]>
git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/crapto1.c
3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2014 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
28 for(i
= 0; i
< 1 << 20; ++i
)
29 filterlut
[i
] = filter(i
);
31 #define filter(x) (filterlut[(x) & 0xfffff])
34 static void quicksort(uint32_t* const start
, uint32_t* const stop
)
36 uint32_t *it
= start
+ 1, *rit
= stop
, t
;
44 else if(*rit
> *start
)
47 t
= *it
, *it
= *rit
, *rit
= t
;
52 t
= *rit
, *rit
= *start
, *start
= t
;
54 quicksort(start
, rit
- 1);
55 quicksort(rit
+ 1, stop
);
58 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
60 static inline uint32_t* binsearch(uint32_t *start
, uint32_t *stop
)
62 uint32_t mid
, val
= *stop
& 0xff000000;
64 if(start
[mid
= (stop
- start
) >> 1] > val
)
72 /** update_contribution
73 * helper, calculates the partial linear feedback contributions and puts in MSB
76 update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
78 uint32_t p
= *item
>> 25;
80 p
= p
<< 1 | parity(*item
& mask1
);
81 p
= p
<< 1 | parity(*item
& mask2
);
82 *item
= p
<< 24 | (*item
& 0xffffff);
86 * using a bit of the keystream extend the table of possible lfsr states
89 extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
92 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
93 if(filter(*tbl
) ^ filter(*tbl
| 1)) {
94 *tbl
|= filter(*tbl
) ^ bit
;
95 update_contribution(tbl
, m1
, m2
);
97 } else if(filter(*tbl
) == bit
) {
100 update_contribution(tbl
, m1
, m2
);
102 update_contribution(tbl
, m1
, m2
);
107 /** extend_table_simple
108 * using a bit of the keystream extend the table of possible lfsr states
110 static inline void extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
112 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
113 if(filter(*tbl
) ^ filter(*tbl
| 1))
114 *tbl
|= filter(*tbl
) ^ bit
;
115 else if(filter(*tbl
) == bit
) {
122 * recursively narrow down the search space, 4 bits of keystream at a time
124 static struct Crypto1State
*
125 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
126 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
127 struct Crypto1State
*sl
, uint32_t in
)
132 for(e
= e_head
; e
<= e_tail
; ++e
) {
133 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
134 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
136 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
137 sl
[1].odd
= sl
[1].even
= 0;
143 for(i
= 0; i
< 4 && rem
--; i
++) {
147 extend_table(o_head
, &o_tail
, oks
& 1, LF_POLY_EVEN
<< 1 | 1,
148 LF_POLY_ODD
<< 1, 0);
152 extend_table(e_head
, &e_tail
, eks
& 1, LF_POLY_ODD
,
153 LF_POLY_EVEN
<< 1 | 1, in
& 3);
158 quicksort(o_head
, o_tail
);
159 quicksort(e_head
, e_tail
);
161 while(o_tail
>= o_head
&& e_tail
>= e_head
)
162 if(((*o_tail
^ *e_tail
) >> 24) == 0) {
163 o_tail
= binsearch(o_head
, o
= o_tail
);
164 e_tail
= binsearch(e_head
, e
= e_tail
);
165 sl
= recover(o_tail
--, o
, oks
,
166 e_tail
--, e
, eks
, rem
, sl
, in
);
168 else if(*o_tail
> *e_tail
)
169 o_tail
= binsearch(o_head
, o_tail
) - 1;
171 e_tail
= binsearch(e_head
, e_tail
) - 1;
176 * recover the state of the lfsr given 32 bits of the keystream
177 * additionally you can use the in parameter to specify the value
178 * that was fed into the lfsr at the time the keystream was generated
180 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
182 struct Crypto1State
*statelist
;
183 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
184 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
187 // split the keystream into an odd and even part
188 for(i
= 31; i
>= 0; i
-= 2)
189 oks
= oks
<< 1 | BEBIT(ks2
, i
);
190 for(i
= 30; i
>= 0; i
-= 2)
191 eks
= eks
<< 1 | BEBIT(ks2
, i
);
193 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
194 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
195 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
196 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
202 statelist
->odd
= statelist
->even
= 0;
204 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
205 for(i
= 1 << 20; i
>= 0; --i
) {
206 if(filter(i
) == (oks
& 1))
208 if(filter(i
) == (eks
& 1))
212 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
213 for(i
= 0; i
< 4; i
++) {
214 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
215 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
218 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
219 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
220 // parameter into account.
221 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00);
222 recover(odd_head
, odd_tail
, oks
,
223 even_head
, even_tail
, eks
, 11, statelist
, in
<< 1);
231 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
232 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
233 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
234 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
235 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
236 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
237 0x7EC7EE90, 0x7F63F748, 0x79117020};
238 static const uint32_t T1
[] = {
239 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
240 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
241 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
242 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
243 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
244 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
245 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
246 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
247 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
248 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
249 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
250 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
251 /** Reverse 64 bits of keystream into possible cipher states
252 * Variation mentioned in the paper. Somewhat optimized version
254 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
256 struct Crypto1State
*statelist
, *sl
;
257 uint8_t oks
[32], eks
[32], hi
[32];
258 uint32_t low
= 0, win
= 0;
259 uint32_t *tail
, table
[1 << 16];
262 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
265 sl
->odd
= sl
->even
= 0;
267 for(i
= 30; i
>= 0; i
-= 2) {
268 oks
[i
>> 1] = BEBIT(ks2
, i
);
269 oks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
271 for(i
= 31; i
>= 0; i
-= 2) {
272 eks
[i
>> 1] = BEBIT(ks2
, i
);
273 eks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
276 for(i
= 0xfffff; i
>= 0; --i
) {
277 if (filter(i
) != oks
[0])
281 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
282 extend_table_simple(table
, &tail
, oks
[j
]);
287 for(j
= 0; j
< 19; ++j
)
288 low
= low
<< 1 | parity(i
& S1
[j
]);
289 for(j
= 0; j
< 32; ++j
)
290 hi
[j
] = parity(i
& T1
[j
]);
292 for(; tail
>= table
; --tail
) {
293 for(j
= 0; j
< 3; ++j
) {
295 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
296 if(filter(*tail
) != oks
[29 + j
])
300 for(j
= 0; j
< 19; ++j
)
301 win
= win
<< 1 | parity(*tail
& S2
[j
]);
304 for(j
= 0; j
< 32; ++j
) {
305 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
306 if(filter(win
) != eks
[j
])
310 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
311 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
314 sl
->odd
= sl
->even
= 0;
321 /** lfsr_rollback_bit
322 * Rollback the shift register in order to get previous states
324 uint8_t lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
331 t
= s
->odd
, s
->odd
= s
->even
, s
->even
= t
;
334 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
335 out
^= LF_POLY_ODD
& s
->odd
;
337 out
^= (ret
= filter(s
->odd
)) & !!fb
;
339 s
->even
|= parity(out
) << 23;
342 /** lfsr_rollback_byte
343 * Rollback the shift register in order to get previous states
345 uint8_t lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
349 for (i = 7; i >= 0; --i)
350 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
352 // unfold loop 20160112
354 ret
|= lfsr_rollback_bit(s
, BIT(in
, 7), fb
) << 7;
355 ret
|= lfsr_rollback_bit(s
, BIT(in
, 6), fb
) << 6;
356 ret
|= lfsr_rollback_bit(s
, BIT(in
, 5), fb
) << 5;
357 ret
|= lfsr_rollback_bit(s
, BIT(in
, 4), fb
) << 4;
358 ret
|= lfsr_rollback_bit(s
, BIT(in
, 3), fb
) << 3;
359 ret
|= lfsr_rollback_bit(s
, BIT(in
, 2), fb
) << 2;
360 ret
|= lfsr_rollback_bit(s
, BIT(in
, 1), fb
) << 1;
361 ret
|= lfsr_rollback_bit(s
, BIT(in
, 0), fb
) << 0;
364 /** lfsr_rollback_word
365 * Rollback the shift register in order to get previous states
367 uint32_t lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
372 for (i = 31; i >= 0; --i)
373 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
375 // unfold loop 20160112
377 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 31), fb
) << (31 ^ 24);
378 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 30), fb
) << (30 ^ 24);
379 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 29), fb
) << (29 ^ 24);
380 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 28), fb
) << (28 ^ 24);
381 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 27), fb
) << (27 ^ 24);
382 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 26), fb
) << (26 ^ 24);
383 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 25), fb
) << (25 ^ 24);
384 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 24), fb
) << (24 ^ 24);
386 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 23), fb
) << (23 ^ 24);
387 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 22), fb
) << (22 ^ 24);
388 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 21), fb
) << (21 ^ 24);
389 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 20), fb
) << (20 ^ 24);
390 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 19), fb
) << (19 ^ 24);
391 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 18), fb
) << (18 ^ 24);
392 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 17), fb
) << (17 ^ 24);
393 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 16), fb
) << (16 ^ 24);
395 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 15), fb
) << (15 ^ 24);
396 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 14), fb
) << (14 ^ 24);
397 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 13), fb
) << (13 ^ 24);
398 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 12), fb
) << (12 ^ 24);
399 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 11), fb
) << (11 ^ 24);
400 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 10), fb
) << (10 ^ 24);
401 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 9), fb
) << (9 ^ 24);
402 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 8), fb
) << (8 ^ 24);
404 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 7), fb
) << (7 ^ 24);
405 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 6), fb
) << (6 ^ 24);
406 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 5), fb
) << (5 ^ 24);
407 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 4), fb
) << (4 ^ 24);
408 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 3), fb
) << (3 ^ 24);
409 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 2), fb
) << (2 ^ 24);
410 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 1), fb
) << (1 ^ 24);
411 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 0), fb
) << (0 ^ 24);
416 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
418 static uint16_t *dist
= 0;
419 int nonce_distance(uint32_t from
, uint32_t to
)
422 // generate distance lookup table
424 dist
= malloc(2 << 16);
425 if (!dist
) return -1;
427 for (x
= i
= 1; i
; ++i
) {
428 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
429 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
432 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
436 static uint32_t fastfwd
[2][8] = {
437 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
438 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
443 * Is an exported helper function from the common prefix attack
444 * Described in the "dark side" paper. It returns an -1 terminated array
445 * of possible partial(21 bit) secret state.
446 * The required keystream(ks) needs to contain the keystream that was used to
447 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
448 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
450 uint32_t* lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
452 uint32_t *candidates
= malloc(4 << 10);
453 if(!candidates
) return 0;
456 int size
= 0, i
, good
;
458 for(i
= 0; i
< 1 << 21; ++i
) {
459 for(c
= 0, good
= 1; good
&& c
< 8; ++c
) {
460 entry
= i
^ fastfwd
[isodd
][c
];
461 good
&= (BIT(ks
[c
], isodd
) == filter(entry
>> 1));
462 good
&= (BIT(ks
[c
], isodd
+ 2) == filter(entry
));
465 candidates
[size
++] = i
;
468 candidates
[size
] = -1;
474 * helper function which eliminates possible secret states using parity bits
476 static struct Crypto1State
* check_pfx_parity(uint32_t prefix
, uint32_t rresp
, uint8_t parities
[8][8], uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
)
478 uint32_t ks1
, nr
, ks2
, rr
, ks3
, c
, good
= 1;
480 for(c
= 0; good
&& c
< 8; ++c
) {
481 sl
->odd
= odd
^ fastfwd
[1][c
];
482 sl
->even
= even
^ fastfwd
[0][c
];
484 lfsr_rollback_bit(sl
, 0, 0);
485 lfsr_rollback_bit(sl
, 0, 0);
487 ks3
= lfsr_rollback_bit(sl
, 0, 0);
488 ks2
= lfsr_rollback_word(sl
, 0, 0);
489 ks1
= lfsr_rollback_word(sl
, prefix
| c
<< 5, 1);
491 nr
= ks1
^ (prefix
| c
<< 5);
494 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
495 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
496 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
497 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
498 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ ks3
;
504 /** lfsr_common_prefix
505 * Implentation of the common prefix attack.
506 * Requires the 28 bit constant prefix used as reader nonce (pfx)
507 * The reader response used (rr)
508 * The keystream used to encrypt the observed NACK's (ks)
509 * The parity bits (par)
510 * It returns a zero terminated list of possible cipher states after the
511 * tag nonce was fed in
513 struct Crypto1State
* lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8])
515 struct Crypto1State
*statelist
, *s
;
516 uint32_t *odd
, *even
, *o
, *e
, top
;
518 odd
= lfsr_prefix_ks(ks
, 1);
519 even
= lfsr_prefix_ks(ks
, 0);
521 s
= statelist
= malloc((sizeof *statelist
) << 21);
522 if(!s
|| !odd
|| !even
) {
528 for(o
= odd
; *o
+ 1; ++o
)
529 for(e
= even
; *e
+ 1; ++e
)
530 for(top
= 0; top
< 64; ++top
) {
532 *e
+= (!(top
& 7) + 1) << 21;
533 s
= check_pfx_parity(pfx
, rr
, par
, *o
, *e
, s
);
536 s
->odd
= s
->even
= 0;