1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443. This includes both the reader software and
9 // the `fake tag' modes. At the moment only the Type B modulation is
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
20 //static void GetSamplesFor14443(int weTx, int n);
22 #define DEMOD_TRACE_SIZE 4096
23 #define READER_TAG_BUFFER_SIZE 2048
24 #define TAG_READER_BUFFER_SIZE 2048
25 #define DEMOD_DMA_BUFFER_SIZE 1024
27 //=============================================================================
28 // An ISO 14443 Type B tag. We listen for commands from the reader, using
29 // a UART kind of thing that's implemented in software. When we get a
30 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
31 // If it's good, then we can do something appropriate with it, and send
33 //=============================================================================
35 //-----------------------------------------------------------------------------
36 // Code up a string of octets at layer 2 (including CRC, we don't generate
37 // that here) so that they can be transmitted to the reader. Doesn't transmit
38 // them yet, just leaves them ready to send in ToSend[].
39 //-----------------------------------------------------------------------------
40 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
)
46 // Transmit a burst of ones, as the initial thing that lets the
47 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
48 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
50 for(i
= 0; i
< 20; i
++) {
58 for(i
= 0; i
< 10; i
++) {
64 for(i
= 0; i
< 2; i
++) {
71 for(i
= 0; i
< len
; i
++) {
82 for(j
= 0; j
< 8; j
++) {
105 for(i
= 0; i
< 10; i
++) {
111 for(i
= 0; i
< 10; i
++) {
118 // Convert from last byte pos to length
121 // Add a few more for slop
125 //-----------------------------------------------------------------------------
126 // The software UART that receives commands from the reader, and its state
128 //-----------------------------------------------------------------------------
132 STATE_GOT_FALLING_EDGE_OF_SOF
,
133 STATE_AWAITING_START_BIT
,
134 STATE_RECEIVING_DATA
,
145 /* Receive & handle a bit coming from the reader.
148 * LED A -> ON once we have received the SOF and are expecting the rest.
149 * LED A -> OFF once we have received EOF or are in error state or unsynced
151 * Returns: true if we received a EOF
152 * false if we are still waiting for some more
154 static int Handle14443UartBit(int bit
)
160 // we went low, so this could be the beginning
162 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
168 case STATE_GOT_FALLING_EDGE_OF_SOF
:
170 if(Uart
.posCnt
== 2) {
172 if(Uart
.bitCnt
>= 10) {
173 // we've seen enough consecutive
174 // zeros that it's a valid SOF
177 Uart
.state
= STATE_AWAITING_START_BIT
;
178 LED_A_ON(); // Indicate we got a valid SOF
180 // didn't stay down long enough
181 // before going high, error
182 Uart
.state
= STATE_ERROR_WAIT
;
185 // do nothing, keep waiting
189 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
190 if(Uart
.bitCnt
> 14) {
191 // Give up if we see too many zeros without
193 Uart
.state
= STATE_ERROR_WAIT
;
197 case STATE_AWAITING_START_BIT
:
200 if(Uart
.posCnt
> 25) {
201 // stayed high for too long between
203 Uart
.state
= STATE_ERROR_WAIT
;
206 // falling edge, this starts the data byte
210 Uart
.state
= STATE_RECEIVING_DATA
;
211 LED_A_ON(); // Indicate we're receiving
215 case STATE_RECEIVING_DATA
:
217 if(Uart
.posCnt
== 2) {
218 // time to sample a bit
221 Uart
.shiftReg
|= 0x200;
225 if(Uart
.posCnt
>= 4) {
228 if(Uart
.bitCnt
== 10) {
229 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
231 // this is a data byte, with correct
232 // start and stop bits
233 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
236 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
237 // Buffer overflowed, give up
239 Uart
.state
= STATE_ERROR_WAIT
;
241 // so get the next byte now
243 Uart
.state
= STATE_AWAITING_START_BIT
;
245 } else if(Uart
.shiftReg
== 0x000) {
246 // this is an EOF byte
247 LED_A_OFF(); // Finished receiving
252 Uart
.state
= STATE_ERROR_WAIT
;
257 case STATE_ERROR_WAIT
:
258 // We're all screwed up, so wait a little while
259 // for whatever went wrong to finish, and then
262 if(Uart
.posCnt
> 10) {
263 Uart
.state
= STATE_UNSYNCD
;
268 Uart
.state
= STATE_UNSYNCD
;
272 // This row make the error blew circular buffer in hf 14b snoop
273 //if (Uart.state == STATE_ERROR_WAIT) LED_A_OFF(); // Error
278 //-----------------------------------------------------------------------------
279 // Receive a command (from the reader to us, where we are the simulated tag),
280 // and store it in the given buffer, up to the given maximum length. Keeps
281 // spinning, waiting for a well-framed command, until either we get one
282 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
284 // Assume that we're called with the SSC (to the FPGA) and ADC path set
286 //-----------------------------------------------------------------------------
287 static int GetIso14443CommandFromReader(uint8_t *received
, int *len
, int maxLen
)
292 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
293 // only, since we are receiving, not transmitting).
294 // Signal field is off with the appropriate LED
296 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
299 // Now run a `software UART' on the stream of incoming samples.
300 Uart
.output
= received
;
301 Uart
.byteCntMax
= maxLen
;
302 Uart
.state
= STATE_UNSYNCD
;
307 if(BUTTON_PRESS()) return FALSE
;
309 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
310 AT91C_BASE_SSC
->SSC_THR
= 0x00;
312 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
313 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
316 for(i
= 0; i
< 8; i
++, mask
>>= 1) {
318 if(Handle14443UartBit(bit
)) {
327 //-----------------------------------------------------------------------------
328 // Main loop of simulated tag: receive commands from reader, decide what
329 // response to send, and send it.
330 //-----------------------------------------------------------------------------
331 void SimulateIso14443Tag(void)
333 static const uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
334 static const uint8_t response1
[] = {
335 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
336 0x00, 0x21, 0x85, 0x5e, 0xd7
342 uint8_t *resp1
= BigBuf_get_addr() + 800;
345 uint8_t *receivedCmd
= BigBuf_get_addr();
352 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
353 memset(receivedCmd
, 0x44, 400);
355 CodeIso14443bAsTag(response1
, sizeof(response1
));
356 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
358 // We need to listen to the high-frequency, peak-detected path.
359 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
367 if(!GetIso14443CommandFromReader(receivedCmd
, &len
, 100)) {
368 Dbprintf("button pressed, received %d commands", cmdsRecvd
);
372 // Good, look at the command now.
374 if(len
== sizeof(cmd1
) && memcmp(receivedCmd
, cmd1
, len
)==0) {
375 resp
= resp1
; respLen
= resp1Len
;
377 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsRecvd
);
378 // And print whether the CRC fails, just for good measure
379 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
380 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1]) {
381 // Not so good, try again.
382 DbpString("+++CRC fail");
384 DbpString("CRC passes");
389 memset(receivedCmd
, 0x44, 32);
393 if(cmdsRecvd
> 0x30) {
394 DbpString("many commands later...");
398 if(respLen
<= 0) continue;
401 // Signal field is off with the appropriate LED
403 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
404 AT91C_BASE_SSC
->SSC_THR
= 0xff;
407 // Transmit the response.
410 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
413 AT91C_BASE_SSC
->SSC_THR
= b
;
420 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
421 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
428 //=============================================================================
429 // An ISO 14443 Type B reader. We take layer two commands, code them
430 // appropriately, and then send them to the tag. We then listen for the
431 // tag's response, which we leave in the buffer to be demodulated on the
433 //=============================================================================
438 DEMOD_PHASE_REF_TRAINING
,
439 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
440 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
441 DEMOD_AWAITING_START_BIT
,
442 DEMOD_RECEIVING_DATA
,
458 * Handles reception of a bit from the tag
461 * LED C -> ON once we have received the SOF and are expecting the rest.
462 * LED C -> OFF once we have received EOF or are unsynced
464 * Returns: true if we received a EOF
465 * false if we are still waiting for some more
468 static RAMFUNC
int Handle14443SamplesDemod(int ci
, int cq
)
472 // The soft decision on the bit uses an estimate of just the
473 // quadrant of the reference angle, not the exact angle.
474 #define MAKE_SOFT_DECISION() { \
475 if(Demod.sumI > 0) { \
480 if(Demod.sumQ > 0) { \
487 switch(Demod
.state
) {
498 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
504 case DEMOD_PHASE_REF_TRAINING
:
505 if(Demod
.posCount
< 8) {
508 } else if(Demod
.posCount
> 100) {
509 // error, waited too long
510 Demod
.state
= DEMOD_UNSYNCD
;
512 MAKE_SOFT_DECISION();
514 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
521 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
522 MAKE_SOFT_DECISION();
524 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
527 if(Demod
.posCount
> 100) {
528 Demod
.state
= DEMOD_UNSYNCD
;
534 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
535 MAKE_SOFT_DECISION();
537 if(Demod
.posCount
< 12) {
538 Demod
.state
= DEMOD_UNSYNCD
;
540 LED_C_ON(); // Got SOF
541 Demod
.state
= DEMOD_AWAITING_START_BIT
;
548 if(Demod
.posCount
> 100) {
549 Demod
.state
= DEMOD_UNSYNCD
;
555 case DEMOD_AWAITING_START_BIT
:
556 MAKE_SOFT_DECISION();
558 if(Demod
.posCount
> 10) {
559 Demod
.state
= DEMOD_UNSYNCD
;
566 Demod
.state
= DEMOD_RECEIVING_DATA
;
570 case DEMOD_RECEIVING_DATA
:
571 MAKE_SOFT_DECISION();
572 if(Demod
.posCount
== 0) {
578 if(Demod
.thisBit
> 0) {
579 Demod
.metric
+= Demod
.thisBit
;
581 Demod
.metric
-= Demod
.thisBit
;
585 Demod
.shiftReg
>>= 1;
586 if(Demod
.thisBit
> 0) {
587 Demod
.shiftReg
|= 0x200;
591 if(Demod
.bitCount
== 10) {
592 uint16_t s
= Demod
.shiftReg
;
593 if((s
& 0x200) && !(s
& 0x001)) {
594 uint8_t b
= (s
>> 1);
595 Demod
.output
[Demod
.len
] = b
;
597 Demod
.state
= DEMOD_AWAITING_START_BIT
;
598 } else if(s
== 0x000) {
601 Demod
.state
= DEMOD_UNSYNCD
;
604 Demod
.state
= DEMOD_UNSYNCD
;
612 Demod
.state
= DEMOD_UNSYNCD
;
616 if (Demod
.state
== DEMOD_UNSYNCD
) LED_C_OFF(); // Not synchronized...
621 * Demodulate the samples we received from the tag
622 * weTx: set to 'TRUE' if we behave like a reader
623 * set to 'FALSE' if we behave like a snooper
624 * quiet: set to 'TRUE' to disable debug output
626 static void GetSamplesFor14443Demod(int weTx
, int n
, int quiet
)
629 int gotFrame
= FALSE
;
631 //# define DMA_BUFFER_SIZE 8
641 // Clear out the state of the "UART" that receives from the tag.
642 uint8_t *BigBuf
= BigBuf_get_addr();
643 memset(BigBuf
, 0x00, 400);
644 Demod
.output
= BigBuf
;
646 Demod
.state
= DEMOD_UNSYNCD
;
648 // And the UART that receives from the reader
649 Uart
.output
= BigBuf
+ 1024;
650 Uart
.byteCntMax
= 100;
651 Uart
.state
= STATE_UNSYNCD
;
653 // Setup for the DMA.
654 dmaBuf
= BigBuf
+ 32;
656 lastRxCounter
= DEMOD_DMA_BUFFER_SIZE
;
657 FpgaSetupSscDma(dmaBuf
, DEMOD_DMA_BUFFER_SIZE
);
659 // Signal field is ON with the appropriate LED:
660 if (weTx
) LED_D_ON(); else LED_D_OFF();
661 // And put the FPGA in the appropriate mode
663 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
|
664 (weTx
? 0 : FPGA_HF_READER_RX_XCORR_SNOOP
));
667 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
668 if(behindBy
> max
) max
= behindBy
;
670 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DEMOD_DMA_BUFFER_SIZE
-1))
676 if(upTo
- dmaBuf
> DEMOD_DMA_BUFFER_SIZE
) {
677 upTo
-= DEMOD_DMA_BUFFER_SIZE
;
678 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
679 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DEMOD_DMA_BUFFER_SIZE
;
682 if(lastRxCounter
<= 0) {
683 lastRxCounter
+= DEMOD_DMA_BUFFER_SIZE
;
688 Handle14443UartBit(1);
689 Handle14443UartBit(1);
691 if(Handle14443SamplesDemod(ci
, cq
)) {
700 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
701 if (!quiet
) Dbprintf("%x %x %x", max
, gotFrame
, Demod
.len
);
704 //-----------------------------------------------------------------------------
705 // Read the tag's response. We just receive a stream of slightly-processed
706 // samples from the FPGA, which we will later do some signal processing on,
708 //-----------------------------------------------------------------------------
709 /*static void GetSamplesFor14443(int weTx, int n)
711 uint8_t *dest = (uint8_t *)BigBuf;
715 FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
716 (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
720 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
721 AT91C_BASE_SSC->SSC_THR = 0x43;
723 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
725 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
727 dest[c++] = (uint8_t)b;
736 //-----------------------------------------------------------------------------
737 // Transmit the command (to the tag) that was placed in ToSend[].
738 //-----------------------------------------------------------------------------
739 static void TransmitFor14443(void)
745 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
746 AT91C_BASE_SSC
->SSC_THR
= 0xff;
749 // Signal field is ON with the appropriate Red LED
751 // Signal we are transmitting with the Green LED
754 FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
756 for(c
= 0; c
< 10;) {
757 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
758 AT91C_BASE_SSC
->SSC_THR
= 0xff;
761 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
762 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
770 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
771 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
777 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
778 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
783 LED_B_OFF(); // Finished sending
786 //-----------------------------------------------------------------------------
787 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
788 // so that it is ready to transmit to the tag using TransmitFor14443().
789 //-----------------------------------------------------------------------------
790 static void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
797 // Establish initial reference level
798 for(i
= 0; i
< 40; i
++) {
802 for(i
= 0; i
< 10; i
++) {
806 for(i
= 0; i
< len
; i
++) {
814 for(j
= 0; j
< 8; j
++) {
825 for(i
= 0; i
< 10; i
++) {
828 for(i
= 0; i
< 8; i
++) {
832 // And then a little more, to make sure that the last character makes
833 // it out before we switch to rx mode.
834 for(i
= 0; i
< 24; i
++) {
838 // Convert from last character reference to length
842 //-----------------------------------------------------------------------------
843 // Read an ISO 14443 tag. We send it some set of commands, and record the
845 // The command name is misleading, it actually decodes the reponse in HEX
846 // into the output buffer (read the result using hexsamples, not hisamples)
848 // obsolete function only for test
849 //-----------------------------------------------------------------------------
850 void AcquireRawAdcSamplesIso14443(uint32_t parameter
)
852 uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
854 SendRawCommand14443B(sizeof(cmd1
),1,1,cmd1
);
857 //-----------------------------------------------------------------------------
858 // Read a SRI512 ISO 14443 tag.
860 // SRI512 tags are just simple memory tags, here we're looking at making a dump
861 // of the contents of the memory. No anticollision algorithm is done, we assume
862 // we have a single tag in the field.
864 // I tried to be systematic and check every answer of the tag, every CRC, etc...
865 //-----------------------------------------------------------------------------
866 void ReadSTMemoryIso14443(uint32_t dwLast
)
870 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
871 // Make sure that we start from off, since the tags are stateful;
872 // confusing things will happen if we don't reset them between reads.
874 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
877 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
880 // Now give it time to spin up.
881 // Signal field is on with the appropriate LED
884 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
887 // First command: wake up the tag using the INITIATE command
888 uint8_t cmd1
[] = { 0x06, 0x00, 0x97, 0x5b};
889 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
892 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
895 if (Demod
.len
== 0) {
896 DbpString("No response from tag");
899 Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %x %x %x",
900 Demod
.output
[0], Demod
.output
[1],Demod
.output
[2]);
902 // There is a response, SELECT the uid
903 DbpString("Now SELECT tag:");
904 cmd1
[0] = 0x0E; // 0x0E is SELECT
905 cmd1
[1] = Demod
.output
[0];
906 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
907 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
910 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
912 if (Demod
.len
!= 3) {
913 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
916 // Check the CRC of the answer:
917 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
918 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
919 DbpString("CRC Error reading select response.");
922 // Check response from the tag: should be the same UID as the command we just sent:
923 if (cmd1
[1] != Demod
.output
[0]) {
924 Dbprintf("Bad response to SELECT from Tag, aborting: %x %x", cmd1
[1], Demod
.output
[0]);
927 // Tag is now selected,
928 // First get the tag's UID:
930 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
931 CodeIso14443bAsReader(cmd1
, 3); // Only first three bytes for this one
934 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
936 if (Demod
.len
!= 10) {
937 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
940 // The check the CRC of the answer (use cmd1 as temporary variable):
941 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
942 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
943 Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
944 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
945 // Do not return;, let's go on... (we should retry, maybe ?)
947 Dbprintf("Tag UID (64 bits): %08x %08x",
948 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
949 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
951 // Now loop to read all 16 blocks, address from 0 to last block
952 Dbprintf("Tag memory dump, block 0 to %d",dwLast
);
958 DbpString("System area block (0xff):");
962 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
963 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
966 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
968 if (Demod
.len
!= 6) { // Check if we got an answer from the tag
969 DbpString("Expected 6 bytes from tag, got less...");
972 // The check the CRC of the answer (use cmd1 as temporary variable):
973 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
974 if(cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
975 Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
976 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
977 // Do not return;, let's go on... (we should retry, maybe ?)
979 // Now print out the memory location:
980 Dbprintf("Address=%x, Contents=%x, CRC=%x", i
,
981 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
982 (Demod
.output
[4]<<8)+Demod
.output
[5]);
991 //=============================================================================
992 // Finally, the `sniffer' combines elements from both the reader and
993 // simulated tag, to show both sides of the conversation.
994 //=============================================================================
996 //-----------------------------------------------------------------------------
997 // Record the sequence of commands sent by the reader to the tag, with
998 // triggering so that we start recording at the point that the tag is moved
1000 //-----------------------------------------------------------------------------
1002 * Memory usage for this function, (within BigBuf)
1003 * 0-4095 : Demodulated samples receive (4096 bytes) - DEMOD_TRACE_SIZE
1004 * 4096-6143 : Last Received command, 2048 bytes (reader->tag) - READER_TAG_BUFFER_SIZE
1005 * 6144-8191 : Last Received command, 2048 bytes(tag->reader) - TAG_READER_BUFFER_SIZE
1006 * 8192-9215 : DMA Buffer, 1024 bytes (samples) - DEMOD_DMA_BUFFER_SIZE
1008 void RAMFUNC
SnoopIso14443(void)
1010 // We won't start recording the frames that we acquire until we trigger;
1011 // a good trigger condition to get started is probably when we see a
1012 // response from the tag.
1013 int triggered
= TRUE
;
1015 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1017 // The command (reader -> tag) that we're working on receiving.
1018 uint8_t *receivedCmd
= BigBuf_malloc(READER_TAG_BUFFER_SIZE
);
1019 // The response (tag -> reader) that we're working on receiving.
1020 uint8_t *receivedResponse
= BigBuf_malloc(TAG_READER_BUFFER_SIZE
);
1022 // As we receive stuff, we copy it from receivedCmd or receivedResponse
1023 // into trace, along with its length and other annotations.
1024 uint8_t *trace
= BigBuf_get_addr();
1027 // The DMA buffer, used to stream samples from the FPGA.
1028 uint8_t *dmaBuf
= BigBuf_malloc(DEMOD_DMA_BUFFER_SIZE
);
1032 int maxBehindBy
= 0;
1034 // Count of samples received so far, so that we can include timing
1035 // information in the trace buffer.
1038 // Initialize the trace buffer
1039 memset(trace
, 0x44, BigBuf_max_traceLen());
1041 // Set up the demodulator for tag -> reader responses.
1042 Demod
.output
= receivedResponse
;
1044 Demod
.state
= DEMOD_UNSYNCD
;
1046 // And the reader -> tag commands
1047 memset(&Uart
, 0, sizeof(Uart
));
1048 Uart
.output
= receivedCmd
;
1049 Uart
.byteCntMax
= 100;
1050 Uart
.state
= STATE_UNSYNCD
;
1052 // Print some debug information about the buffer sizes
1053 Dbprintf("Snooping buffers initialized:");
1054 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1055 Dbprintf(" Reader -> tag: %i bytes", READER_TAG_BUFFER_SIZE
);
1056 Dbprintf(" tag -> Reader: %i bytes", TAG_READER_BUFFER_SIZE
);
1057 Dbprintf(" DMA: %i bytes", DEMOD_DMA_BUFFER_SIZE
);
1059 // And put the FPGA in the appropriate mode
1060 // Signal field is off with the appropriate LED
1063 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
|
1064 FPGA_HF_READER_RX_XCORR_SNOOP
);
1065 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1067 // Setup for the DMA.
1070 lastRxCounter
= DEMOD_DMA_BUFFER_SIZE
;
1071 FpgaSetupSscDma((uint8_t *)dmaBuf
, DEMOD_DMA_BUFFER_SIZE
);
1075 // And now we loop, receiving samples.
1077 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
1078 (DEMOD_DMA_BUFFER_SIZE
-1);
1079 if(behindBy
> maxBehindBy
) {
1080 maxBehindBy
= behindBy
;
1081 if(behindBy
> (9*DEMOD_DMA_BUFFER_SIZE
/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1082 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
1086 if(behindBy
< 2) continue;
1092 if(upTo
- dmaBuf
> DEMOD_DMA_BUFFER_SIZE
) {
1093 upTo
-= DEMOD_DMA_BUFFER_SIZE
;
1094 lastRxCounter
+= DEMOD_DMA_BUFFER_SIZE
;
1095 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
1096 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DEMOD_DMA_BUFFER_SIZE
;
1101 #define HANDLE_BIT_IF_BODY \
1103 trace[traceLen++] = ((samples >> 0) & 0xff); \
1104 trace[traceLen++] = ((samples >> 8) & 0xff); \
1105 trace[traceLen++] = ((samples >> 16) & 0xff); \
1106 trace[traceLen++] = ((samples >> 24) & 0xff); \
1107 trace[traceLen++] = 0; \
1108 trace[traceLen++] = 0; \
1109 trace[traceLen++] = 0; \
1110 trace[traceLen++] = 0; \
1111 trace[traceLen++] = Uart.byteCnt; \
1112 memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
1113 traceLen += Uart.byteCnt; \
1114 if(traceLen > 1000) break; \
1116 /* And ready to receive another command. */ \
1117 memset(&Uart, 0, sizeof(Uart)); \
1118 Uart.output = receivedCmd; \
1119 Uart.byteCntMax = 100; \
1120 Uart.state = STATE_UNSYNCD; \
1121 /* And also reset the demod code, which might have been */ \
1122 /* false-triggered by the commands from the reader. */ \
1123 memset(&Demod, 0, sizeof(Demod)); \
1124 Demod.output = receivedResponse; \
1125 Demod.state = DEMOD_UNSYNCD; \
1127 if(Handle14443UartBit(ci & 1)) {
1130 if(Handle14443UartBit(cq
& 1)) {
1134 if(Handle14443SamplesDemod(ci
, cq
)) {
1135 // timestamp, as a count of samples
1136 trace
[traceLen
++] = ((samples
>> 0) & 0xff);
1137 trace
[traceLen
++] = ((samples
>> 8) & 0xff);
1138 trace
[traceLen
++] = ((samples
>> 16) & 0xff);
1139 trace
[traceLen
++] = 0x80 | ((samples
>> 24) & 0xff);
1140 // correlation metric (~signal strength estimate)
1141 if(Demod
.metricN
!= 0) {
1142 Demod
.metric
/= Demod
.metricN
;
1144 trace
[traceLen
++] = ((Demod
.metric
>> 0) & 0xff);
1145 trace
[traceLen
++] = ((Demod
.metric
>> 8) & 0xff);
1146 trace
[traceLen
++] = ((Demod
.metric
>> 16) & 0xff);
1147 trace
[traceLen
++] = ((Demod
.metric
>> 24) & 0xff);
1149 trace
[traceLen
++] = Demod
.len
;
1150 memcpy(trace
+traceLen
, receivedResponse
, Demod
.len
);
1151 traceLen
+= Demod
.len
;
1152 if(traceLen
> BigBuf_max_traceLen()) {
1153 DbpString("Reached trace limit");
1161 // And ready to receive another response.
1162 memset(&Demod
, 0, sizeof(Demod
));
1163 Demod
.output
= receivedResponse
;
1164 Demod
.state
= DEMOD_UNSYNCD
;
1168 if(BUTTON_PRESS()) {
1169 DbpString("cancelled");
1178 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
1179 DbpString("Snoop statistics:");
1180 Dbprintf(" Max behind by: %i", maxBehindBy
);
1181 Dbprintf(" Uart State: %x", Uart
.state
);
1182 Dbprintf(" Uart ByteCnt: %i", Uart
.byteCnt
);
1183 Dbprintf(" Uart ByteCntMax: %i", Uart
.byteCntMax
);
1184 Dbprintf(" Trace length: %i", traceLen
);
1188 * Send raw command to tag ISO14443B
1190 * datalen len of buffer data
1191 * recv bool when true wait for data from tag and send to client
1192 * powerfield bool leave the field on when true
1193 * data buffer with byte to send
1200 void SendRawCommand14443B(uint32_t datalen
, uint32_t recv
,uint8_t powerfield
, uint8_t data
[])
1202 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1205 // Make sure that we start from off, since the tags are stateful;
1206 // confusing things will happen if we don't reset them between reads.
1207 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1212 if(!GETBIT(GPIO_LED_D
))
1214 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1217 // Now give it time to spin up.
1218 // Signal field is on with the appropriate LED
1221 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
1225 CodeIso14443bAsReader(data
, datalen
);
1229 uint16_t iLen
= MIN(Demod
.len
,USB_CMD_DATA_SIZE
);
1230 GetSamplesFor14443Demod(TRUE
, 2000, TRUE
);
1231 cmd_send(CMD_ACK
,iLen
,0,0,Demod
.output
,iLen
);
1235 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);