]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443b.c
@frederikmoellers EPA changes, with APDU for ISO14443b support
[proxmark3-svn] / armsrc / iso14443b.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
11
12 #include "proxmark3.h"
13 #include "apps.h"
14 #include "util.h"
15 #include "string.h"
16
17 #include "iso14443crc.h"
18
19 #define RECEIVE_SAMPLES_TIMEOUT 0x0003FFFF
20 #define ISO14443B_DMA_BUFFER_SIZE 256
21
22 uint8_t PowerOn = TRUE;
23 // PCB Block number for APDUs
24 static uint8_t pcb_blocknum = 0;
25
26 //=============================================================================
27 // An ISO 14443 Type B tag. We listen for commands from the reader, using
28 // a UART kind of thing that's implemented in software. When we get a
29 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
30 // If it's good, then we can do something appropriate with it, and send
31 // a response.
32 //=============================================================================
33
34 //-----------------------------------------------------------------------------
35 // Code up a string of octets at layer 2 (including CRC, we don't generate
36 // that here) so that they can be transmitted to the reader. Doesn't transmit
37 // them yet, just leaves them ready to send in ToSend[].
38 //-----------------------------------------------------------------------------
39 static void CodeIso14443bAsTag(const uint8_t *cmd, int len)
40 {
41 int i;
42
43 ToSendReset();
44
45 // Transmit a burst of ones, as the initial thing that lets the
46 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
47 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
48 // so I will too.
49 for(i = 0; i < 20; i++) {
50 ToSendStuffBit(1);
51 ToSendStuffBit(1);
52 ToSendStuffBit(1);
53 ToSendStuffBit(1);
54 }
55
56 // Send SOF.
57 for(i = 0; i < 10; i++) {
58 ToSendStuffBit(0);
59 ToSendStuffBit(0);
60 ToSendStuffBit(0);
61 ToSendStuffBit(0);
62 }
63 for(i = 0; i < 2; i++) {
64 ToSendStuffBit(1);
65 ToSendStuffBit(1);
66 ToSendStuffBit(1);
67 ToSendStuffBit(1);
68 }
69
70 for(i = 0; i < len; i++) {
71 int j;
72 uint8_t b = cmd[i];
73
74 // Start bit
75 ToSendStuffBit(0);
76 ToSendStuffBit(0);
77 ToSendStuffBit(0);
78 ToSendStuffBit(0);
79
80 // Data bits
81 for(j = 0; j < 8; j++) {
82 if(b & 1) {
83 ToSendStuffBit(1);
84 ToSendStuffBit(1);
85 ToSendStuffBit(1);
86 ToSendStuffBit(1);
87 } else {
88 ToSendStuffBit(0);
89 ToSendStuffBit(0);
90 ToSendStuffBit(0);
91 ToSendStuffBit(0);
92 }
93 b >>= 1;
94 }
95
96 // Stop bit
97 ToSendStuffBit(1);
98 ToSendStuffBit(1);
99 ToSendStuffBit(1);
100 ToSendStuffBit(1);
101 }
102
103 // Send EOF.
104 for(i = 0; i < 10; i++) {
105 ToSendStuffBit(0);
106 ToSendStuffBit(0);
107 ToSendStuffBit(0);
108 ToSendStuffBit(0);
109 }
110 for(i = 0; i < 2; i++) {
111 ToSendStuffBit(1);
112 ToSendStuffBit(1);
113 ToSendStuffBit(1);
114 ToSendStuffBit(1);
115 }
116
117 // Convert from last byte pos to length
118 ToSendMax++;
119 }
120
121 //-----------------------------------------------------------------------------
122 // The software UART that receives commands from the reader, and its state
123 // variables.
124 //-----------------------------------------------------------------------------
125 static struct {
126 enum {
127 STATE_UNSYNCD,
128 STATE_GOT_FALLING_EDGE_OF_SOF,
129 STATE_AWAITING_START_BIT,
130 STATE_RECEIVING_DATA
131 } state;
132 uint16_t shiftReg;
133 int bitCnt;
134 int byteCnt;
135 int byteCntMax;
136 int posCnt;
137 uint8_t *output;
138 } Uart;
139
140 /* Receive & handle a bit coming from the reader.
141 *
142 * This function is called 4 times per bit (every 2 subcarrier cycles).
143 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
144 *
145 * LED handling:
146 * LED A -> ON once we have received the SOF and are expecting the rest.
147 * LED A -> OFF once we have received EOF or are in error state or unsynced
148 *
149 * Returns: true if we received a EOF
150 * false if we are still waiting for some more
151 */
152 static RAMFUNC int Handle14443bUartBit(uint8_t bit)
153 {
154 switch(Uart.state) {
155 case STATE_UNSYNCD:
156 if(!bit) {
157 // we went low, so this could be the beginning
158 // of an SOF
159 Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
160 Uart.posCnt = 0;
161 Uart.bitCnt = 0;
162 }
163 break;
164
165 case STATE_GOT_FALLING_EDGE_OF_SOF:
166 Uart.posCnt++;
167 if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
168 if(bit) {
169 if(Uart.bitCnt > 9) {
170 // we've seen enough consecutive
171 // zeros that it's a valid SOF
172 Uart.posCnt = 0;
173 Uart.byteCnt = 0;
174 Uart.state = STATE_AWAITING_START_BIT;
175 LED_A_ON(); // Indicate we got a valid SOF
176 } else {
177 // didn't stay down long enough
178 // before going high, error
179 Uart.state = STATE_UNSYNCD;
180 }
181 } else {
182 // do nothing, keep waiting
183 }
184 Uart.bitCnt++;
185 }
186 if(Uart.posCnt >= 4) Uart.posCnt = 0;
187 if(Uart.bitCnt > 12) {
188 // Give up if we see too many zeros without
189 // a one, too.
190 LED_A_OFF();
191 Uart.state = STATE_UNSYNCD;
192 }
193 break;
194
195 case STATE_AWAITING_START_BIT:
196 Uart.posCnt++;
197 if(bit) {
198 if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
199 // stayed high for too long between
200 // characters, error
201 Uart.state = STATE_UNSYNCD;
202 }
203 } else {
204 // falling edge, this starts the data byte
205 Uart.posCnt = 0;
206 Uart.bitCnt = 0;
207 Uart.shiftReg = 0;
208 Uart.state = STATE_RECEIVING_DATA;
209 }
210 break;
211
212 case STATE_RECEIVING_DATA:
213 Uart.posCnt++;
214 if(Uart.posCnt == 2) {
215 // time to sample a bit
216 Uart.shiftReg >>= 1;
217 if(bit) {
218 Uart.shiftReg |= 0x200;
219 }
220 Uart.bitCnt++;
221 }
222 if(Uart.posCnt >= 4) {
223 Uart.posCnt = 0;
224 }
225 if(Uart.bitCnt == 10) {
226 if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
227 {
228 // this is a data byte, with correct
229 // start and stop bits
230 Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
231 Uart.byteCnt++;
232
233 if(Uart.byteCnt >= Uart.byteCntMax) {
234 // Buffer overflowed, give up
235 LED_A_OFF();
236 Uart.state = STATE_UNSYNCD;
237 } else {
238 // so get the next byte now
239 Uart.posCnt = 0;
240 Uart.state = STATE_AWAITING_START_BIT;
241 }
242 } else if (Uart.shiftReg == 0x000) {
243 // this is an EOF byte
244 LED_A_OFF(); // Finished receiving
245 Uart.state = STATE_UNSYNCD;
246 if (Uart.byteCnt != 0) {
247 return TRUE;
248 }
249 } else {
250 // this is an error
251 LED_A_OFF();
252 Uart.state = STATE_UNSYNCD;
253 }
254 }
255 break;
256
257 default:
258 LED_A_OFF();
259 Uart.state = STATE_UNSYNCD;
260 break;
261 }
262
263 return FALSE;
264 }
265
266
267 static void UartReset()
268 {
269 Uart.byteCntMax = MAX_FRAME_SIZE;
270 Uart.state = STATE_UNSYNCD;
271 Uart.byteCnt = 0;
272 Uart.bitCnt = 0;
273 memset(Uart.output, 0x00, MAX_FRAME_SIZE);
274 }
275
276
277 static void UartInit(uint8_t *data)
278 {
279 Uart.output = data;
280 UartReset();
281 }
282
283
284 //-----------------------------------------------------------------------------
285 // Receive a command (from the reader to us, where we are the simulated tag),
286 // and store it in the given buffer, up to the given maximum length. Keeps
287 // spinning, waiting for a well-framed command, until either we get one
288 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
289 //
290 // Assume that we're called with the SSC (to the FPGA) and ADC path set
291 // correctly.
292 //-----------------------------------------------------------------------------
293 static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len)
294 {
295 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
296 // only, since we are receiving, not transmitting).
297 // Signal field is off with the appropriate LED
298 LED_D_OFF();
299 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
300
301 // Now run a `software UART' on the stream of incoming samples.
302 UartInit(received);
303
304 for(;;) {
305 WDT_HIT();
306
307 if(BUTTON_PRESS()) return FALSE;
308
309 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
310 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
311 for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
312 if(Handle14443bUartBit(b & mask)) {
313 *len = Uart.byteCnt;
314 return TRUE;
315 }
316 }
317 }
318 }
319
320 return FALSE;
321 }
322
323 //-----------------------------------------------------------------------------
324 // Main loop of simulated tag: receive commands from reader, decide what
325 // response to send, and send it.
326 //-----------------------------------------------------------------------------
327 void SimulateIso14443bTag(void)
328 {
329 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
330 static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
331 // ... and REQB, AFI=0, Normal Request, N=1:
332 static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
333 // ... and HLTB
334 static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
335 // ... and ATTRIB
336 static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
337
338 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
339 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
340 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
341 static const uint8_t response1[] = {
342 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
343 0x00, 0x21, 0x85, 0x5e, 0xd7
344 };
345 // response to HLTB and ATTRIB
346 static const uint8_t response2[] = {0x00, 0x78, 0xF0};
347
348 uint8_t parity[MAX_PARITY_SIZE];
349
350 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
351
352 clear_trace();
353 set_tracing(TRUE);
354
355 const uint8_t *resp;
356 uint8_t *respCode;
357 uint16_t respLen, respCodeLen;
358
359 // allocate command receive buffer
360 BigBuf_free();
361 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
362
363 uint16_t len;
364 uint16_t cmdsRecvd = 0;
365
366 // prepare the (only one) tag answer:
367 CodeIso14443bAsTag(response1, sizeof(response1));
368 uint8_t *resp1Code = BigBuf_malloc(ToSendMax);
369 memcpy(resp1Code, ToSend, ToSendMax);
370 uint16_t resp1CodeLen = ToSendMax;
371
372 // prepare the (other) tag answer:
373 CodeIso14443bAsTag(response2, sizeof(response2));
374 uint8_t *resp2Code = BigBuf_malloc(ToSendMax);
375 memcpy(resp2Code, ToSend, ToSendMax);
376 uint16_t resp2CodeLen = ToSendMax;
377
378 // We need to listen to the high-frequency, peak-detected path.
379 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
380 FpgaSetupSsc();
381
382 cmdsRecvd = 0;
383
384 for(;;) {
385
386 if(!GetIso14443bCommandFromReader(receivedCmd, &len)) {
387 Dbprintf("button pressed, received %d commands", cmdsRecvd);
388 break;
389 }
390
391 if (tracing) {
392 LogTrace(receivedCmd, len, 0, 0, parity, TRUE);
393 }
394
395 // Good, look at the command now.
396 if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0)
397 || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) {
398 resp = response1;
399 respLen = sizeof(response1);
400 respCode = resp1Code;
401 respCodeLen = resp1CodeLen;
402 } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0])
403 || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) {
404 resp = response2;
405 respLen = sizeof(response2);
406 respCode = resp2Code;
407 respCodeLen = resp2CodeLen;
408 } else {
409 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
410 // And print whether the CRC fails, just for good measure
411 uint8_t b1, b2;
412 if (len >= 3){ // if crc exists
413 ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
414 if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
415 // Not so good, try again.
416 DbpString("+++CRC fail");
417
418 } else {
419 DbpString("CRC passes");
420 }
421 }
422 //get rid of compiler warning
423 respCodeLen = 0;
424 resp = response1;
425 respLen = 0;
426 respCode = resp1Code;
427 //don't crash at new command just wait and see if reader will send other new cmds.
428 //break;
429 }
430
431 cmdsRecvd++;
432
433 if(cmdsRecvd > 0x30) {
434 DbpString("many commands later...");
435 break;
436 }
437
438 if(respCodeLen <= 0) continue;
439
440 // Modulate BPSK
441 // Signal field is off with the appropriate LED
442 LED_D_OFF();
443 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
444 AT91C_BASE_SSC->SSC_THR = 0xff;
445 FpgaSetupSsc();
446
447 uint8_t c;
448 // clear receiving shift register and holding register
449 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
450 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
451 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
452 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
453
454 // Clear TXRDY:
455 AT91C_BASE_SSC->SSC_THR = 0x00;
456
457 // Transmit the response.
458 uint16_t FpgaSendQueueDelay = 0;
459 uint16_t i = 0;
460 for(;i < respCodeLen; ) {
461 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
462 AT91C_BASE_SSC->SSC_THR = respCode[i++];
463 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
464 }
465 if(BUTTON_PRESS()) break;
466 }
467
468 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
469 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
470 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
471 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
472 AT91C_BASE_SSC->SSC_THR = 0x00;
473 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
474 i++;
475 }
476 }
477
478 // trace the response:
479 if (tracing) LogTrace(resp, respLen, 0, 0, parity, FALSE);
480 }
481 FpgaDisableSscDma();
482 }
483
484 //=============================================================================
485 // An ISO 14443 Type B reader. We take layer two commands, code them
486 // appropriately, and then send them to the tag. We then listen for the
487 // tag's response, which we leave in the buffer to be demodulated on the
488 // PC side.
489 //=============================================================================
490
491 static struct {
492 enum {
493 DEMOD_UNSYNCD,
494 DEMOD_PHASE_REF_TRAINING,
495 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
496 DEMOD_GOT_FALLING_EDGE_OF_SOF,
497 DEMOD_AWAITING_START_BIT,
498 DEMOD_RECEIVING_DATA
499 } state;
500 int bitCount;
501 int posCount;
502 int thisBit;
503 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
504 int metric;
505 int metricN;
506 */
507 uint16_t shiftReg;
508 uint8_t *output;
509 int len;
510 int sumI;
511 int sumQ;
512 } Demod;
513
514 /*
515 * Handles reception of a bit from the tag
516 *
517 * This function is called 2 times per bit (every 4 subcarrier cycles).
518 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
519 *
520 * LED handling:
521 * LED C -> ON once we have received the SOF and are expecting the rest.
522 * LED C -> OFF once we have received EOF or are unsynced
523 *
524 * Returns: true if we received a EOF
525 * false if we are still waiting for some more
526 *
527 */
528 static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
529 {
530 int v;
531
532 // The soft decision on the bit uses an estimate of just the
533 // quadrant of the reference angle, not the exact angle.
534 #define MAKE_SOFT_DECISION() { \
535 if(Demod.sumI > 0) { \
536 v = ci; \
537 } else { \
538 v = -ci; \
539 } \
540 if(Demod.sumQ > 0) { \
541 v += cq; \
542 } else { \
543 v -= cq; \
544 } \
545 }
546
547 #define SUBCARRIER_DETECT_THRESHOLD 8
548
549 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
550 /* #define CHECK_FOR_SUBCARRIER() { \
551 v = ci; \
552 if(v < 0) v = -v; \
553 if(cq > 0) { \
554 v += cq; \
555 } else { \
556 v -= cq; \
557 } \
558 }
559 */
560 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
561 #define CHECK_FOR_SUBCARRIER() { \
562 if(ci < 0) { \
563 if(cq < 0) { /* ci < 0, cq < 0 */ \
564 if (cq < ci) { \
565 v = -cq - (ci >> 1); \
566 } else { \
567 v = -ci - (cq >> 1); \
568 } \
569 } else { /* ci < 0, cq >= 0 */ \
570 if (cq < -ci) { \
571 v = -ci + (cq >> 1); \
572 } else { \
573 v = cq - (ci >> 1); \
574 } \
575 } \
576 } else { \
577 if(cq < 0) { /* ci >= 0, cq < 0 */ \
578 if (-cq < ci) { \
579 v = ci - (cq >> 1); \
580 } else { \
581 v = -cq + (ci >> 1); \
582 } \
583 } else { /* ci >= 0, cq >= 0 */ \
584 if (cq < ci) { \
585 v = ci + (cq >> 1); \
586 } else { \
587 v = cq + (ci >> 1); \
588 } \
589 } \
590 } \
591 }
592
593 switch(Demod.state) {
594 case DEMOD_UNSYNCD:
595 CHECK_FOR_SUBCARRIER();
596 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
597 Demod.state = DEMOD_PHASE_REF_TRAINING;
598 Demod.sumI = ci;
599 Demod.sumQ = cq;
600 Demod.posCount = 1;
601 }
602 break;
603
604 case DEMOD_PHASE_REF_TRAINING:
605 if(Demod.posCount < 10*2) {
606 CHECK_FOR_SUBCARRIER();
607 if (v > SUBCARRIER_DETECT_THRESHOLD) {
608 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
609 // note: synchronization time > 80 1/fs
610 Demod.sumI += ci;
611 Demod.sumQ += cq;
612 Demod.posCount++;
613 } else { // subcarrier lost
614 Demod.state = DEMOD_UNSYNCD;
615 }
616 } else {
617 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
618 }
619 break;
620
621 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
622 MAKE_SOFT_DECISION();
623 if(v < 0) { // logic '0' detected
624 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
625 Demod.posCount = 0; // start of SOF sequence
626 } else {
627 //if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
628 if(Demod.posCount > 25*2) { // maximum length of TR1 = 200 1/fs
629 Demod.state = DEMOD_UNSYNCD;
630 }
631 }
632 Demod.posCount++;
633 break;
634
635 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
636 Demod.posCount++;
637 MAKE_SOFT_DECISION();
638 if(v > 0) {
639 if(Demod.posCount < 10*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
640 Demod.state = DEMOD_UNSYNCD;
641 } else {
642 LED_C_ON(); // Got SOF
643 Demod.state = DEMOD_AWAITING_START_BIT;
644 Demod.posCount = 0;
645 Demod.len = 0;
646 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
647 Demod.metricN = 0;
648 Demod.metric = 0;
649 */
650 }
651 } else {
652 if(Demod.posCount > 13*2) { // low phase of SOF too long (> 12 etu)
653 Demod.state = DEMOD_UNSYNCD;
654 LED_C_OFF();
655 }
656 }
657 break;
658
659 case DEMOD_AWAITING_START_BIT:
660 Demod.posCount++;
661 MAKE_SOFT_DECISION();
662 if(v > 0) {
663 if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
664 Demod.state = DEMOD_UNSYNCD;
665 LED_C_OFF();
666 }
667 } else { // start bit detected
668 Demod.bitCount = 0;
669 Demod.posCount = 1; // this was the first half
670 Demod.thisBit = v;
671 Demod.shiftReg = 0;
672 Demod.state = DEMOD_RECEIVING_DATA;
673 }
674 break;
675
676 case DEMOD_RECEIVING_DATA:
677 MAKE_SOFT_DECISION();
678 if(Demod.posCount == 0) { // first half of bit
679 Demod.thisBit = v;
680 Demod.posCount = 1;
681 } else { // second half of bit
682 Demod.thisBit += v;
683
684 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
685 if(Demod.thisBit > 0) {
686 Demod.metric += Demod.thisBit;
687 } else {
688 Demod.metric -= Demod.thisBit;
689 }
690 (Demod.metricN)++;
691 */
692
693 Demod.shiftReg >>= 1;
694 if(Demod.thisBit > 0) { // logic '1'
695 Demod.shiftReg |= 0x200;
696 }
697
698 Demod.bitCount++;
699 if(Demod.bitCount == 10) {
700 uint16_t s = Demod.shiftReg;
701 if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
702 uint8_t b = (s >> 1);
703 Demod.output[Demod.len] = b;
704 Demod.len++;
705 Demod.state = DEMOD_AWAITING_START_BIT;
706 } else {
707 Demod.state = DEMOD_UNSYNCD;
708 LED_C_OFF();
709 if(s == 0x000) {
710 // This is EOF (start, stop and all data bits == '0'
711 return TRUE;
712 }
713 }
714 }
715 Demod.posCount = 0;
716 }
717 break;
718
719 default:
720 Demod.state = DEMOD_UNSYNCD;
721 LED_C_OFF();
722 break;
723 }
724 return FALSE;
725 }
726
727
728 static void DemodReset()
729 {
730 // Clear out the state of the "UART" that receives from the tag.
731 Demod.len = 0;
732 Demod.state = DEMOD_UNSYNCD;
733 Demod.posCount = 0;
734 memset(Demod.output, 0x00, MAX_FRAME_SIZE);
735 }
736
737
738 static void DemodInit(uint8_t *data)
739 {
740 Demod.output = data;
741 DemodReset();
742 }
743
744
745 /*
746 * Demodulate the samples we received from the tag, also log to tracebuffer
747 * quiet: set to 'TRUE' to disable debug output
748 */
749 static void GetSamplesFor14443bDemod(int n, bool quiet)
750 {
751 int max = 0;
752 bool gotFrame = FALSE;
753 int lastRxCounter, ci, cq, samples = 0;
754
755 // Allocate memory from BigBuf for some buffers
756 // free all previous allocations first
757 BigBuf_free();
758
759 // And put the FPGA in the appropriate mode
760 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
761
762 // The response (tag -> reader) that we're receiving.
763 uint8_t *resp = BigBuf_malloc(MAX_FRAME_SIZE);
764
765 // Set up the demodulator for tag -> reader responses.
766 DemodInit(resp);
767
768 // The DMA buffer, used to stream samples from the FPGA
769 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
770
771
772 int8_t *upTo = dmaBuf;
773 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
774
775 // Signal field is ON with the appropriate LED:
776 LED_D_ON();
777
778 // Setup and start DMA.
779 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
780
781
782 for(;;) {
783 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
784 if(behindBy > max) max = behindBy;
785
786 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) {
787 ci = upTo[0];
788 cq = upTo[1];
789 upTo += 2;
790 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
791 upTo = dmaBuf;
792 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
793 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
794 }
795 lastRxCounter -= 2;
796 if(lastRxCounter <= 0) {
797 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
798 }
799
800 samples += 2;
801
802 if(Handle14443bSamplesDemod(ci, cq)) {
803 gotFrame = TRUE;
804 break;
805 }
806 }
807
808 if(samples > n || gotFrame) {
809 break;
810 }
811 }
812
813 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
814
815 if (!quiet && Demod.len == 0) {
816 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
817 max,
818 samples,
819 gotFrame,
820 Demod.len,
821 Demod.sumI,
822 Demod.sumQ
823 );
824 }
825
826 //Tracing
827 if (tracing && Demod.len > 0) {
828 uint8_t parity[MAX_PARITY_SIZE];
829 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
830 }
831 }
832
833
834 //-----------------------------------------------------------------------------
835 // Transmit the command (to the tag) that was placed in ToSend[].
836 //-----------------------------------------------------------------------------
837 static void TransmitFor14443b(void)
838 {
839 int c;
840
841 FpgaSetupSsc();
842
843 // Start the timer
844 StartCountSspClk();
845
846 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
847 AT91C_BASE_SSC->SSC_THR = 0xff;
848 }
849
850 // Signal field is ON with the appropriate Red LED
851 LED_D_ON();
852 // Signal we are transmitting with the Green LED
853 LED_B_ON();
854 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
855 if ( !PowerOn )
856 SpinDelay(200);
857
858 for(c = 0; c < 10;) {
859 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
860 AT91C_BASE_SSC->SSC_THR = 0xff;
861 c++;
862 }
863 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
864 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
865 (void)r;
866 }
867 WDT_HIT();
868 }
869
870 c = 0;
871 for(;;) {
872 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
873 AT91C_BASE_SSC->SSC_THR = ToSend[c];
874 c++;
875 if(c >= ToSendMax) {
876 break;
877 }
878 }
879 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
880 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
881 (void)r;
882 }
883 WDT_HIT();
884 }
885 LED_B_OFF(); // Finished sending
886 }
887
888
889 //-----------------------------------------------------------------------------
890 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
891 // so that it is ready to transmit to the tag using TransmitFor14443b().
892 //-----------------------------------------------------------------------------
893 static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
894 {
895 int i, j;
896 uint8_t b;
897
898 ToSendReset();
899
900 // Establish initial reference level
901 for(i = 0; i < 80; i++) {
902 ToSendStuffBit(1);
903 }
904 // Send SOF
905 for(i = 0; i < 11; i++) {
906 ToSendStuffBit(0);
907 }
908
909 for(i = 0; i < len; i++) {
910 // Stop bits/EGT
911 ToSendStuffBit(1);
912 ToSendStuffBit(1);
913 // Start bit
914 ToSendStuffBit(0);
915 // Data bits
916 b = cmd[i];
917 for(j = 0; j < 8; j++) {
918 if(b & 1) {
919 ToSendStuffBit(1);
920 } else {
921 ToSendStuffBit(0);
922 }
923 b >>= 1;
924 }
925 }
926 // Send EOF
927 ToSendStuffBit(1);
928 for(i = 0; i < 11; i++) {
929 ToSendStuffBit(0);
930 }
931 for(i = 0; i < 8; i++) {
932 ToSendStuffBit(1);
933 }
934
935 // And then a little more, to make sure that the last character makes
936 // it out before we switch to rx mode.
937 for(i = 0; i < 10; i++) {
938 ToSendStuffBit(1);
939 }
940
941 // Convert from last character reference to length
942 ToSendMax++;
943 }
944
945
946 /**
947 Convenience function to encode, transmit and trace iso 14443b comms
948 **/
949 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
950 {
951 CodeIso14443bAsReader(cmd, len);
952 TransmitFor14443b();
953 if (tracing) {
954 uint8_t parity[MAX_PARITY_SIZE];
955 LogTrace(cmd,len, 0, 0, parity, TRUE);
956 }
957 }
958
959 /* Sends an APDU to the tag
960 * TODO: check CRC and preamble
961 */
962 int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response)
963 {
964 uint8_t message_frame[message_length + 4];
965 // PCB
966 message_frame[0] = 0x0A | pcb_blocknum;
967 pcb_blocknum ^= 1;
968 // CID
969 message_frame[1] = 0;
970 // INF
971 memcpy(message_frame + 2, message, message_length);
972 // EDC (CRC)
973 ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]);
974 // send
975 CodeAndTransmit14443bAsReader(message_frame, message_length + 4);
976 // get response
977 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT*100, TRUE);
978 if(Demod.len < 3)
979 {
980 return 0;
981 }
982 // TODO: Check CRC
983 // copy response contents
984 if(response != NULL)
985 {
986 memcpy(response, Demod.output, Demod.len);
987 }
988 return Demod.len;
989 }
990
991 /* Perform the ISO 14443 B Card Selection procedure
992 * Currently does NOT do any collision handling.
993 * It expects 0-1 cards in the device's range.
994 * TODO: Support multiple cards (perform anticollision)
995 * TODO: Verify CRC checksums
996 */
997 int iso14443b_select_card()
998 {
999 // WUPB command (including CRC)
1000 // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
1001 static const uint8_t wupb[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
1002 // ATTRIB command (with space for CRC)
1003 uint8_t attrib[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
1004
1005 // first, wake up the tag
1006 CodeAndTransmit14443bAsReader(wupb, sizeof(wupb));
1007 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1008 // ATQB too short?
1009 if (Demod.len < 14)
1010 {
1011 return 2;
1012 }
1013
1014 // select the tag
1015 // copy the PUPI to ATTRIB
1016 memcpy(attrib + 1, Demod.output + 1, 4);
1017 /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into
1018 ATTRIB (Param 3) */
1019 attrib[7] = Demod.output[10] & 0x0F;
1020 ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10);
1021 CodeAndTransmit14443bAsReader(attrib, sizeof(attrib));
1022 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1023 // Answer to ATTRIB too short?
1024 if(Demod.len < 3)
1025 {
1026 return 2;
1027 }
1028 // reset PCB block number
1029 pcb_blocknum = 0;
1030 return 1;
1031 }
1032
1033 // Set up ISO 14443 Type B communication (similar to iso14443a_setup)
1034 void iso14443b_setup() {
1035 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1036 BigBuf_free();
1037 // Set up the synchronous serial port
1038 FpgaSetupSsc();
1039 // connect Demodulated Signal to ADC:
1040 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1041
1042 // Signal field is on with the appropriate LED
1043 LED_D_ON();
1044 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1045
1046 // Start the timer
1047 StartCountSspClk();
1048
1049 DemodReset();
1050 UartReset();
1051 }
1052
1053 //-----------------------------------------------------------------------------
1054 // Read a SRI512 ISO 14443B tag.
1055 //
1056 // SRI512 tags are just simple memory tags, here we're looking at making a dump
1057 // of the contents of the memory. No anticollision algorithm is done, we assume
1058 // we have a single tag in the field.
1059 //
1060 // I tried to be systematic and check every answer of the tag, every CRC, etc...
1061 //-----------------------------------------------------------------------------
1062 void ReadSTMemoryIso14443b(uint32_t dwLast)
1063 {
1064 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1065 BigBuf_free();
1066
1067 clear_trace();
1068 set_tracing(TRUE);
1069
1070 uint8_t i = 0x00;
1071
1072 // Make sure that we start from off, since the tags are stateful;
1073 // confusing things will happen if we don't reset them between reads.
1074 LED_D_OFF();
1075 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1076 SpinDelay(200);
1077
1078 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1079 FpgaSetupSsc();
1080
1081 // Now give it time to spin up.
1082 // Signal field is on with the appropriate LED
1083 LED_D_ON();
1084 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
1085 SpinDelay(200);
1086
1087 // First command: wake up the tag using the INITIATE command
1088 uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b};
1089 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
1090 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1091
1092 if (Demod.len == 0) {
1093 DbpString("No response from tag");
1094 return;
1095 } else {
1096 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
1097 Demod.output[0], Demod.output[1], Demod.output[2]);
1098 }
1099
1100 // There is a response, SELECT the uid
1101 DbpString("Now SELECT tag:");
1102 cmd1[0] = 0x0E; // 0x0E is SELECT
1103 cmd1[1] = Demod.output[0];
1104 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
1105 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
1106 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1107 if (Demod.len != 3) {
1108 Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
1109 return;
1110 }
1111 // Check the CRC of the answer:
1112 ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
1113 if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
1114 DbpString("CRC Error reading select response.");
1115 return;
1116 }
1117 // Check response from the tag: should be the same UID as the command we just sent:
1118 if (cmd1[1] != Demod.output[0]) {
1119 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
1120 return;
1121 }
1122
1123 // Tag is now selected,
1124 // First get the tag's UID:
1125 cmd1[0] = 0x0B;
1126 ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
1127 CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
1128 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1129 if (Demod.len != 10) {
1130 Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
1131 return;
1132 }
1133 // The check the CRC of the answer (use cmd1 as temporary variable):
1134 ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
1135 if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
1136 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1137 (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
1138 // Do not return;, let's go on... (we should retry, maybe ?)
1139 }
1140 Dbprintf("Tag UID (64 bits): %08x %08x",
1141 (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
1142 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
1143
1144 // Now loop to read all 16 blocks, address from 0 to last block
1145 Dbprintf("Tag memory dump, block 0 to %d", dwLast);
1146 cmd1[0] = 0x08;
1147 i = 0x00;
1148 dwLast++;
1149 for (;;) {
1150 if (i == dwLast) {
1151 DbpString("System area block (0xff):");
1152 i = 0xff;
1153 }
1154 cmd1[1] = i;
1155 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
1156 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
1157 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1158 if (Demod.len != 6) { // Check if we got an answer from the tag
1159 DbpString("Expected 6 bytes from tag, got less...");
1160 return;
1161 }
1162 // The check the CRC of the answer (use cmd1 as temporary variable):
1163 ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
1164 if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
1165 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1166 (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
1167 // Do not return;, let's go on... (we should retry, maybe ?)
1168 }
1169 // Now print out the memory location:
1170 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
1171 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
1172 (Demod.output[4]<<8)+Demod.output[5]);
1173 if (i == 0xff) {
1174 break;
1175 }
1176 i++;
1177 }
1178 }
1179
1180
1181 //=============================================================================
1182 // Finally, the `sniffer' combines elements from both the reader and
1183 // simulated tag, to show both sides of the conversation.
1184 //=============================================================================
1185
1186 //-----------------------------------------------------------------------------
1187 // Record the sequence of commands sent by the reader to the tag, with
1188 // triggering so that we start recording at the point that the tag is moved
1189 // near the reader.
1190 //-----------------------------------------------------------------------------
1191 /*
1192 * Memory usage for this function, (within BigBuf)
1193 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1194 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1195 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1196 * Demodulated samples received - all the rest
1197 */
1198 void RAMFUNC SnoopIso14443b(void)
1199 {
1200 // We won't start recording the frames that we acquire until we trigger;
1201 // a good trigger condition to get started is probably when we see a
1202 // response from the tag.
1203 int triggered = TRUE; // TODO: set and evaluate trigger condition
1204
1205 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1206 BigBuf_free();
1207
1208 clear_trace();
1209 set_tracing(TRUE);
1210
1211 // The DMA buffer, used to stream samples from the FPGA
1212 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
1213 int lastRxCounter;
1214 int8_t *upTo;
1215 int ci, cq;
1216 int maxBehindBy = 0;
1217
1218 // Count of samples received so far, so that we can include timing
1219 // information in the trace buffer.
1220 int samples = 0;
1221
1222 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1223 UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
1224
1225 // Print some debug information about the buffer sizes
1226 Dbprintf("Snooping buffers initialized:");
1227 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1228 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
1229 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
1230 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
1231
1232 // Signal field is off, no reader signal, no tag signal
1233 LEDsoff();
1234
1235 // And put the FPGA in the appropriate mode
1236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
1237 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1238
1239 // Setup for the DMA.
1240 FpgaSetupSsc();
1241 upTo = dmaBuf;
1242 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
1243 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
1244 uint8_t parity[MAX_PARITY_SIZE];
1245
1246 bool TagIsActive = FALSE;
1247 bool ReaderIsActive = FALSE;
1248
1249 // And now we loop, receiving samples.
1250 for(;;) {
1251 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
1252 (ISO14443B_DMA_BUFFER_SIZE-1);
1253 if(behindBy > maxBehindBy) {
1254 maxBehindBy = behindBy;
1255 }
1256
1257 if(behindBy < 2) continue;
1258
1259 ci = upTo[0];
1260 cq = upTo[1];
1261 upTo += 2;
1262 lastRxCounter -= 2;
1263 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
1264 upTo = dmaBuf;
1265 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
1266 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
1267 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
1268 WDT_HIT();
1269 if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1270 Dbprintf("blew circular buffer! behindBy=%d", behindBy);
1271 break;
1272 }
1273 if(!tracing) {
1274 DbpString("Reached trace limit");
1275 break;
1276 }
1277 if(BUTTON_PRESS()) {
1278 DbpString("cancelled");
1279 break;
1280 }
1281 }
1282
1283 samples += 2;
1284
1285 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
1286 if(Handle14443bUartBit(ci & 0x01)) {
1287 if(triggered && tracing) {
1288 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
1289 }
1290 /* And ready to receive another command. */
1291 UartReset();
1292 /* And also reset the demod code, which might have been */
1293 /* false-triggered by the commands from the reader. */
1294 DemodReset();
1295 }
1296 if(Handle14443bUartBit(cq & 0x01)) {
1297 if(triggered && tracing) {
1298 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
1299 }
1300 /* And ready to receive another command. */
1301 UartReset();
1302 /* And also reset the demod code, which might have been */
1303 /* false-triggered by the commands from the reader. */
1304 DemodReset();
1305 }
1306 ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
1307 }
1308
1309 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1310 if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) {
1311
1312 //Use samples as a time measurement
1313 if(tracing)
1314 {
1315 //uint8_t parity[MAX_PARITY_SIZE];
1316 LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE);
1317 }
1318 triggered = TRUE;
1319
1320 // And ready to receive another response.
1321 DemodReset();
1322 }
1323 TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
1324 }
1325
1326 }
1327
1328 FpgaDisableSscDma();
1329 LEDsoff();
1330 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
1331 DbpString("Snoop statistics:");
1332 Dbprintf(" Max behind by: %i", maxBehindBy);
1333 Dbprintf(" Uart State: %x", Uart.state);
1334 Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt);
1335 Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax);
1336 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1337 }
1338
1339
1340 /*
1341 * Send raw command to tag ISO14443B
1342 * @Input
1343 * datalen len of buffer data
1344 * recv bool when true wait for data from tag and send to client
1345 * powerfield bool leave the field on when true
1346 * data buffer with byte to send
1347 *
1348 * @Output
1349 * none
1350 *
1351 */
1352 void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
1353 {
1354 iso14443b_setup();
1355 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1356 BigBuf_free();
1357 if ( !PowerOn ){
1358 FpgaSetupSsc();
1359 }
1360 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1361
1362 // Start the timer
1363 StartCountSspClk();
1364
1365 DemodReset();
1366 UartReset();
1367
1368 if ( datalen == 0 && recv == 0 && powerfield == 0){
1369 clear_trace();
1370 } else {
1371 set_tracing(TRUE);
1372 CodeAndTransmit14443bAsReader(data, datalen);
1373 }
1374
1375 if(recv) {
1376 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, FALSE);
1377 uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE);
1378 cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen);
1379 }
1380
1381 if(!powerfield) {
1382 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1383 FpgaDisableSscDma();
1384 LED_D_OFF();
1385 PowerOn = 0;
1386 }
1387 }
1388
Impressum, Datenschutz