1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
37 #include "protocols.h"
40 #define abs(x) ( ((x)<0) ? -(x) : (x) )
42 //=============================================================================
43 // A buffer where we can queue things up to be sent through the FPGA, for
44 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
45 // is the order in which they go out on the wire.
46 //=============================================================================
48 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
49 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
52 struct common_area common_area
__attribute__((section(".commonarea")));
54 void ToSendReset(void)
60 void ToSendStuffBit(int b
)
64 ToSend
[ToSendMax
] = 0;
69 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
74 if(ToSendMax
>= sizeof(ToSend
)) {
76 DbpString("ToSendStuffBit overflowed!");
80 //=============================================================================
81 // Debug print functions, to go out over USB, to the usual PC-side client.
82 //=============================================================================
84 void DbpString(char *str
)
86 byte_t len
= strlen(str
);
87 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
91 void DbpIntegers(int x1
, int x2
, int x3
)
93 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void Dbprintf(const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128];
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpString(output_string
);
109 // prints HEX & ASCII
110 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
123 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
126 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
128 Dbprintf("%*D",l
,d
," ");
136 //-----------------------------------------------------------------------------
137 // Read an ADC channel and block till it completes, then return the result
138 // in ADC units (0 to 1023). Also a routine to average 32 samples and
140 //-----------------------------------------------------------------------------
141 static int ReadAdc(int ch
)
145 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
146 AT91C_BASE_ADC
->ADC_MR
=
147 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
148 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
149 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
151 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
152 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
153 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
156 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
158 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
160 // Note: with the "historic" values in the comments above, the error was 34% !!!
162 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
164 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
166 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
168 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
173 int AvgAdc(int ch
) // was static - merlok
178 for(i
= 0; i
< 32; i
++) {
182 return (a
+ 15) >> 5;
185 void MeasureAntennaTuning(void)
187 uint8_t LF_Results
[256];
188 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
189 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
194 * Sweeps the useful LF range of the proxmark from
195 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
196 * read the voltage in the antenna, the result left
197 * in the buffer is a graph which should clearly show
198 * the resonating frequency of your LF antenna
199 * ( hopefully around 95 if it is tuned to 125kHz!)
202 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
203 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
204 for (i
=255; i
>=19; i
--) {
206 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
208 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
209 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
210 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
212 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
213 if(LF_Results
[i
] > peak
) {
215 peak
= LF_Results
[i
];
221 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
228 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
230 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
237 void MeasureAntennaTuningHf(void)
239 int vHf
= 0; // in mV
241 DbpString("Measuring HF antenna, press button to exit");
243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
244 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
245 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
249 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
251 Dbprintf("%d mV",vHf
);
252 if (BUTTON_PRESS()) break;
254 DbpString("cancelled");
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
261 void ReadMem(int addr
)
263 const uint8_t *data
= ((uint8_t *)addr
);
265 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
266 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
269 /* osimage version information is linked in */
270 extern struct version_information version_information
;
271 /* bootrom version information is pointed to from _bootphase1_version_pointer */
272 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
273 void SendVersion(void)
275 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
276 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
278 /* Try to find the bootrom version information. Expect to find a pointer at
279 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
280 * pointer, then use it.
282 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
283 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
284 strcat(VersionString
, "bootrom version information appears invalid\n");
286 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
287 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
290 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
291 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
295 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
296 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
298 // Send Chip ID and used flash memory
299 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
300 uint32_t compressed_data_section_size
= common_area
.arg1
;
301 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
304 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
305 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
306 void printUSBSpeed(void)
308 Dbprintf("USB Speed:");
309 Dbprintf(" Sending USB packets to client...");
311 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
312 uint8_t *test_data
= BigBuf_get_addr();
315 uint32_t start_time
= end_time
= GetTickCount();
316 uint32_t bytes_transferred
= 0;
319 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
320 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
321 end_time
= GetTickCount();
322 bytes_transferred
+= USB_CMD_DATA_SIZE
;
326 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
327 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
328 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
329 1000 * bytes_transferred
/ (end_time
- start_time
));
334 * Prints runtime information about the PM3.
336 void SendStatus(void)
338 BigBuf_print_status();
340 printConfig(); //LF Sampling config
343 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
344 Dbprintf(" ToSendMax..........%d", ToSendMax
);
345 Dbprintf(" ToSendBit..........%d", ToSendBit
);
346 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
348 cmd_send(CMD_ACK
,1,0,0,0,0);
351 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
354 void StandAloneMode()
356 DbpString("Stand-alone mode! No PC necessary.");
357 // Oooh pretty -- notify user we're in elite samy mode now
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
365 LED(LED_ORANGE
, 200);
370 #ifdef WITH_ISO14443a_StandAlone
371 void StandAloneMode14a()
374 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
377 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
378 int cardRead
[OPTS
] = {0};
379 uint8_t readUID
[10] = {0};
380 uint32_t uid_1st
[OPTS
]={0};
381 uint32_t uid_2nd
[OPTS
]={0};
382 uint32_t uid_tmp1
= 0;
383 uint32_t uid_tmp2
= 0;
384 iso14a_card_select_t hi14a_card
[OPTS
];
386 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
388 LED(selected
+ 1, 0);
396 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
400 LED(selected
+ 1, 0);
404 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
405 /* need this delay to prevent catching some weird data */
407 /* Code for reading from 14a tag */
408 uint8_t uid
[10] ={0};
410 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
415 if (BUTTON_PRESS()) {
416 if (cardRead
[selected
]) {
417 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
420 else if (cardRead
[(selected
+1)%OPTS
]) {
421 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
422 selected
= (selected
+1)%OPTS
;
423 break; // playing = 1;
426 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
430 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
434 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
435 memcpy(readUID
,uid
,10*sizeof(uint8_t));
436 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
437 // Set UID byte order
438 for (int i
=0; i
<4; i
++)
440 dst
= (uint8_t *)&uid_tmp2
;
441 for (int i
=0; i
<4; i
++)
443 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
444 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
448 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
449 uid_1st
[selected
] = (uid_tmp1
)>>8;
450 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
453 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
454 uid_1st
[selected
] = uid_tmp1
;
455 uid_2nd
[selected
] = uid_tmp2
;
461 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
462 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
465 LED(LED_ORANGE
, 200);
467 LED(LED_ORANGE
, 200);
470 LED(selected
+ 1, 0);
472 // Next state is replay:
475 cardRead
[selected
] = 1;
477 /* MF Classic UID clone */
478 else if (iGotoClone
==1)
482 LED(selected
+ 1, 0);
483 LED(LED_ORANGE
, 250);
486 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
488 // wait for button to be released
489 // Delay cloning until card is in place
490 while(BUTTON_PRESS())
493 Dbprintf("Starting clone. [Bank: %u]", selected
);
494 // need this delay to prevent catching some weird data
496 // Begin clone function here:
497 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
498 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
499 memcpy(c.d.asBytes, data, 16);
502 Block read is similar:
503 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
504 We need to imitate that call with blockNo 0 to set a uid.
506 The get and set commands are handled in this file:
507 // Work with "magic Chinese" card
508 case CMD_MIFARE_CSETBLOCK:
509 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
511 case CMD_MIFARE_CGETBLOCK:
512 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
515 mfCSetUID provides example logic for UID set workflow:
516 -Read block0 from card in field with MifareCGetBlock()
517 -Configure new values without replacing reserved bytes
518 memcpy(block0, uid, 4); // Copy UID bytes from byte array
520 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
521 Bytes 5-7 are reserved SAK and ATQA for mifare classic
522 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
524 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
525 // arg0 = Flags, arg1=blockNo
526 MifareCGetBlock(params
, 0, oldBlock0
);
527 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
528 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
532 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
533 memcpy(newBlock0
,oldBlock0
,16);
534 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
536 newBlock0
[0] = uid_1st
[selected
]>>24;
537 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
538 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
539 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
540 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
542 // arg0 = workFlags, arg1 = blockNo, datain
543 MifareCSetBlock(params
, 0, newBlock0
);
544 MifareCGetBlock(params
, 0, testBlock0
);
546 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
547 DbpString("Cloned successfull!");
548 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
551 selected
= (selected
+ 1) % OPTS
;
553 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
558 LED(selected
+ 1, 0);
560 // Change where to record (or begin playing)
561 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
564 LED(selected
+ 1, 0);
566 // Begin transmitting
570 DbpString("Playing");
573 int button_action
= BUTTON_HELD(1000);
574 if (button_action
== 0) { // No button action, proceed with sim
575 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
576 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
577 num_to_bytes(uid_1st
[selected
], 3, data
);
578 num_to_bytes(uid_2nd
[selected
], 4, data
);
580 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
581 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
582 DbpString("Mifare Classic");
583 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
585 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
586 DbpString("Mifare Ultralight");
587 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
589 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
590 DbpString("Mifare DESFire");
591 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
594 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
595 SimulateIso14443aTag(1, flags
, data
);
598 else if (button_action
== BUTTON_SINGLE_CLICK
) {
599 selected
= (selected
+ 1) % OPTS
;
600 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
604 else if (button_action
== BUTTON_HOLD
) {
605 Dbprintf("Playtime over. Begin cloning...");
612 /* We pressed a button so ignore it here with a delay */
615 LED(selected
+ 1, 0);
618 while(BUTTON_PRESS())
624 // samy's sniff and repeat routine
628 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
630 int high
[OPTS
], low
[OPTS
];
635 // Turn on selected LED
636 LED(selected
+ 1, 0);
642 // Was our button held down or pressed?
643 int button_pressed
= BUTTON_HELD(1000);
646 // Button was held for a second, begin recording
647 if (button_pressed
> 0 && cardRead
== 0)
650 LED(selected
+ 1, 0);
654 DbpString("Starting recording");
656 // wait for button to be released
657 while(BUTTON_PRESS())
660 /* need this delay to prevent catching some weird data */
663 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
664 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
667 LED(selected
+ 1, 0);
668 // Finished recording
669 // If we were previously playing, set playing off
670 // so next button push begins playing what we recorded
674 else if (button_pressed
> 0 && cardRead
== 1) {
676 LED(selected
+ 1, 0);
680 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
682 // wait for button to be released
683 while(BUTTON_PRESS())
686 /* need this delay to prevent catching some weird data */
689 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
690 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
693 LED(selected
+ 1, 0);
694 // Finished recording
696 // If we were previously playing, set playing off
697 // so next button push begins playing what we recorded
702 // Change where to record (or begin playing)
703 else if (button_pressed
) {
704 // Next option if we were previously playing
706 selected
= (selected
+ 1) % OPTS
;
710 LED(selected
+ 1, 0);
712 // Begin transmitting
716 DbpString("Playing");
717 // wait for button to be released
718 while(BUTTON_PRESS())
721 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
722 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
723 DbpString("Done playing");
725 if (BUTTON_HELD(1000) > 0) {
726 DbpString("Exiting");
731 /* We pressed a button so ignore it here with a delay */
734 // when done, we're done playing, move to next option
735 selected
= (selected
+ 1) % OPTS
;
738 LED(selected
+ 1, 0);
741 while(BUTTON_PRESS())
750 Listen and detect an external reader. Determine the best location
754 Inside the ListenReaderField() function, there is two mode.
755 By default, when you call the function, you will enter mode 1.
756 If you press the PM3 button one time, you will enter mode 2.
757 If you press the PM3 button a second time, you will exit the function.
759 DESCRIPTION OF MODE 1:
760 This mode just listens for an external reader field and lights up green
761 for HF and/or red for LF. This is the original mode of the detectreader
764 DESCRIPTION OF MODE 2:
765 This mode will visually represent, using the LEDs, the actual strength of the
766 current compared to the maximum current detected. Basically, once you know
767 what kind of external reader is present, it will help you spot the best location to place
768 your antenna. You will probably not get some good results if there is a LF and a HF reader
769 at the same place! :-)
773 static const char LIGHT_SCHEME
[] = {
774 0x0, /* ---- | No field detected */
775 0x1, /* X--- | 14% of maximum current detected */
776 0x2, /* -X-- | 29% of maximum current detected */
777 0x4, /* --X- | 43% of maximum current detected */
778 0x8, /* ---X | 57% of maximum current detected */
779 0xC, /* --XX | 71% of maximum current detected */
780 0xE, /* -XXX | 86% of maximum current detected */
781 0xF, /* XXXX | 100% of maximum current detected */
783 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
785 void ListenReaderField(int limit
)
787 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
788 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
789 int mode
=1, display_val
, display_max
, i
;
793 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
796 // switch off FPGA - we don't want to measure our own signal
797 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
798 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
802 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
804 if(limit
!= HF_ONLY
) {
805 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
809 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
811 if (limit
!= LF_ONLY
) {
812 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
817 if (BUTTON_PRESS()) {
822 DbpString("Signal Strength Mode");
826 DbpString("Stopped");
834 if (limit
!= HF_ONLY
) {
836 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
842 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
843 // see if there's a significant change
844 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
845 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
852 if (limit
!= LF_ONLY
) {
854 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
860 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
861 // see if there's a significant change
862 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
863 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
871 if (limit
== LF_ONLY
) {
873 display_max
= lf_max
;
874 } else if (limit
== HF_ONLY
) {
876 display_max
= hf_max
;
877 } else { /* Pick one at random */
878 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
880 display_max
= hf_max
;
883 display_max
= lf_max
;
886 for (i
=0; i
<LIGHT_LEN
; i
++) {
887 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
888 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
889 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
890 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
891 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
899 void UsbPacketReceived(uint8_t *packet
, int len
)
901 UsbCommand
*c
= (UsbCommand
*)packet
;
903 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
907 case CMD_SET_LF_SAMPLING_CONFIG
:
908 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
910 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
911 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
913 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
914 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
916 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
917 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
919 case CMD_HID_DEMOD_FSK
:
920 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
922 case CMD_HID_SIM_TAG
:
923 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
925 case CMD_FSK_SIM_TAG
:
926 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
928 case CMD_ASK_SIM_TAG
:
929 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
931 case CMD_PSK_SIM_TAG
:
932 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
934 case CMD_HID_CLONE_TAG
:
935 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
937 case CMD_IO_DEMOD_FSK
:
938 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
940 case CMD_IO_CLONE_TAG
:
941 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
943 case CMD_EM410X_DEMOD
:
944 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
946 case CMD_EM410X_WRITE_TAG
:
947 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
949 case CMD_READ_TI_TYPE
:
952 case CMD_WRITE_TI_TYPE
:
953 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
955 case CMD_SIMULATE_TAG_125K
:
957 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
960 case CMD_LF_SIMULATE_BIDIR
:
961 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
963 case CMD_INDALA_CLONE_TAG
:
964 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
966 case CMD_INDALA_CLONE_TAG_L
:
967 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
969 case CMD_T55XX_READ_BLOCK
:
970 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
972 case CMD_T55XX_WRITE_BLOCK
:
973 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
975 case CMD_T55XX_WAKEUP
:
976 T55xxWakeUp(c
->arg
[0]);
978 case CMD_T55XX_RESET_READ
:
981 case CMD_PCF7931_READ
:
984 case CMD_PCF7931_WRITE
:
985 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
987 case CMD_EM4X_READ_WORD
:
988 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
990 case CMD_EM4X_WRITE_WORD
:
991 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
993 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
994 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
996 case CMD_VIKING_CLONE_TAG
:
997 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1002 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1003 SnoopHitag(c
->arg
[0]);
1005 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1006 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1008 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1009 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1013 #ifdef WITH_ISO15693
1014 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1015 AcquireRawAdcSamplesIso15693();
1017 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1018 RecordRawAdcSamplesIso15693();
1021 case CMD_ISO_15693_COMMAND
:
1022 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1025 case CMD_ISO_15693_FIND_AFI
:
1026 BruteforceIso15693Afi(c
->arg
[0]);
1029 case CMD_ISO_15693_DEBUG
:
1030 SetDebugIso15693(c
->arg
[0]);
1033 case CMD_READER_ISO_15693
:
1034 ReaderIso15693(c
->arg
[0]);
1036 case CMD_SIMTAG_ISO_15693
:
1037 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1042 case CMD_SIMULATE_TAG_LEGIC_RF
:
1043 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1046 case CMD_WRITER_LEGIC_RF
:
1047 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1050 case CMD_READER_LEGIC_RF
:
1051 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1055 #ifdef WITH_ISO14443b
1056 case CMD_READ_SRI512_TAG
:
1057 ReadSTMemoryIso14443b(0x0F);
1059 case CMD_READ_SRIX4K_TAG
:
1060 ReadSTMemoryIso14443b(0x7F);
1062 case CMD_SNOOP_ISO_14443B
:
1065 case CMD_SIMULATE_TAG_ISO_14443B
:
1066 SimulateIso14443bTag();
1068 case CMD_ISO_14443B_COMMAND
:
1069 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1073 #ifdef WITH_ISO14443a
1074 case CMD_SNOOP_ISO_14443a
:
1075 SniffIso14443a(c
->arg
[0]);
1077 case CMD_READER_ISO_14443a
:
1080 case CMD_SIMULATE_TAG_ISO_14443a
:
1081 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1084 case CMD_EPA_PACE_COLLECT_NONCE
:
1085 EPA_PACE_Collect_Nonce(c
);
1087 case CMD_EPA_PACE_REPLAY
:
1091 case CMD_READER_MIFARE
:
1092 ReaderMifare(c
->arg
[0]);
1094 case CMD_MIFARE_READBL
:
1095 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1097 case CMD_MIFAREU_READBL
:
1098 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1100 case CMD_MIFAREUC_AUTH
:
1101 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1103 case CMD_MIFAREU_READCARD
:
1104 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1106 case CMD_MIFAREUC_SETPWD
:
1107 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1109 case CMD_MIFARE_READSC
:
1110 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1112 case CMD_MIFARE_WRITEBL
:
1113 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1115 //case CMD_MIFAREU_WRITEBL_COMPAT:
1116 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1118 case CMD_MIFAREU_WRITEBL
:
1119 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1121 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1122 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1124 case CMD_MIFARE_NESTED
:
1125 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1127 case CMD_MIFARE_CHKKEYS
:
1128 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1130 case CMD_SIMULATE_MIFARE_CARD
:
1131 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1135 case CMD_MIFARE_SET_DBGMODE
:
1136 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1138 case CMD_MIFARE_EML_MEMCLR
:
1139 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1141 case CMD_MIFARE_EML_MEMSET
:
1142 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1144 case CMD_MIFARE_EML_MEMGET
:
1145 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1147 case CMD_MIFARE_EML_CARDLOAD
:
1148 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1151 // Work with "magic Chinese" card
1152 case CMD_MIFARE_CSETBLOCK
:
1153 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1155 case CMD_MIFARE_CGETBLOCK
:
1156 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1158 case CMD_MIFARE_CIDENT
:
1163 case CMD_MIFARE_SNIFFER
:
1164 SniffMifare(c
->arg
[0]);
1168 case CMD_MIFARE_DESFIRE_READBL
: break;
1169 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1170 case CMD_MIFARE_DESFIRE_AUTH1
:
1171 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1173 case CMD_MIFARE_DESFIRE_AUTH2
:
1174 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1176 case CMD_MIFARE_DES_READER
:
1177 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1179 case CMD_MIFARE_DESFIRE_INFO
:
1180 MifareDesfireGetInformation();
1182 case CMD_MIFARE_DESFIRE
:
1183 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1186 case CMD_MIFARE_COLLECT_NONCES
:
1191 // Makes use of ISO14443a FPGA Firmware
1192 case CMD_SNOOP_ICLASS
:
1195 case CMD_SIMULATE_TAG_ICLASS
:
1196 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1198 case CMD_READER_ICLASS
:
1199 ReaderIClass(c
->arg
[0]);
1201 case CMD_READER_ICLASS_REPLAY
:
1202 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1204 case CMD_ICLASS_EML_MEMSET
:
1205 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1207 case CMD_ICLASS_WRITEBLOCK
:
1208 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1210 case CMD_ICLASS_READCHECK
: // auth step 1
1211 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1213 case CMD_ICLASS_READBLOCK
:
1214 iClass_ReadBlk(c
->arg
[0]);
1216 case CMD_ICLASS_AUTHENTICATION
: //check
1217 iClass_Authentication(c
->d
.asBytes
);
1219 case CMD_ICLASS_DUMP
:
1220 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1222 case CMD_ICLASS_CLONE
:
1223 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1227 case CMD_HF_SNIFFER
:
1228 HfSnoop(c
->arg
[0], c
->arg
[1]);
1232 case CMD_BUFF_CLEAR
:
1236 case CMD_MEASURE_ANTENNA_TUNING
:
1237 MeasureAntennaTuning();
1240 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1241 MeasureAntennaTuningHf();
1244 case CMD_LISTEN_READER_FIELD
:
1245 ListenReaderField(c
->arg
[0]);
1248 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1249 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1251 LED_D_OFF(); // LED D indicates field ON or OFF
1254 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1257 uint8_t *BigBuf
= BigBuf_get_addr();
1259 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1260 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1261 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1263 // Trigger a finish downloading signal with an ACK frame
1264 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1268 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1269 uint8_t *b
= BigBuf_get_addr();
1270 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1271 cmd_send(CMD_ACK
,0,0,0,0,0);
1278 case CMD_SET_LF_DIVISOR
:
1279 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1280 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1283 case CMD_SET_ADC_MUX
:
1285 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1286 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1287 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1288 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1299 cmd_send(CMD_ACK
,0,0,0,0,0);
1309 case CMD_SETUP_WRITE
:
1310 case CMD_FINISH_WRITE
:
1311 case CMD_HARDWARE_RESET
:
1314 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1316 // We're going to reset, and the bootrom will take control.
1320 case CMD_START_FLASH
:
1321 if(common_area
.flags
.bootrom_present
) {
1322 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1325 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1329 case CMD_DEVICE_INFO
: {
1330 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1331 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1332 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1336 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1341 void __attribute__((noreturn
)) AppMain(void)
1345 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1346 /* Initialize common area */
1347 memset(&common_area
, 0, sizeof(common_area
));
1348 common_area
.magic
= COMMON_AREA_MAGIC
;
1349 common_area
.version
= 1;
1351 common_area
.flags
.osimage_present
= 1;
1361 // The FPGA gets its clock from us from PCK0 output, so set that up.
1362 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1363 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1364 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1365 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1366 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1367 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1368 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1371 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1373 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1375 // Load the FPGA image, which we have stored in our flash.
1376 // (the HF version by default)
1377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1385 byte_t rx
[sizeof(UsbCommand
)];
1390 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1392 UsbPacketReceived(rx
,rx_len
);
1398 #ifndef WITH_ISO14443a_StandAlone
1399 if (BUTTON_HELD(1000) > 0)
1403 #ifdef WITH_ISO14443a
1404 #ifdef WITH_ISO14443a_StandAlone
1405 if (BUTTON_HELD(1000) > 0)
1406 StandAloneMode14a();