcontrol) LED_A_OFF();
829 *high = hi;
830 *low = lo;
831 return;
832 }
833 // reset
834 }
835 hi2 = hi = lo = idx = 0;
836 WDT_HIT();
837 }
838 DbpString("Stopped");
839 if (ledcontrol) LED_A_OFF();
840 }
841
842 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
843 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
844 {
845 uint8_t *dest = BigBuf_get_addr();
846 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
847 size_t size;
848 int idx=0;
849 // Configure to go in 125Khz listen mode
850 LFSetupFPGAForADC(95, true);
851
852 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
853
854 WDT_HIT();
855 if (ledcontrol) LED_A_ON();
856
857 DoAcquisition_default(-1,true);
858 // FSK demodulator
859 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
860 size = 50*128*2; //big enough to catch 2 sequences of largest format
861 idx = AWIDdemodFSK(dest, &size);
862
863 if (idx>0 && size==96){
864 // Index map
865 // 0 10 20 30 40 50 60
866 // | | | | | | |
867 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
868 // -----------------------------------------------------------------------------
869 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
870 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
871 // |---26 bit---| |-----117----||-------------142-------------|
872 // b = format bit len, o = odd parity of last 3 bits
873 // f = facility code, c = card number
874 // w = wiegand parity
875 // (26 bit format shown)
876
877 //get raw ID before removing parities
878 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
879 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
880 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
881
882 size = removeParity(dest, idx+8, 4, 1, 88);
883 // ok valid card found!
884
885 // Index map
886 // 0 10 20 30 40 50 60
887 // | | | | | | |
888 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
889 // -----------------------------------------------------------------------------
890 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
891 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
892 // |26 bit| |-117--| |-----142------|
893 // b = format bit len, o = odd parity of last 3 bits
894 // f = facility code, c = card number
895 // w = wiegand parity
896 // (26 bit format shown)
897
898 uint32_t fc = 0;
899 uint32_t cardnum = 0;
900 uint32_t code1 = 0;
901 uint32_t code2 = 0;
902 uint8_t fmtLen = bytebits_to_byte(dest,8);
903 if (fmtLen==26){
904 fc = bytebits_to_byte(dest+9, 8);
905 cardnum = bytebits_to_byte(dest+17, 16);
906 code1 = bytebits_to_byte(dest+8,fmtLen);
907 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
908 } else {
909 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
910 if (fmtLen>32){
911 code1 = bytebits_to_byte(dest+8,fmtLen-32);
912 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
913 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
914 } else{
915 code1 = bytebits_to_byte(dest+8,fmtLen);
916 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
917 }
918 }
919 if (findone){
920 if (ledcontrol) LED_A_OFF();
921 return;
922 }
923 // reset
924 }
925 idx = 0;
926 WDT_HIT();
927 }
928 DbpString("Stopped");
929 if (ledcontrol) LED_A_OFF();
930 }
931
932 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
933 {
934 uint8_t *dest = BigBuf_get_addr();
935
936 size_t size=0, idx=0;
937 int clk=0, invert=0, errCnt=0, maxErr=20;
938 uint32_t hi=0;
939 uint64_t lo=0;
940 // Configure to go in 125Khz listen mode
941 LFSetupFPGAForADC(95, true);
942
943 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
944
945 WDT_HIT();
946 if (ledcontrol) LED_A_ON();
947
948 DoAcquisition_default(-1,true);
949 size = BigBuf_max_traceLen();
950 //askdemod and manchester decode
951 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
952 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
953 WDT_HIT();
954
955 if (errCnt<0) continue;
956
957 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
958 if (errCnt){
959 if (size>64){
960 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
961 hi,
962 (uint32_t)(lo>>32),
963 (uint32_t)lo,
964 (uint32_t)(lo&0xFFFF),
965 (uint32_t)((lo>>16LL) & 0xFF),
966 (uint32_t)(lo & 0xFFFFFF));
967 } else {
968 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
969 (uint32_t)(lo>>32),
970 (uint32_t)lo,
971 (uint32_t)(lo&0xFFFF),
972 (uint32_t)((lo>>16LL) & 0xFF),
973 (uint32_t)(lo & 0xFFFFFF));
974 }
975
976 if (findone){
977 if (ledcontrol) LED_A_OFF();
978 *high=lo>>32;
979 *low=lo & 0xFFFFFFFF;
980 return;
981 }
982 }
983 WDT_HIT();
984 hi = lo = size = idx = 0;
985 clk = invert = errCnt = 0;
986 }
987 DbpString("Stopped");
988 if (ledcontrol) LED_A_OFF();
989 }
990
991 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
992 {
993 uint8_t *dest = BigBuf_get_addr();
994 int idx=0;
995 uint32_t code=0, code2=0;
996 uint8_t version=0;
997 uint8_t facilitycode=0;
998 uint16_t number=0;
999 uint8_t crc = 0;
1000 uint16_t calccrc = 0;
1001 // Configure to go in 125Khz listen mode
1002 LFSetupFPGAForADC(95, true);
1003
1004 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1005 WDT_HIT();
1006 if (ledcontrol) LED_A_ON();
1007 DoAcquisition_default(-1,true);
1008 //fskdemod and get start index
1009 WDT_HIT();
1010 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1011 if (idx<0) continue;
1012 //valid tag found
1013
1014 //Index map
1015 //0 10 20 30 40 50 60
1016 //| | | | | | |
1017 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1018 //-----------------------------------------------------------------------------
1019 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1020 //
1021 //Checksum:
1022 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1023 //preamble F0 E0 01 03 B6 75
1024 // How to calc checksum,
1025 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1026 // F0 + E0 + 01 + 03 + B6 = 28A
1027 // 28A & FF = 8A
1028 // FF - 8A = 75
1029 // Checksum: 0x75
1030 //XSF(version)facility:codeone+codetwo
1031 //Handle the data
1032 if(findone){ //only print binary if we are doing one
1033 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1034 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1035 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1036 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1037 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1038 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1039 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1040 }
1041 code = bytebits_to_byte(dest+idx,32);
1042 code2 = bytebits_to_byte(dest+idx+32,32);
1043 version = bytebits_to_byte(dest+idx+27,8); //14,4
1044 facilitycode = bytebits_to_byte(dest+idx+18,8);
1045 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1046
1047 crc = bytebits_to_byte(dest+idx+54,8);
1048 for (uint8_t i=1; i<6; ++i)
1049 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1050 calccrc &= 0xff;
1051 calccrc = 0xff - calccrc;
1052
1053 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1054
1055 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
1056 // if we're only looking for one tag
1057 if (findone){
1058 if (ledcontrol) LED_A_OFF();
1059 //LED_A_OFF();
1060 *high=code;
1061 *low=code2;
1062 return;
1063 }
1064 code=code2=0;
1065 version=facilitycode=0;
1066 number=0;
1067 idx=0;
1068
1069 WDT_HIT();
1070 }
1071 DbpString("Stopped");
1072 if (ledcontrol) LED_A_OFF();
1073 }
1074
1075 /*------------------------------
1076 * T5555/T5557/T5567 routines
1077 *------------------------------
1078 */
1079
1080 /* T55x7 configuration register definitions */
1081 #define T55x7_POR_DELAY 0x00000001
1082 #define T55x7_ST_TERMINATOR 0x00000008
1083 #define T55x7_PWD 0x00000010
1084 #define T55x7_MAXBLOCK_SHIFT 5
1085 #define T55x7_AOR 0x00000200
1086 #define T55x7_PSKCF_RF_2 0
1087 #define T55x7_PSKCF_RF_4 0x00000400
1088 #define T55x7_PSKCF_RF_8 0x00000800
1089 #define T55x7_MODULATION_DIRECT 0
1090 #define T55x7_MODULATION_PSK1 0x00001000
1091 #define T55x7_MODULATION_PSK2 0x00002000
1092 #define T55x7_MODULATION_PSK3 0x00003000
1093 #define T55x7_MODULATION_FSK1 0x00004000
1094 #define T55x7_MODULATION_FSK2 0x00005000
1095 #define T55x7_MODULATION_FSK1a 0x00006000
1096 #define T55x7_MODULATION_FSK2a 0x00007000
1097 #define T55x7_MODULATION_MANCHESTER 0x00008000
1098 #define T55x7_MODULATION_BIPHASE 0x00010000
1099 #define T55x7_MODULATION_DIPHASE 0x00018000
1100 //#define T55x7_MODULATION_BIPHASE57 0x00011000
1101 #define T55x7_BITRATE_RF_8 0
1102 #define T55x7_BITRATE_RF_16 0x00040000
1103 #define T55x7_BITRATE_RF_32 0x00080000
1104 #define T55x7_BITRATE_RF_40 0x000C0000
1105 #define T55x7_BITRATE_RF_50 0x00100000
1106 #define T55x7_BITRATE_RF_64 0x00140000
1107 #define T55x7_BITRATE_RF_100 0x00180000
1108 #define T55x7_BITRATE_RF_128 0x001C0000
1109
1110 /* T5555 (Q5) configuration register definitions */
1111 #define T5555_ST_TERMINATOR 0x00000001
1112 #define T5555_MAXBLOCK_SHIFT 0x00000001
1113 #define T5555_MODULATION_MANCHESTER 0
1114 #define T5555_MODULATION_PSK1 0x00000010
1115 #define T5555_MODULATION_PSK2 0x00000020
1116 #define T5555_MODULATION_PSK3 0x00000030
1117 #define T5555_MODULATION_FSK1 0x00000040
1118 #define T5555_MODULATION_FSK2 0x00000050
1119 #define T5555_MODULATION_BIPHASE 0x00000060
1120 #define T5555_MODULATION_DIRECT 0x00000070
1121 #define T5555_INVERT_OUTPUT 0x00000080
1122 #define T5555_PSK_RF_2 0
1123 #define T5555_PSK_RF_4 0x00000100
1124 #define T5555_PSK_RF_8 0x00000200
1125 #define T5555_USE_PWD 0x00000400
1126 #define T5555_USE_AOR 0x00000800
1127 #define T5555_BITRATE_SHIFT 12
1128 #define T5555_FAST_WRITE 0x00004000
1129 #define T5555_PAGE_SELECT 0x00008000
1130
1131 /*
1132 * Relevant times in microsecond
1133 * To compensate antenna falling times shorten the write times
1134 * and enlarge the gap ones.
1135 * Q5 tags seems to have issues when these values changes.
1136 */
1137
1138 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1139 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1140 #define WRITE_0 16*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1141 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1142
1143 // VALUES TAKEN FROM EM4x function: SendForward
1144 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1145 // WRITE_GAP = 128; (16*8)
1146 // WRITE_1 = 256 32*8; (32*8)
1147
1148 // These timings work for 4469/4269/4305 (with the 55*8 above)
1149 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1150
1151 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1152 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1153 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1154 // T0 = TIMER_CLOCK1 / 125000 = 192
1155 // 1 Cycle = 8 microseconds(us) == 1 field clock
1156
1157 // Write one bit to card
1158 void T55xxWriteBit(int bit) {
1159 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1160 if (!bit)
1161 SpinDelayUs(WRITE_0);
1162 else
1163 SpinDelayUs(WRITE_1);
1164 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1165 SpinDelayUs(WRITE_GAP);
1166 }
1167
1168 // Write one card block in page 0, no lock
1169 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) {
1170 LED_A_ON();
1171
1172 uint32_t i = 0;
1173
1174 // Set up FPGA, 125kHz
1175 LFSetupFPGAForADC(95, true);
1176
1177 // Trigger T55x7 in mode.
1178 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1179 SpinDelayUs(START_GAP);
1180
1181 // Opcode 10
1182 T55xxWriteBit(1);
1183 T55xxWriteBit(0); //Page 0
1184
1185 if (PwdMode == 1){
1186 // Send pwd
1187 for (i = 0x80000000; i != 0; i >>= 1)
1188 T55xxWriteBit(Pwd & i);
1189 }
1190 // Send lock bit
1191 T55xxWriteBit(0);
1192
1193 // Send data
1194 for (i = 0x80000000; i != 0; i >>= 1)
1195 T55xxWriteBit(Data & i);
1196
1197 // Send block number
1198 for (i = 0x04; i != 0; i >>= 1)
1199 T55xxWriteBit(Block & i);
1200
1201 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1202 // so wait a little more)
1203 TurnReadLFOn(20 * 1000);
1204
1205 // field off
1206 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1207 cmd_send(CMD_ACK,0,0,0,0,0);
1208 LED_A_OFF();
1209 }
1210
1211 void TurnReadLFOn(int delay) {
1212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1213 // Give it a bit of time for the resonant antenna to settle.
1214 SpinDelayUs(delay);
1215 }
1216
1217 // Read one card block in page 0
1218 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) {
1219 LED_A_ON();
1220
1221 uint32_t i = 0;
1222
1223 //make sure block is at max 7
1224 Block &= 0x7;
1225
1226 // Set up FPGA, 125kHz
1227 LFSetupFPGAForADC(95, true);
1228
1229 // Trigger T55x7 in mode.
1230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1231 SpinDelayUs(START_GAP);
1232
1233 // Opcode 10
1234 T55xxWriteBit(1);
1235 T55xxWriteBit(0); //Page 0
1236
1237 if (PwdMode == 1){
1238 // Send pwd
1239 for (i = 0x80000000; i != 0; i >>= 1)
1240 T55xxWriteBit(Pwd & i);
1241 }
1242 // Send a zero bit seperation
1243 T55xxWriteBit(0);
1244
1245 // Send block number
1246 for (i = 0x04; i != 0; i >>= 1)
1247 T55xxWriteBit(Block & i);
1248
1249 // Turn field on to read the response
1250 TurnReadLFOn(START_GAP);
1251
1252 // Acquisition
1253 doT55x7Acquisition();
1254
1255 // field off
1256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1257 cmd_send(CMD_ACK,0,0,0,0,0);
1258 LED_A_OFF();
1259 }
1260
1261 // Read card traceability data (page 1)
1262 void T55xxReadTrace(void){
1263 LED_A_ON();
1264
1265 // Set up FPGA, 125kHz
1266 LFSetupFPGAForADC(95, true);
1267
1268 // Trigger T55x7 in mode.
1269 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1270 SpinDelayUs(START_GAP);
1271
1272 // Opcode 11
1273 T55xxWriteBit(1);
1274 T55xxWriteBit(1); //Page 1
1275
1276 // Turn field on to read the response
1277 TurnReadLFOn(START_GAP);
1278
1279 // Acquisition
1280 doT55x7Acquisition();
1281
1282 // field off
1283 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1284 cmd_send(CMD_ACK,0,0,0,0,0);
1285 LED_A_OFF();
1286 }
1287
1288 /*-------------- Cloning routines -----------*/
1289 // Copy HID id to card and setup block 0 config
1290 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1291 {
1292 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1293 int last_block = 0;
1294
1295 if (longFMT){
1296 // Ensure no more than 84 bits supplied
1297 if (hi2>0xFFFFF) {
1298 DbpString("Tags can only have 84 bits.");
1299 return;
1300 }
1301 // Build the 6 data blocks for supplied 84bit ID
1302 last_block = 6;
1303 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1304 for (int i=0;i<4;i++) {
1305 if (hi2 & (1<<(19-i)))
1306 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1307 else
1308 data1 |= (1<<((3-i)*2)); // 0 -> 01
1309 }
1310
1311 data2 = 0;
1312 for (int i=0;i<16;i++) {
1313 if (hi2 & (1<<(15-i)))
1314 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1315 else
1316 data2 |= (1<<((15-i)*2)); // 0 -> 01
1317 }
1318
1319 data3 = 0;
1320 for (int i=0;i<16;i++) {
1321 if (hi & (1<<(31-i)))
1322 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1323 else
1324 data3 |= (1<<((15-i)*2)); // 0 -> 01
1325 }
1326
1327 data4 = 0;
1328 for (int i=0;i<16;i++) {
1329 if (hi & (1<<(15-i)))
1330 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1331 else
1332 data4 |= (1<<((15-i)*2)); // 0 -> 01
1333 }
1334
1335 data5 = 0;
1336 for (int i=0;i<16;i++) {
1337 if (lo & (1<<(31-i)))
1338 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1339 else
1340 data5 |= (1<<((15-i)*2)); // 0 -> 01
1341 }
1342
1343 data6 = 0;
1344 for (int i=0;i<16;i++) {
1345 if (lo & (1<<(15-i)))
1346 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1347 else
1348 data6 |= (1<<((15-i)*2)); // 0 -> 01
1349 }
1350 }
1351 else {
1352 // Ensure no more than 44 bits supplied
1353 if (hi>0xFFF) {
1354 DbpString("Tags can only have 44 bits.");
1355 return;
1356 }
1357
1358 // Build the 3 data blocks for supplied 44bit ID
1359 last_block = 3;
1360
1361 data1 = 0x1D000000; // load preamble
1362
1363 for (int i=0;i<12;i++) {
1364 if (hi & (1<<(11-i)))
1365 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1366 else
1367 data1 |= (1<<((11-i)*2)); // 0 -> 01
1368 }
1369
1370 data2 = 0;
1371 for (int i=0;i<16;i++) {
1372 if (lo & (1<<(31-i)))
1373 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1374 else
1375 data2 |= (1<<((15-i)*2)); // 0 -> 01
1376 }
1377
1378 data3 = 0;
1379 for (int i=0;i<16;i++) {
1380 if (lo & (1<<(15-i)))
1381 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1382 else
1383 data3 |= (1<<((15-i)*2)); // 0 -> 01
1384 }
1385 }
1386
1387 LED_D_ON();
1388 // Program the data blocks for supplied ID
1389 // and the block 0 for HID format
1390 T55xxWriteBlock(data1,1,0,0);
1391 T55xxWriteBlock(data2,2,0,0);
1392 T55xxWriteBlock(data3,3,0,0);
1393
1394 if (longFMT) { // if long format there are 6 blocks
1395 T55xxWriteBlock(data4,4,0,0);
1396 T55xxWriteBlock(data5,5,0,0);
1397 T55xxWriteBlock(data6,6,0,0);
1398 }
1399
1400 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1401 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1402 T55x7_MODULATION_FSK2a |
1403 last_block << T55x7_MAXBLOCK_SHIFT,
1404 0,0,0);
1405
1406 LED_D_OFF();
1407
1408 DbpString("DONE!");
1409 }
1410
1411 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1412 {
1413 int data1=0, data2=0; //up to six blocks for long format
1414
1415 data1 = hi; // load preamble
1416 data2 = lo;
1417
1418 LED_D_ON();
1419 // Program the data blocks for supplied ID
1420 // and the block 0 for HID format
1421 T55xxWriteBlock(data1,1,0,0);
1422 T55xxWriteBlock(data2,2,0,0);
1423
1424 //Config Block
1425 T55xxWriteBlock(0x00147040,0,0,0);
1426 LED_D_OFF();
1427
1428 DbpString("DONE!");
1429 }
1430
1431 // Define 9bit header for EM410x tags
1432 #define EM410X_HEADER 0x1FF
1433 #define EM410X_ID_LENGTH 40
1434
1435 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1436 {
1437 int i, id_bit;
1438 uint64_t id = EM410X_HEADER;
1439 uint64_t rev_id = 0; // reversed ID
1440 int c_parity[4]; // column parity
1441 int r_parity = 0; // row parity
1442 uint32_t clock = 0;
1443
1444 // Reverse ID bits given as parameter (for simpler operations)
1445 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1446 if (i < 32) {
1447 rev_id = (rev_id << 1) | (id_lo & 1);
1448 id_lo >>= 1;
1449 } else {
1450 rev_id = (rev_id << 1) | (id_hi & 1);
1451 id_hi >>= 1;
1452 }
1453 }
1454
1455 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1456 id_bit = rev_id & 1;
1457
1458 if (i % 4 == 0) {
1459 // Don't write row parity bit at start of parsing
1460 if (i)
1461 id = (id << 1) | r_parity;
1462 // Start counting parity for new row
1463 r_parity = id_bit;
1464 } else {
1465 // Count row parity
1466 r_parity ^= id_bit;
1467 }
1468
1469 // First elements in column?
1470 if (i < 4)
1471 // Fill out first elements
1472 c_parity[i] = id_bit;
1473 else
1474 // Count column parity
1475 c_parity[i % 4] ^= id_bit;
1476
1477 // Insert ID bit
1478 id = (id << 1) | id_bit;
1479 rev_id >>= 1;
1480 }
1481
1482 // Insert parity bit of last row
1483 id = (id << 1) | r_parity;
1484
1485 // Fill out column parity at the end of tag
1486 for (i = 0; i < 4; ++i)
1487 id = (id << 1) | c_parity[i];
1488
1489 // Add stop bit
1490 id <<= 1;
1491
1492 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1493 LED_D_ON();
1494
1495 // Write EM410x ID
1496 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1497 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1498
1499 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1500 if (card) {
1501 // Clock rate is stored in bits 8-15 of the card value
1502 clock = (card & 0xFF00) >> 8;
1503 Dbprintf("Clock rate: %d", clock);
1504 switch (clock)
1505 {
1506 case 32:
1507 clock = T55x7_BITRATE_RF_32;
1508 break;
1509 case 16:
1510 clock = T55x7_BITRATE_RF_16;
1511 break;
1512 case 0:
1513 // A value of 0 is assumed to be 64 for backwards-compatibility
1514 // Fall through...
1515 case 64:
1516 clock = T55x7_BITRATE_RF_64;
1517 break;
1518 default:
1519 Dbprintf("Invalid clock rate: %d", clock);
1520 return;
1521 }
1522
1523 // Writing configuration for T55x7 tag
1524 T55xxWriteBlock(clock |
1525 T55x7_MODULATION_MANCHESTER |
1526 2 << T55x7_MAXBLOCK_SHIFT,
1527 0, 0, 0);
1528 }
1529 else
1530 // Writing configuration for T5555(Q5) tag
1531 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1532 T5555_MODULATION_MANCHESTER |
1533 2 << T5555_MAXBLOCK_SHIFT,
1534 0, 0, 0);
1535
1536 LED_D_OFF();
1537 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1538 (uint32_t)(id >> 32), (uint32_t)id);
1539 }
1540
1541 // Clone Indala 64-bit tag by UID to T55x7
1542 void CopyIndala64toT55x7(int hi, int lo)
1543 {
1544 //Program the 2 data blocks for supplied 64bit UID
1545 // and the block 0 for Indala64 format
1546 T55xxWriteBlock(hi,1,0,0);
1547 T55xxWriteBlock(lo,2,0,0);
1548 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1549 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1550 T55x7_MODULATION_PSK1 |
1551 2 << T55x7_MAXBLOCK_SHIFT,
1552 0, 0, 0);
1553 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1554 // T5567WriteBlock(0x603E1042,0);
1555
1556 DbpString("DONE!");
1557 }
1558
1559 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1560 {
1561 //Program the 7 data blocks for supplied 224bit UID
1562 // and the block 0 for Indala224 format
1563 T55xxWriteBlock(uid1,1,0,0);
1564 T55xxWriteBlock(uid2,2,0,0);
1565 T55xxWriteBlock(uid3,3,0,0);
1566 T55xxWriteBlock(uid4,4,0,0);
1567 T55xxWriteBlock(uid5,5,0,0);
1568 T55xxWriteBlock(uid6,6,0,0);
1569 T55xxWriteBlock(uid7,7,0,0);
1570 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1571 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1572 T55x7_MODULATION_PSK1 |
1573 7 << T55x7_MAXBLOCK_SHIFT,
1574 0,0,0);
1575 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1576 // T5567WriteBlock(0x603E10E2,0);
1577
1578 DbpString("DONE!");
1579 }
1580
1581 //-----------------------------------
1582 // EM4469 / EM4305 routines
1583 //-----------------------------------
1584 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1585 #define FWD_CMD_WRITE 0xA
1586 #define FWD_CMD_READ 0x9
1587 #define FWD_CMD_DISABLE 0x5
1588
1589 uint8_t forwardLink_data[64]; //array of forwarded bits
1590 uint8_t * forward_ptr; //ptr for forward message preparation
1591 uint8_t fwd_bit_sz; //forwardlink bit counter
1592 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1593
1594 //====================================================================
1595 // prepares command bits
1596 // see EM4469 spec
1597 //====================================================================
1598 uint8_t Prepare_Cmd( uint8_t cmd ) {
1599
1600 *forward_ptr++ = 0; //start bit
1601 *forward_ptr++ = 0; //second pause for 4050 code
1602
1603 *forward_ptr++ = cmd;
1604 cmd >>= 1;
1605 *forward_ptr++ = cmd;
1606 cmd >>= 1;
1607 *forward_ptr++ = cmd;
1608 cmd >>= 1;
1609 *forward_ptr++ = cmd;
1610
1611 return 6; //return number of emited bits
1612 }
1613
1614 //====================================================================
1615 // prepares address bits
1616 // see EM4469 spec
1617 //====================================================================
1618 uint8_t Prepare_Addr( uint8_t addr ) {
1619
1620 register uint8_t line_parity;
1621
1622 uint8_t i;
1623 line_parity = 0;
1624 for(i=0;i<6;i++) {
1625 *forward_ptr++ = addr;
1626 line_parity ^= addr;
1627 addr >>= 1;
1628 }
1629
1630 *forward_ptr++ = (line_parity & 1);
1631
1632 return 7; //return number of emited bits
1633 }
1634
1635 //====================================================================
1636 // prepares data bits intreleaved with parity bits
1637 // see EM4469 spec
1638 //====================================================================
1639 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1640
1641 register uint8_t line_parity;
1642 register uint8_t column_parity;
1643 register uint8_t i, j;
1644 register uint16_t data;
1645
1646 data = data_low;
1647 column_parity = 0;
1648
1649 for(i=0; i<4; i++) {
1650 line_parity = 0;
1651 for(j=0; j<8; j++) {
1652 line_parity ^= data;
1653 column_parity ^= (data & 1) << j;
1654 *forward_ptr++ = data;
1655 data >>= 1;
1656 }
1657 *forward_ptr++ = line_parity;
1658 if(i == 1)
1659 data = data_hi;
1660 }
1661
1662 for(j=0; j<8; j++) {
1663 *forward_ptr++ = column_parity;
1664 column_parity >>= 1;
1665 }
1666 *forward_ptr = 0;
1667
1668 return 45; //return number of emited bits
1669 }
1670
1671 //====================================================================
1672 // Forward Link send function
1673 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1674 // fwd_bit_count set with number of bits to be sent
1675 //====================================================================
1676 void SendForward(uint8_t fwd_bit_count) {
1677
1678 fwd_write_ptr = forwardLink_data;
1679 fwd_bit_sz = fwd_bit_count;
1680
1681 LED_D_ON();
1682
1683 // Set up FPGA, 125kHz
1684 LFSetupFPGAForADC(95, true);
1685
1686 // force 1st mod pulse (start gap must be longer for 4305)
1687 fwd_bit_sz--; //prepare next bit modulation
1688 fwd_write_ptr++;
1689 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1690 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1691 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1692 SpinDelayUs(16*8); //16 cycles on (8us each)
1693
1694 // now start writting
1695 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1696 if(((*fwd_write_ptr++) & 1) == 1)
1697 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1698 else {
1699 //These timings work for 4469/4269/4305 (with the 55*8 above)
1700 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1701 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1702 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1703 SpinDelayUs(9*8); //16 cycles on (8us each)
1704 }
1705 }
1706 }
1707
1708 void EM4xLogin(uint32_t Password) {
1709
1710 uint8_t fwd_bit_count;
1711
1712 forward_ptr = forwardLink_data;
1713 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1714 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1715
1716 SendForward(fwd_bit_count);
1717
1718 //Wait for command to complete
1719 SpinDelay(20);
1720 }
1721
1722 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1723
1724 uint8_t *dest = BigBuf_get_addr();
1725 uint16_t bufferlength = BigBuf_max_traceLen();
1726 uint32_t i = 0;
1727
1728 // Clear destination buffer before sending the command 0x80 = average.
1729 memset(dest, 0x80, bufferlength);
1730
1731 uint8_t fwd_bit_count;
1732
1733 //If password mode do login
1734 if (PwdMode == 1) EM4xLogin(Pwd);
1735
1736 forward_ptr = forwardLink_data;
1737 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1738 fwd_bit_count += Prepare_Addr( Address );
1739
1740 // Connect the A/D to the peak-detected low-frequency path.
1741 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1742 // Now set up the SSC to get the ADC samples that are now streaming at us.
1743 FpgaSetupSsc();
1744
1745 SendForward(fwd_bit_count);
1746
1747 // Now do the acquisition
1748 i = 0;
1749 for(;;) {
1750 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1751 AT91C_BASE_SSC->SSC_THR = 0x43;
1752 }
1753 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1754 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1755 ++i;
1756 if (i >= bufferlength) break;
1757 }
1758 }
1759
1760 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1761 cmd_send(CMD_ACK,0,0,0,0,0);
1762 LED_D_OFF();
1763 }
1764
1765 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1766
1767 uint8_t fwd_bit_count;
1768
1769 //If password mode do login
1770 if (PwdMode == 1) EM4xLogin(Pwd);
1771
1772 forward_ptr = forwardLink_data;
1773 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1774 fwd_bit_count += Prepare_Addr( Address );
1775 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1776
1777 SendForward(fwd_bit_count);
1778
1779 //Wait for write to complete
1780 SpinDelay(20);
1781 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1782 LED_D_OFF();
1783 }
1784
1785 void CopyViKingtoT55x7(uint32_t block1, uint32_t block2) {
1786 LED_D_ON();
1787 T55xxWriteBlock(block1,1,0,0);
1788 T55xxWriteBlock(block2,2,0,0);
1789 T55xxWriteBlock(T55x7_MODULATION_MANCHESTER | T55x7_BITRATE_RF_32 | 2 << T5555_MAXBLOCK_SHIFT,0,0,1);
1790 // ICEMAN NOTES:
1791 // Shouldn't this one be: T55x7_MAXBLOCK_SHIFT and 0 in password mode
1792 // like this:
1793 // T55xxWriteBlock(T55x7_MODULATION_MANCHESTER | T55x7_BITRATE_RF_32 | 2 << T55x7_MAXBLOCK_SHIFT,0,0,0);
1794 LED_D_OFF();
1795 }
1796
Impressum, Datenschutz