1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void BufferClear(void)
47 memset(BigBuf
,0,sizeof(BigBuf
));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
51 void ToSendReset(void)
57 void ToSendStuffBit(int b
)
61 ToSend
[ToSendMax
] = 0;
66 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
71 if(ToSendMax
>= sizeof(ToSend
)) {
73 DbpString("ToSendStuffBit overflowed!");
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
81 void DbpString(char *str
)
83 byte_t len
= strlen(str
);
84 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
85 // /* this holds up stuff unless we're connected to usb */
86 // if (!UsbConnected())
90 // c.cmd = CMD_DEBUG_PRINT_STRING;
91 // c.arg[0] = strlen(str);
92 // if(c.arg[0] > sizeof(c.d.asBytes)) {
93 // c.arg[0] = sizeof(c.d.asBytes);
95 // memcpy(c.d.asBytes, str, c.arg[0]);
97 // UsbSendPacket((uint8_t *)&c, sizeof(c));
98 // // TODO fix USB so stupid things like this aren't req'd
103 void DbpIntegers(int x1
, int x2
, int x3
)
105 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
106 // /* this holds up stuff unless we're connected to usb */
107 // if (!UsbConnected())
111 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
116 // UsbSendPacket((uint8_t *)&c, sizeof(c));
122 void Dbprintf(const char *fmt
, ...) {
123 // should probably limit size here; oh well, let's just use a big buffer
124 char output_string
[128];
128 kvsprintf(fmt
, output_string
, 10, ap
);
131 DbpString(output_string
);
134 // prints HEX & ASCII
135 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
148 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
151 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
153 Dbprintf("%*D",l
,d
," ");
161 //-----------------------------------------------------------------------------
162 // Read an ADC channel and block till it completes, then return the result
163 // in ADC units (0 to 1023). Also a routine to average 32 samples and
165 //-----------------------------------------------------------------------------
166 static int ReadAdc(int ch
)
170 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
171 AT91C_BASE_ADC
->ADC_MR
=
172 ADC_MODE_PRESCALE(32) |
173 ADC_MODE_STARTUP_TIME(16) |
174 ADC_MODE_SAMPLE_HOLD_TIME(8);
175 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
177 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
178 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
180 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
185 int AvgAdc(int ch
) // was static - merlok
190 for(i
= 0; i
< 32; i
++) {
194 return (a
+ 15) >> 5;
197 void MeasureAntennaTuning(void)
199 uint8_t LF_Results
[256];
200 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
201 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
206 * Sweeps the useful LF range of the proxmark from
207 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
208 * read the voltage in the antenna, the result left
209 * in the buffer is a graph which should clearly show
210 * the resonating frequency of your LF antenna
211 * ( hopefully around 95 if it is tuned to 125kHz!)
214 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
215 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
216 for (i
=255; i
>=19; i
--) {
218 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
220 // Vref = 3.3V, and a 10000:240 voltage divider on the input
221 // can measure voltages up to 137500 mV
222 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
223 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
224 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
226 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
227 if(LF_Results
[i
] > peak
) {
229 peak
= LF_Results
[i
];
235 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
238 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
239 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
240 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
242 // Vref = 3300mV, and an 10:1 voltage divider on the input
243 // can measure voltages up to 33000 mV
244 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
246 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),LF_Results
,256);
247 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
253 void MeasureAntennaTuningHf(void)
255 int vHf
= 0; // in mV
257 DbpString("Measuring HF antenna, press button to exit");
260 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
261 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
262 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
264 // Vref = 3300mV, and an 10:1 voltage divider on the input
265 // can measure voltages up to 33000 mV
266 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
268 Dbprintf("%d mV",vHf
);
269 if (BUTTON_PRESS()) break;
271 DbpString("cancelled");
275 void SimulateTagHfListen(void)
277 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
282 // We're using this mode just so that I can test it out; the simulated
283 // tag mode would work just as well and be simpler.
284 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
285 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
287 // We need to listen to the high-frequency, peak-detected path.
288 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
294 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
295 AT91C_BASE_SSC
->SSC_THR
= 0xff;
297 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
298 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
312 if(i
>= FREE_BUFFER_SIZE
) {
318 DbpString("simulate tag (now type bitsamples)");
321 void ReadMem(int addr
)
323 const uint8_t *data
= ((uint8_t *)addr
);
325 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
326 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
329 /* osimage version information is linked in */
330 extern struct version_information version_information
;
331 /* bootrom version information is pointed to from _bootphase1_version_pointer */
332 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
333 void SendVersion(void)
335 char temp
[256]; /* Limited data payload in USB packets */
336 DbpString("Prox/RFID mark3 RFID instrument");
338 /* Try to find the bootrom version information. Expect to find a pointer at
339 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
340 * pointer, then use it.
342 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
343 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
344 DbpString("bootrom version information appears invalid");
346 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
350 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
353 FpgaGatherVersion(temp
, sizeof(temp
));
356 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
360 // samy's sniff and repeat routine
363 DbpString("Stand-alone mode! No PC necessary.");
364 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
366 // 3 possible options? no just 2 for now
369 int high
[OPTS
], low
[OPTS
];
371 // Oooh pretty -- notify user we're in elite samy mode now
373 LED(LED_ORANGE
, 200);
375 LED(LED_ORANGE
, 200);
377 LED(LED_ORANGE
, 200);
379 LED(LED_ORANGE
, 200);
385 // Turn on selected LED
386 LED(selected
+ 1, 0);
394 // Was our button held down or pressed?
395 int button_pressed
= BUTTON_HELD(1000);
398 // Button was held for a second, begin recording
399 if (button_pressed
> 0)
402 LED(selected
+ 1, 0);
406 DbpString("Starting recording");
408 // wait for button to be released
409 while(BUTTON_PRESS())
412 /* need this delay to prevent catching some weird data */
415 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
416 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
419 LED(selected
+ 1, 0);
420 // Finished recording
422 // If we were previously playing, set playing off
423 // so next button push begins playing what we recorded
427 // Change where to record (or begin playing)
428 else if (button_pressed
)
430 // Next option if we were previously playing
432 selected
= (selected
+ 1) % OPTS
;
436 LED(selected
+ 1, 0);
438 // Begin transmitting
442 DbpString("Playing");
443 // wait for button to be released
444 while(BUTTON_PRESS())
446 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
447 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
448 DbpString("Done playing");
449 if (BUTTON_HELD(1000) > 0)
451 DbpString("Exiting");
456 /* We pressed a button so ignore it here with a delay */
459 // when done, we're done playing, move to next option
460 selected
= (selected
+ 1) % OPTS
;
463 LED(selected
+ 1, 0);
466 while(BUTTON_PRESS())
475 Listen and detect an external reader. Determine the best location
479 Inside the ListenReaderField() function, there is two mode.
480 By default, when you call the function, you will enter mode 1.
481 If you press the PM3 button one time, you will enter mode 2.
482 If you press the PM3 button a second time, you will exit the function.
484 DESCRIPTION OF MODE 1:
485 This mode just listens for an external reader field and lights up green
486 for HF and/or red for LF. This is the original mode of the detectreader
489 DESCRIPTION OF MODE 2:
490 This mode will visually represent, using the LEDs, the actual strength of the
491 current compared to the maximum current detected. Basically, once you know
492 what kind of external reader is present, it will help you spot the best location to place
493 your antenna. You will probably not get some good results if there is a LF and a HF reader
494 at the same place! :-)
498 static const char LIGHT_SCHEME
[] = {
499 0x0, /* ---- | No field detected */
500 0x1, /* X--- | 14% of maximum current detected */
501 0x2, /* -X-- | 29% of maximum current detected */
502 0x4, /* --X- | 43% of maximum current detected */
503 0x8, /* ---X | 57% of maximum current detected */
504 0xC, /* --XX | 71% of maximum current detected */
505 0xE, /* -XXX | 86% of maximum current detected */
506 0xF, /* XXXX | 100% of maximum current detected */
508 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
510 void ListenReaderField(int limit
)
512 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
513 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
514 int mode
=1, display_val
, display_max
, i
;
521 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
523 if(limit
!= HF_ONLY
) {
524 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
528 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
530 if (limit
!= LF_ONLY
) {
531 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
536 if (BUTTON_PRESS()) {
541 DbpString("Signal Strength Mode");
545 DbpString("Stopped");
553 if (limit
!= HF_ONLY
) {
555 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
560 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
561 // see if there's a significant change
562 if(abs(lf_av
- lf_av_new
) > 10) {
563 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
571 if (limit
!= LF_ONLY
) {
573 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
578 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
579 // see if there's a significant change
580 if(abs(hf_av
- hf_av_new
) > 10) {
581 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
590 if (limit
== LF_ONLY
) {
592 display_max
= lf_max
;
593 } else if (limit
== HF_ONLY
) {
595 display_max
= hf_max
;
596 } else { /* Pick one at random */
597 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
599 display_max
= hf_max
;
602 display_max
= lf_max
;
605 for (i
=0; i
<LIGHT_LEN
; i
++) {
606 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
607 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
608 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
609 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
610 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
618 void UsbPacketReceived(uint8_t *packet
, int len
)
620 UsbCommand
*c
= (UsbCommand
*)packet
;
622 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
626 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
627 AcquireRawAdcSamples125k(c
->arg
[0]);
628 cmd_send(CMD_ACK
,0,0,0,0,0);
630 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
631 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
633 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
634 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
635 cmd_send(CMD_ACK
,0,0,0,0,0);
637 case CMD_HID_DEMOD_FSK
:
638 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1); // Demodulate HID tag
640 case CMD_HID_SIM_TAG
:
641 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
643 case CMD_HID_CLONE_TAG
: // Clone HID tag by ID to T55x7
644 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
646 case CMD_IO_DEMOD_FSK
:
647 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1); // Demodulate IO tag
649 case CMD_IO_CLONE_TAG
: // Clone IO tag by ID to T55x7
650 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
652 case CMD_EM410X_DEMOD
:
653 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
655 case CMD_EM410X_WRITE_TAG
:
656 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
658 case CMD_READ_TI_TYPE
:
661 case CMD_WRITE_TI_TYPE
:
662 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
664 case CMD_SIMULATE_TAG_125K
:
666 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
669 case CMD_LF_SIMULATE_BIDIR
:
670 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
672 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
673 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
675 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
676 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
678 case CMD_T55XX_READ_BLOCK
:
679 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
681 case CMD_T55XX_WRITE_BLOCK
:
682 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
684 case CMD_T55XX_READ_TRACE
: // Clone HID tag by ID to T55x7
687 case CMD_PCF7931_READ
: // Read PCF7931 tag
689 cmd_send(CMD_ACK
,0,0,0,0,0);
690 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
692 case CMD_EM4X_READ_WORD
:
693 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
695 case CMD_EM4X_WRITE_WORD
:
696 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
701 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
702 SnoopHitag(c
->arg
[0]);
704 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
705 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
707 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
708 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
713 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
714 AcquireRawAdcSamplesIso15693();
716 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
717 RecordRawAdcSamplesIso15693();
720 case CMD_ISO_15693_COMMAND
:
721 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
724 case CMD_ISO_15693_FIND_AFI
:
725 BruteforceIso15693Afi(c
->arg
[0]);
728 case CMD_ISO_15693_DEBUG
:
729 SetDebugIso15693(c
->arg
[0]);
732 case CMD_READER_ISO_15693
:
733 ReaderIso15693(c
->arg
[0]);
735 case CMD_SIMTAG_ISO_15693
:
736 SimTagIso15693(c
->arg
[0]);
741 case CMD_SIMULATE_TAG_LEGIC_RF
:
742 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
745 case CMD_WRITER_LEGIC_RF
:
746 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
749 case CMD_READER_LEGIC_RF
:
750 LegicRfReader(c
->arg
[0], c
->arg
[1]);
754 #ifdef WITH_ISO14443b
755 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
756 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
758 case CMD_READ_SRI512_TAG
:
759 ReadSTMemoryIso14443(0x0F);
761 case CMD_READ_SRIX4K_TAG
:
762 ReadSTMemoryIso14443(0x7F);
764 case CMD_SNOOP_ISO_14443
:
767 case CMD_SIMULATE_TAG_ISO_14443
:
768 SimulateIso14443Tag();
770 case CMD_ISO_14443B_COMMAND
:
771 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
775 #ifdef WITH_ISO14443a
776 case CMD_SNOOP_ISO_14443a
:
777 SnoopIso14443a(c
->arg
[0]);
779 case CMD_READER_ISO_14443a
:
782 case CMD_SIMULATE_TAG_ISO_14443a
:
783 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
785 case CMD_EPA_PACE_COLLECT_NONCE
:
786 EPA_PACE_Collect_Nonce(c
);
789 case CMD_READER_MIFARE
:
790 ReaderMifare(c
->arg
[0]);
792 case CMD_MIFARE_READBL
:
793 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
795 case CMD_MIFAREU_READBL
:
796 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
798 case CMD_MIFAREU_READCARD
:
799 MifareUReadCard(c
->arg
[0],c
->d
.asBytes
);
801 case CMD_MIFARE_READSC
:
802 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
804 case CMD_MIFARE_WRITEBL
:
805 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
807 case CMD_MIFAREU_WRITEBL_COMPAT
:
808 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
810 case CMD_MIFAREU_WRITEBL
:
811 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
813 case CMD_MIFARE_NESTED
:
814 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
816 case CMD_MIFARE_CHKKEYS
:
817 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
819 case CMD_SIMULATE_MIFARE_CARD
:
820 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
824 case CMD_MIFARE_SET_DBGMODE
:
825 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
827 case CMD_MIFARE_EML_MEMCLR
:
828 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
830 case CMD_MIFARE_EML_MEMSET
:
831 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
833 case CMD_MIFARE_EML_MEMGET
:
834 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
836 case CMD_MIFARE_EML_CARDLOAD
:
837 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
840 // Work with "magic Chinese" card
841 case CMD_MIFARE_EML_CSETBLOCK
:
842 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
844 case CMD_MIFARE_EML_CGETBLOCK
:
845 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
849 case CMD_MIFARE_SNIFFER
:
850 SniffMifare(c
->arg
[0]);
855 // Makes use of ISO14443a FPGA Firmware
856 case CMD_SNOOP_ICLASS
:
859 case CMD_SIMULATE_TAG_ICLASS
:
860 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
862 case CMD_READER_ICLASS
:
863 ReaderIClass(c
->arg
[0]);
865 case CMD_READER_ICLASS_REPLAY
:
866 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
870 case CMD_SIMULATE_TAG_HF_LISTEN
:
871 SimulateTagHfListen();
878 case CMD_MEASURE_ANTENNA_TUNING
:
879 MeasureAntennaTuning();
882 case CMD_MEASURE_ANTENNA_TUNING_HF
:
883 MeasureAntennaTuningHf();
886 case CMD_LISTEN_READER_FIELD
:
887 ListenReaderField(c
->arg
[0]);
890 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
891 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
893 LED_D_OFF(); // LED D indicates field ON or OFF
896 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
898 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
899 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
901 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
903 // n.arg[0] = c->arg[0];
904 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
906 // usb_write((uint8_t *)&n, sizeof(n));
907 // UsbSendPacket((uint8_t *)&n, sizeof(n));
911 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
912 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
913 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
915 // Trigger a finish downloading signal with an ACK frame
916 cmd_send(CMD_ACK
,0,0,0,0,0);
920 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
921 uint8_t *b
= (uint8_t *)BigBuf
;
922 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
923 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
924 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
925 cmd_send(CMD_ACK
,0,0,0,0,0);
932 case CMD_SET_LF_DIVISOR
:
933 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
934 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
937 case CMD_SET_ADC_MUX
:
939 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
940 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
941 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
942 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
958 case CMD_SETUP_WRITE
:
959 case CMD_FINISH_WRITE
:
960 case CMD_HARDWARE_RESET
:
964 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
966 // We're going to reset, and the bootrom will take control.
970 case CMD_START_FLASH
:
971 if(common_area
.flags
.bootrom_present
) {
972 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
975 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
979 case CMD_DEVICE_INFO
: {
980 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
981 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
982 // UsbSendPacket((uint8_t*)&c, sizeof(c));
983 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
987 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
992 void __attribute__((noreturn
)) AppMain(void)
996 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
997 /* Initialize common area */
998 memset(&common_area
, 0, sizeof(common_area
));
999 common_area
.magic
= COMMON_AREA_MAGIC
;
1000 common_area
.version
= 1;
1002 common_area
.flags
.osimage_present
= 1;
1013 // The FPGA gets its clock from us from PCK0 output, so set that up.
1014 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1015 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1016 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1017 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1018 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1019 AT91C_PMC_PRES_CLK_4
;
1020 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1023 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1025 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1027 // Load the FPGA image, which we have stored in our flash.
1028 // (the HF version by default)
1029 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1037 byte_t rx
[sizeof(UsbCommand
)];
1042 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1044 UsbPacketReceived(rx
,rx_len
);
1052 if (BUTTON_HELD(1000) > 0)