1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
26 // the block number for the ISO14443-4 PCB
27 static uint8_t iso14_pcb_blocknum
= 0;
32 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33 #define REQUEST_GUARD_TIME (7000/16 + 1)
34 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36 // bool LastCommandWasRequest = FALSE;
39 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
41 // When the PM acts as reader and is receiving tag data, it takes
42 // 3 ticks delay in the AD converter
43 // 16 ticks until the modulation detector completes and sets curbit
44 // 8 ticks until bit_to_arm is assigned from curbit
45 // 8*16 ticks for the transfer from FPGA to ARM
46 // 4*16 ticks until we measure the time
47 // - 8*16 ticks because we measure the time of the previous transfer
48 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
50 // When the PM acts as a reader and is sending, it takes
51 // 4*16 ticks until we can write data to the sending hold register
52 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
53 // 8 ticks until the first transfer starts
54 // 8 ticks later the FPGA samples the data
55 // 1 tick to assign mod_sig_coil
56 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
58 // When the PM acts as tag and is receiving it takes
59 // 2 ticks delay in the RF part (for the first falling edge),
60 // 3 ticks for the A/D conversion,
61 // 8 ticks on average until the start of the SSC transfer,
62 // 8 ticks until the SSC samples the first data
63 // 7*16 ticks to complete the transfer from FPGA to ARM
64 // 8 ticks until the next ssp_clk rising edge
65 // 4*16 ticks until we measure the time
66 // - 8*16 ticks because we measure the time of the previous transfer
67 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
69 // The FPGA will report its internal sending delay in
70 uint16_t FpgaSendQueueDelay
;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks until the first transfer starts
79 // 8 ticks later the FPGA samples the data
80 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81 // + 1 tick to assign mod_sig_coil
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime
;
104 static uint32_t LastTimeProxToAirStart
;
105 static uint32_t LastProxToAirDuration
;
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
124 const uint8_t OddByteParity
[256] = {
125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
144 void iso14a_set_trigger(bool enable
) {
149 void iso14a_set_timeout(uint32_t timeout
) {
150 iso14a_timeout
= timeout
;
151 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
155 void iso14a_set_ATS_timeout(uint8_t *ats
) {
161 if (ats
[0] > 1) { // there is a format byte T0
162 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
168 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
171 iso14a_set_timeout(fwt
/(8*16));
177 //-----------------------------------------------------------------------------
178 // Generate the parity value for a byte sequence
180 //-----------------------------------------------------------------------------
181 byte_t
oddparity (const byte_t bt
)
183 return OddByteParity
[bt
];
186 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
188 uint16_t paritybit_cnt
= 0;
189 uint16_t paritybyte_cnt
= 0;
190 uint8_t parityBits
= 0;
192 for (uint16_t i
= 0; i
< iLen
; i
++) {
193 // Generate the parity bits
194 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
195 if (paritybit_cnt
== 7) {
196 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
197 parityBits
= 0; // and advance to next Parity Byte
205 // save remaining parity bits
206 par
[paritybyte_cnt
] = parityBits
;
210 void AppendCrc14443a(uint8_t* data
, int len
)
212 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
215 void AppendCrc14443b(uint8_t* data
, int len
)
217 ComputeCrc14443(CRC_14443_B
,data
,len
,data
+len
,data
+len
+1);
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept the following:
241 // 0001 - a 3 tick wide pause
242 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243 // 0111 - a 2 tick wide pause shifted left
244 // 1001 - a 2 tick wide pause shifted right
245 const bool Mod_Miller_LUT
[] = {
246 FALSE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, TRUE
,
247 FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
249 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
254 Uart
.state
= STATE_UNSYNCD
;
256 Uart
.len
= 0; // number of decoded data bytes
257 Uart
.parityLen
= 0; // number of decoded parity bytes
258 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
259 Uart
.parityBits
= 0; // holds 8 parity bits
268 void UartInit(uint8_t *data
, uint8_t *parity
)
271 Uart
.parity
= parity
;
272 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
276 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
280 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
282 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
284 Uart
.syncBit
= 9999; // not set
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
295 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
298 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
299 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
300 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
301 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
302 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
303 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
304 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
305 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
307 if (Uart
.syncBit
!= 9999) { // found a sync bit
308 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
309 Uart
.startTime
-= Uart
.syncBit
;
310 Uart
.endTime
= Uart
.startTime
;
311 Uart
.state
= STATE_START_OF_COMMUNICATION
;
316 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
317 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
319 } else { // Modulation in first half = Sequence Z = logic "0"
320 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
324 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
325 Uart
.state
= STATE_MILLER_Z
;
326 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
327 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
328 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
329 Uart
.parityBits
<<= 1; // make room for the parity bit
330 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
333 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
334 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
341 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
343 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
344 Uart
.state
= STATE_MILLER_X
;
345 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
346 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
347 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
348 Uart
.parityBits
<<= 1; // make room for the new parity bit
349 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
352 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
353 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
357 } else { // no modulation in both halves - Sequence Y
358 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
359 Uart
.state
= STATE_UNSYNCD
;
360 Uart
.bitCount
--; // last "0" was part of EOC sequence
361 Uart
.shiftReg
<<= 1; // drop it
362 if(Uart
.bitCount
> 0) { // if we decoded some bits
363 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
364 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
365 Uart
.parityBits
<<= 1; // add a (void) parity bit
366 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
367 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
369 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
370 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
371 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
374 return TRUE
; // we are finished with decoding the raw data sequence
376 UartReset(); // Nothing received - start over
379 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
381 } else { // a logic "0"
383 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
384 Uart
.state
= STATE_MILLER_Y
;
385 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
386 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
387 Uart
.parityBits
<<= 1; // make room for the parity bit
388 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
391 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
392 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
402 return FALSE
; // not finished yet, need more data
407 //=============================================================================
408 // ISO 14443 Type A - Manchester decoder
409 //=============================================================================
411 // This decoder is used when the PM3 acts as a reader.
412 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415 // The Manchester decoder needs to identify the following sequences:
416 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418 // 8 ticks unmodulated: Sequence F = end of communication
419 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
420 // Note 1: the bitstream may start at any time. We therefore need to sync.
421 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
424 // Lookup-Table to decide if 4 raw bits are a modulation.
425 // We accept three or four "1" in any position
426 const bool Mod_Manchester_LUT
[] = {
427 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
428 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
431 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
437 Demod
.state
= DEMOD_UNSYNCD
;
438 Demod
.len
= 0; // number of decoded data bytes
440 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
441 Demod
.parityBits
= 0; //
442 Demod
.collisionPos
= 0; // Position of collision bit
443 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
450 Demod
.syncBit
= 0xFFFF;
454 void DemodInit(uint8_t *data
, uint8_t *parity
)
457 Demod
.parity
= parity
;
461 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
465 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
467 if (Demod
.state
== DEMOD_UNSYNCD
) {
469 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
470 if (Demod
.twoBits
== 0x0000) {
476 Demod
.syncBit
= 0xFFFF; // not set
477 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
478 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
479 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
480 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
481 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
482 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
483 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
484 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
485 if (Demod
.syncBit
!= 0xFFFF) {
486 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
487 Demod
.startTime
-= Demod
.syncBit
;
488 Demod
.bitCount
= offset
; // number of decoded data bits
489 Demod
.state
= DEMOD_MANCHESTER_DATA
;
495 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
497 if (!Demod
.collisionPos
) {
498 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
500 } // modulation in first half only - Sequence D = 1
502 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
504 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
505 Demod
.parityBits
<<= 1; // make room for the parity bit
506 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
509 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
510 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
511 Demod
.parityBits
= 0;
514 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
518 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
519 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
520 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
521 Demod
.parityBits
<<= 1; // make room for the new parity bit
522 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
525 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
526 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
527 Demod
.parityBits
= 0;
530 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
531 } else { // no modulation in both halves - End of communication
532 if(Demod
.bitCount
> 0) { // there are some remaining data bits
533 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
534 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
535 Demod
.parityBits
<<= 1; // add a (void) parity bit
536 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
537 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
539 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
540 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
541 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
544 return TRUE
; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
551 return FALSE
; // not finished yet, need more data
554 //=============================================================================
555 // Finally, a `sniffer' for ISO 14443 Type A
556 // Both sides of communication!
557 //=============================================================================
559 //-----------------------------------------------------------------------------
560 // Record the sequence of commands sent by the reader to the tag, with
561 // triggering so that we start recording at the point that the tag is moved
563 //-----------------------------------------------------------------------------
564 void RAMFUNC
SniffIso14443a(uint8_t param
) {
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
571 // We won't start recording the frames that we acquire until we trigger;
572 // a good trigger condition to get started is probably when we see a
573 // response from the tag.
574 // triggered == FALSE -- to wait first for card
575 bool triggered
= !(param
& 0x03);
577 // Allocate memory from BigBuf for some buffers
578 // free all previous allocations first
581 // The command (reader -> tag) that we're receiving.
582 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
583 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
585 // The response (tag -> reader) that we're receiving.
586 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
587 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
589 // The DMA buffer, used to stream samples from the FPGA
590 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
596 uint8_t *data
= dmaBuf
;
597 uint8_t previous_data
= 0;
600 bool TagIsActive
= FALSE
;
601 bool ReaderIsActive
= FALSE
;
603 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
605 // Set up the demodulator for tag -> reader responses.
606 DemodInit(receivedResponse
, receivedResponsePar
);
608 // Set up the demodulator for the reader -> tag commands
609 UartInit(receivedCmd
, receivedCmdPar
);
611 // Setup and start DMA.
612 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
614 // And now we loop, receiving samples.
615 for(uint32_t rsamples
= 0; TRUE
; ) {
618 DbpString("cancelled by button");
625 int register readBufDataP
= data
- dmaBuf
;
626 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
627 if (readBufDataP
<= dmaBufDataP
){
628 dataLen
= dmaBufDataP
- readBufDataP
;
630 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
632 // test for length of buffer
633 if(dataLen
> maxDataLen
) {
634 maxDataLen
= dataLen
;
635 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
636 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
640 if(dataLen
< 1) continue;
642 // primary buffer was stopped( <-- we lost data!
643 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
644 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
645 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
646 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
648 // secondary buffer sets as primary, secondary buffer was stopped
649 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
650 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
651 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
656 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
658 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
659 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
660 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
663 // check - if there is a short 7bit request from reader
664 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
667 if (!LogTrace(receivedCmd
,
669 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
670 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
674 /* And ready to receive another command. */
676 //UartInit(receivedCmd, receivedCmdPar);
677 /* And also reset the demod code, which might have been */
678 /* false-triggered by the commands from the reader. */
682 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
685 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
686 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
687 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
690 if (!LogTrace(receivedResponse
,
692 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
693 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
697 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
699 // And ready to receive another response.
701 // And reset the Miller decoder including itS (now outdated) input buffer
702 UartInit(receivedCmd
, receivedCmdPar
);
706 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
710 previous_data
= *data
;
713 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
718 DbpString("COMMAND FINISHED");
721 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
722 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
726 //-----------------------------------------------------------------------------
727 // Prepare tag messages
728 //-----------------------------------------------------------------------------
729 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
733 // Correction bit, might be removed when not needed
738 ToSendStuffBit(1); // 1
744 ToSend
[++ToSendMax
] = SEC_D
;
745 LastProxToAirDuration
= 8 * ToSendMax
- 4;
747 for(uint16_t i
= 0; i
< len
; i
++) {
751 for(uint16_t j
= 0; j
< 8; j
++) {
753 ToSend
[++ToSendMax
] = SEC_D
;
755 ToSend
[++ToSendMax
] = SEC_E
;
760 // Get the parity bit
761 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
762 ToSend
[++ToSendMax
] = SEC_D
;
763 LastProxToAirDuration
= 8 * ToSendMax
- 4;
765 ToSend
[++ToSendMax
] = SEC_E
;
766 LastProxToAirDuration
= 8 * ToSendMax
;
771 ToSend
[++ToSendMax
] = SEC_F
;
773 // Convert from last byte pos to length
777 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
779 uint8_t par
[MAX_PARITY_SIZE
];
781 GetParity(cmd
, len
, par
);
782 CodeIso14443aAsTagPar(cmd
, len
, par
);
786 static void Code4bitAnswerAsTag(uint8_t cmd
)
792 // Correction bit, might be removed when not needed
797 ToSendStuffBit(1); // 1
803 ToSend
[++ToSendMax
] = SEC_D
;
806 for(i
= 0; i
< 4; i
++) {
808 ToSend
[++ToSendMax
] = SEC_D
;
809 LastProxToAirDuration
= 8 * ToSendMax
- 4;
811 ToSend
[++ToSendMax
] = SEC_E
;
812 LastProxToAirDuration
= 8 * ToSendMax
;
818 ToSend
[++ToSendMax
] = SEC_F
;
820 // Convert from last byte pos to length
824 //-----------------------------------------------------------------------------
825 // Wait for commands from reader
826 // Stop when button is pressed
827 // Or return TRUE when command is captured
828 //-----------------------------------------------------------------------------
829 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
831 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
832 // only, since we are receiving, not transmitting).
833 // Signal field is off with the appropriate LED
835 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
837 // Now run a `software UART' on the stream of incoming samples.
838 UartInit(received
, parity
);
841 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
846 if(BUTTON_PRESS()) return FALSE
;
848 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
849 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
850 if(MillerDecoding(b
, 0)) {
858 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
859 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
860 int EmSend4bit(uint8_t resp
);
861 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
862 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
863 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
864 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
865 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
866 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
868 static uint8_t* free_buffer_pointer
;
875 uint32_t ProxToAirDuration
;
876 } tag_response_info_t
;
878 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
879 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
880 // This will need the following byte array for a modulation sequence
881 // 144 data bits (18 * 8)
884 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
885 // 1 just for the case
887 // 166 bytes, since every bit that needs to be send costs us a byte
891 // Prepare the tag modulation bits from the message
892 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
894 // Make sure we do not exceed the free buffer space
895 if (ToSendMax
> max_buffer_size
) {
896 Dbprintf("Out of memory, when modulating bits for tag answer:");
897 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
901 // Copy the byte array, used for this modulation to the buffer position
902 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
904 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
905 response_info
->modulation_n
= ToSendMax
;
906 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
912 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
913 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
914 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
915 // -> need 273 bytes buffer
916 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits
917 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 370 //273
919 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
920 // Retrieve and store the current buffer index
921 response_info
->modulation
= free_buffer_pointer
;
923 // Determine the maximum size we can use from our buffer
924 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
926 // Forward the prepare tag modulation function to the inner function
927 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
928 // Update the free buffer offset
929 free_buffer_pointer
+= ToSendMax
;
936 //-----------------------------------------------------------------------------
937 // Main loop of simulated tag: receive commands from reader, decide what
938 // response to send, and send it.
939 //-----------------------------------------------------------------------------
940 void SimulateIso14443aTag(int tagType
, int flags
, int uid_2nd
, byte_t
* data
)
943 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
944 // This can be used in a reader-only attack.
945 // (it can also be retrieved via 'hf 14a list', but hey...
946 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0,0};
947 uint8_t ar_nr_collected
= 0;
951 uint8_t blockzeros
[512];
952 memset(blockzeros
, 0x00, sizeof(blockzeros
));
954 // PACK response to PWD AUTH for EV1/NTAG
955 uint8_t response8
[4];
957 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
958 uint8_t response1
[2];
961 case 1: { // MIFARE Classic
962 // Says: I am Mifare 1k - original line
967 case 2: { // MIFARE Ultralight
968 // Says: I am a stupid memory tag, no crypto
973 case 3: { // MIFARE DESFire
974 // Says: I am a DESFire tag, ph33r me
979 case 4: { // ISO/IEC 14443-4
980 // Says: I am a javacard (JCOP)
985 case 5: { // MIFARE TNP3XXX
991 case 6: { // MIFARE Mini
992 // Says: I am a Mifare Mini, 320b
998 // Says: I am a NTAG,
1000 response1
[1] = 0x00;
1003 response8
[0] = 0x80;
1004 response8
[1] = 0x80;
1005 ComputeCrc14443(CRC_14443_A
, response8
, 2, &response8
[2], &response8
[3]);
1008 Dbprintf("Error: unkown tagtype (%d)",tagType
);
1013 // The second response contains the (mandatory) first 24 bits of the UID
1014 uint8_t response2
[5] = {0x00};
1016 // Check if the uid uses the (optional) part
1017 uint8_t response2a
[5] = {0x00};
1019 if (flags
& FLAG_7B_UID_IN_DATA
) {
1020 response2
[0] = 0x88;
1021 response2
[1] = data
[0];
1022 response2
[2] = data
[1];
1023 response2
[3] = data
[2];
1025 response2a
[0] = data
[3];
1026 response2a
[1] = data
[4];
1027 response2a
[2] = data
[5];
1028 response2a
[3] = data
[6]; //??
1029 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
1031 // Configure the ATQA and SAK accordingly
1032 response1
[0] |= 0x40;
1035 memcpy(response2
, data
, 4);
1036 //num_to_bytes(uid_1st,4,response2);
1037 // Configure the ATQA and SAK accordingly
1038 response1
[0] &= 0xBF;
1042 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1043 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
1045 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1046 uint8_t response3
[3] = {0x00};
1048 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1050 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1051 uint8_t response3a
[3] = {0x00};
1052 response3a
[0] = sak
& 0xFB;
1053 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1055 uint8_t response5
[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
1056 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1057 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1058 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1059 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1060 // TC(1) = 0x02: CID supported, NAD not supported
1061 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1063 // Prepare GET_VERSION (different for EV-1 / NTAG)
1064 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1065 uint8_t response7_NTAG
[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1067 #define TAG_RESPONSE_COUNT 9
1068 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1069 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1070 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1071 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1072 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1073 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1074 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1075 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1076 { .response
= response7_NTAG
, .response_n
= sizeof(response7_NTAG
) }, // EV1/NTAG GET_VERSION response
1077 { .response
= response8
, .response_n
= sizeof(response8
) }, // EV1/NTAG PACK response
1080 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1081 // Such a response is less time critical, so we can prepare them on the fly
1082 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1083 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1084 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1085 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1086 tag_response_info_t dynamic_response_info
= {
1087 .response
= dynamic_response_buffer
,
1089 .modulation
= dynamic_modulation_buffer
,
1093 BigBuf_free_keep_EM();
1095 // allocate buffers:
1096 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1097 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1098 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1104 // Prepare the responses of the anticollision phase
1105 // there will be not enough time to do this at the moment the reader sends it REQA
1106 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1107 prepare_allocated_tag_modulation(&responses
[i
]);
1112 // To control where we are in the protocol
1116 // Just to allow some checks
1121 // We need to listen to the high-frequency, peak-detected path.
1122 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1125 tag_response_info_t
* p_response
;
1129 // Clean receive command buffer
1131 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1132 DbpString("Button press");
1138 // Okay, look at the command now.
1140 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1141 p_response
= &responses
[0]; order
= 1;
1142 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1143 p_response
= &responses
[0]; order
= 6;
1144 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1145 p_response
= &responses
[1]; order
= 2;
1146 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1147 p_response
= &responses
[2]; order
= 20;
1148 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1149 p_response
= &responses
[3]; order
= 3;
1150 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1151 p_response
= &responses
[4]; order
= 30;
1152 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1153 uint8_t block
= receivedCmd
[1];
1154 if ( tagType
== 7 ) {
1158 uint8_t start
= 4 * block
;
1160 uint8_t blockdata
[50] = {
1161 data
[0],data
[1],data
[2], 0x88 ^ data
[0] ^ data
[1] ^ data
[2],
1162 data
[3],data
[4],data
[5],data
[6],
1163 data
[3] ^ data
[4] ^ data
[5] ^ data
[6],0x48,0x0f,0xe0,
1164 0xe1,0x10,0x12,0x00,
1165 0x03,0x00,0xfe,0x00,
1166 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1167 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1168 0x00,0x00,0x00,0x00,
1170 ComputeCrc14443(CRC_14443_A
, blockdata
+start
, 16, blockdata
+start
+17, blockdata
+start
+18);
1171 EmSendCmdEx( blockdata
+start
, 18, false);
1173 ComputeCrc14443(CRC_14443_A
, blockzeros
,16, blockzeros
+17,blockzeros
+18);
1174 EmSendCmdEx(blockzeros
,18,false);
1179 EmSendCmdEx(data
+(4*block
),16,false);
1180 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1181 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1184 } else if(receivedCmd
[0] == 0x3A) { // Received a FAST READ -- just returns all zeros.
1185 uint8_t len
= (receivedCmd
[2]- receivedCmd
[1] ) * 4;
1186 ComputeCrc14443(CRC_14443_A
, blockzeros
,len
, blockzeros
+len
+1, blockzeros
+len
+2);
1187 EmSendCmdEx(blockzeros
,len
+2,false);
1189 } else if(receivedCmd
[0] == 0x3C && tagType
== 7) { // Received a READ SIGNATURE --
1190 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1191 uint8_t data
[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1192 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1193 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1194 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1196 ComputeCrc14443(CRC_14443_A
, data
, sizeof(data
), data
+33, data
+34);
1197 EmSendCmdEx(data
,sizeof(data
),false);
1199 } else if(receivedCmd
[0] == 0x39 && tagType
== 7) { // Received a READ COUNTER --
1200 uint8_t data
[] = {0x00,0x00,0x00,0x00,0x00};
1201 ComputeCrc14443(CRC_14443_A
, data
, sizeof(data
), data
+4, data
+5);
1202 EmSendCmdEx(data
,sizeof(data
),false);
1204 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1207 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1210 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1212 if ( tagType
== 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1213 p_response
= &responses
[7];
1215 p_response
= &responses
[5]; order
= 7;
1217 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1218 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1219 EmSend4bit(CARD_NACK_NA
);
1222 p_response
= &responses
[6]; order
= 70;
1224 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1226 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1228 uint32_t nonce
= bytes_to_num(response5
,4);
1229 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1230 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1231 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1233 if(flags
& FLAG_NR_AR_ATTACK
)
1235 if(ar_nr_collected
< 2){
1236 // Avoid duplicates... probably not necessary, nr should vary.
1237 //if(ar_nr_responses[3] != nr){
1238 ar_nr_responses
[ar_nr_collected
*5] = 0;
1239 ar_nr_responses
[ar_nr_collected
*5+1] = 0;
1240 ar_nr_responses
[ar_nr_collected
*5+2] = nonce
;
1241 ar_nr_responses
[ar_nr_collected
*5+3] = nr
;
1242 ar_nr_responses
[ar_nr_collected
*5+4] = ar
;
1247 if(ar_nr_collected
> 1 ) {
1249 if (MF_DBGLEVEL
>= 2) {
1250 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1251 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1252 ar_nr_responses
[0], // UID1
1253 ar_nr_responses
[1], // UID2
1254 ar_nr_responses
[2], // NT
1255 ar_nr_responses
[3], // AR1
1256 ar_nr_responses
[4], // NR1
1257 ar_nr_responses
[8], // AR2
1258 ar_nr_responses
[9] // NR2
1261 uint8_t len
= ar_nr_collected
*5*4;
1262 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,len
,0,&ar_nr_responses
,len
);
1263 ar_nr_collected
= 0;
1264 memset(ar_nr_responses
, 0x00, len
);
1267 } else if (receivedCmd
[0] == 0x1a ) // ULC authentication
1271 else if (receivedCmd
[0] == 0x1b) // NTAG / EV-1 authentication
1273 if ( tagType
== 7 ) {
1274 p_response
= &responses
[8]; // PACK response
1278 // Check for ISO 14443A-4 compliant commands, look at left nibble
1279 switch (receivedCmd
[0]) {
1282 case 0x0A: { // IBlock (command)
1283 dynamic_response_info
.response
[0] = receivedCmd
[0];
1284 dynamic_response_info
.response
[1] = 0x00;
1285 dynamic_response_info
.response
[2] = 0x90;
1286 dynamic_response_info
.response
[3] = 0x00;
1287 dynamic_response_info
.response_n
= 4;
1291 case 0x1B: { // Chaining command
1292 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1293 dynamic_response_info
.response_n
= 2;
1298 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1299 dynamic_response_info
.response_n
= 2;
1303 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1304 dynamic_response_info
.response_n
= 2;
1308 case 0xC2: { // Readers sends deselect command
1309 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1310 dynamic_response_info
.response_n
= 2;
1314 // Never seen this command before
1316 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1318 Dbprintf("Received unknown command (len=%d):",len
);
1319 Dbhexdump(len
,receivedCmd
,false);
1321 dynamic_response_info
.response_n
= 0;
1325 if (dynamic_response_info
.response_n
> 0) {
1326 // Copy the CID from the reader query
1327 dynamic_response_info
.response
[1] = receivedCmd
[1];
1329 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1330 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1331 dynamic_response_info
.response_n
+= 2;
1333 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1334 Dbprintf("Error preparing tag response");
1336 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1340 p_response
= &dynamic_response_info
;
1344 // Count number of wakeups received after a halt
1345 if(order
== 6 && lastorder
== 5) { happened
++; }
1347 // Count number of other messages after a halt
1348 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1350 if(cmdsRecvd
> 999) {
1351 DbpString("1000 commands later...");
1356 if (p_response
!= NULL
) {
1357 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1358 // do the tracing for the previous reader request and this tag answer:
1359 uint8_t par
[MAX_PARITY_SIZE
];
1360 GetParity(p_response
->response
, p_response
->response_n
, par
);
1362 EmLogTrace(Uart
.output
,
1364 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1365 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1367 p_response
->response
,
1368 p_response
->response_n
,
1369 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1370 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1375 Dbprintf("Trace Full. Simulation stopped.");
1380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1382 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1384 BigBuf_free_keep_EM();
1388 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1389 // of bits specified in the delay parameter.
1390 void PrepareDelayedTransfer(uint16_t delay
)
1392 uint8_t bitmask
= 0;
1393 uint8_t bits_to_shift
= 0;
1394 uint8_t bits_shifted
= 0;
1398 for (uint16_t i
= 0; i
< delay
; i
++) {
1399 bitmask
|= (0x01 << i
);
1401 ToSend
[ToSendMax
++] = 0x00;
1402 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1403 bits_to_shift
= ToSend
[i
] & bitmask
;
1404 ToSend
[i
] = ToSend
[i
] >> delay
;
1405 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1406 bits_shifted
= bits_to_shift
;
1412 //-------------------------------------------------------------------------------------
1413 // Transmit the command (to the tag) that was placed in ToSend[].
1414 // Parameter timing:
1415 // if NULL: transfer at next possible time, taking into account
1416 // request guard time and frame delay time
1417 // if == 0: transfer immediately and return time of transfer
1418 // if != 0: delay transfer until time specified
1419 //-------------------------------------------------------------------------------------
1420 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1423 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1425 uint32_t ThisTransferTime
= 0;
1428 if(*timing
== 0) { // Measure time
1429 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1431 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1433 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1434 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1435 LastTimeProxToAirStart
= *timing
;
1437 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1438 while(GetCountSspClk() < ThisTransferTime
);
1439 LastTimeProxToAirStart
= ThisTransferTime
;
1443 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1447 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1448 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1456 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1460 //-----------------------------------------------------------------------------
1461 // Prepare reader command (in bits, support short frames) to send to FPGA
1462 //-----------------------------------------------------------------------------
1463 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1471 // Start of Communication (Seq. Z)
1472 ToSend
[++ToSendMax
] = SEC_Z
;
1473 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1476 size_t bytecount
= nbytes(bits
);
1477 // Generate send structure for the data bits
1478 for (i
= 0; i
< bytecount
; i
++) {
1479 // Get the current byte to send
1481 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1483 for (j
= 0; j
< bitsleft
; j
++) {
1486 ToSend
[++ToSendMax
] = SEC_X
;
1487 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1492 ToSend
[++ToSendMax
] = SEC_Z
;
1493 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1496 ToSend
[++ToSendMax
] = SEC_Y
;
1503 // Only transmit parity bit if we transmitted a complete byte
1504 if (j
== 8 && parity
!= NULL
) {
1505 // Get the parity bit
1506 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1508 ToSend
[++ToSendMax
] = SEC_X
;
1509 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1514 ToSend
[++ToSendMax
] = SEC_Z
;
1515 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1518 ToSend
[++ToSendMax
] = SEC_Y
;
1525 // End of Communication: Logic 0 followed by Sequence Y
1528 ToSend
[++ToSendMax
] = SEC_Z
;
1529 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1532 ToSend
[++ToSendMax
] = SEC_Y
;
1535 ToSend
[++ToSendMax
] = SEC_Y
;
1537 // Convert to length of command:
1541 //-----------------------------------------------------------------------------
1542 // Prepare reader command to send to FPGA
1543 //-----------------------------------------------------------------------------
1544 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1546 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1550 //-----------------------------------------------------------------------------
1551 // Wait for commands from reader
1552 // Stop when button is pressed (return 1) or field was gone (return 2)
1553 // Or return 0 when command is captured
1554 //-----------------------------------------------------------------------------
1555 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1559 uint32_t timer
= 0, vtime
= 0;
1563 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1564 // only, since we are receiving, not transmitting).
1565 // Signal field is off with the appropriate LED
1567 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1569 // Set ADC to read field strength
1570 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1571 AT91C_BASE_ADC
->ADC_MR
=
1572 ADC_MODE_PRESCALE(63) |
1573 ADC_MODE_STARTUP_TIME(1) |
1574 ADC_MODE_SAMPLE_HOLD_TIME(15);
1575 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1577 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1579 // Now run a 'software UART' on the stream of incoming samples.
1580 UartInit(received
, parity
);
1583 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1588 if (BUTTON_PRESS()) return 1;
1590 // test if the field exists
1591 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1593 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1594 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1595 if (analogCnt
>= 32) {
1596 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1597 vtime
= GetTickCount();
1598 if (!timer
) timer
= vtime
;
1599 // 50ms no field --> card to idle state
1600 if (vtime
- timer
> 50) return 2;
1602 if (timer
) timer
= 0;
1608 // receive and test the miller decoding
1609 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1610 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1611 if(MillerDecoding(b
, 0)) {
1621 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1625 uint32_t ThisTransferTime
;
1627 // Modulate Manchester
1628 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1630 // include correction bit if necessary
1631 if (Uart
.parityBits
& 0x01) {
1632 correctionNeeded
= TRUE
;
1634 if(correctionNeeded
) {
1635 // 1236, so correction bit needed
1641 // clear receiving shift register and holding register
1642 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1643 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1644 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1645 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1647 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1648 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1649 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1650 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1653 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1656 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1659 for(; i
< respLen
; ) {
1660 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1661 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1662 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1665 if(BUTTON_PRESS()) {
1670 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1671 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
1672 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1673 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1674 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1675 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1680 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1685 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1686 Code4bitAnswerAsTag(resp
);
1687 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1688 // do the tracing for the previous reader request and this tag answer:
1690 GetParity(&resp
, 1, par
);
1691 EmLogTrace(Uart
.output
,
1693 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1694 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1698 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1699 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1704 int EmSend4bit(uint8_t resp
){
1705 return EmSend4bitEx(resp
, false);
1708 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1709 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1710 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1711 // do the tracing for the previous reader request and this tag answer:
1712 EmLogTrace(Uart
.output
,
1714 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1715 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1719 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1720 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1725 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1726 uint8_t par
[MAX_PARITY_SIZE
];
1727 GetParity(resp
, respLen
, par
);
1728 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1731 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1732 uint8_t par
[MAX_PARITY_SIZE
];
1733 GetParity(resp
, respLen
, par
);
1734 return EmSendCmdExPar(resp
, respLen
, false, par
);
1737 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1738 return EmSendCmdExPar(resp
, respLen
, false, par
);
1741 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1742 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1745 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1746 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1747 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1748 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1749 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1750 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1751 reader_EndTime
= tag_StartTime
- exact_fdt
;
1752 reader_StartTime
= reader_EndTime
- reader_modlen
;
1753 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1755 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1761 //-----------------------------------------------------------------------------
1762 // Wait a certain time for tag response
1763 // If a response is captured return TRUE
1764 // If it takes too long return FALSE
1765 //-----------------------------------------------------------------------------
1766 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1770 // Set FPGA mode to "reader listen mode", no modulation (listen
1771 // only, since we are receiving, not transmitting).
1772 // Signal field is on with the appropriate LED
1774 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1776 // Now get the answer from the card
1777 DemodInit(receivedResponse
, receivedResponsePar
);
1780 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1785 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1786 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1787 if(ManchesterDecoding(b
, offset
, 0)) {
1788 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1790 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1798 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1800 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1802 // Send command to tag
1803 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1807 // Log reader command in trace buffer
1809 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1814 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1816 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1820 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1822 // Generate parity and redirect
1823 uint8_t par
[MAX_PARITY_SIZE
];
1824 GetParity(frame
, len
/8, par
);
1825 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1829 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1831 // Generate parity and redirect
1832 uint8_t par
[MAX_PARITY_SIZE
];
1833 GetParity(frame
, len
, par
);
1834 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1837 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1839 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1841 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1846 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1848 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1850 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1855 /* performs iso14443a anticollision procedure
1856 * fills the uid pointer unless NULL
1857 * fills resp_data unless NULL */
1858 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1859 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1860 uint8_t sel_all
[] = { 0x93,0x20 };
1861 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1862 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1863 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1864 uint8_t resp_par
[MAX_PARITY_SIZE
];
1866 size_t uid_resp_len
;
1868 uint8_t sak
= 0x04; // cascade uid
1869 int cascade_level
= 0;
1872 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1873 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1876 if(!ReaderReceive(resp
, resp_par
)) return 0;
1879 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1880 p_hi14a_card
->uidlen
= 0;
1881 memset(p_hi14a_card
->uid
,0,10);
1886 memset(uid_ptr
,0,10);
1889 // check for proprietary anticollision:
1890 if ((resp
[0] & 0x1F) == 0) {
1894 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1895 // which case we need to make a cascade 2 request and select - this is a long UID
1896 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1897 for(; sak
& 0x04; cascade_level
++) {
1898 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1899 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1902 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1903 if (!ReaderReceive(resp
, resp_par
)) return 0;
1905 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1906 memset(uid_resp
, 0, 4);
1907 uint16_t uid_resp_bits
= 0;
1908 uint16_t collision_answer_offset
= 0;
1909 // anti-collision-loop:
1910 while (Demod
.collisionPos
) {
1911 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1912 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1913 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1914 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1916 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1918 // construct anticollosion command:
1919 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1920 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1921 sel_uid
[2+i
] = uid_resp
[i
];
1923 collision_answer_offset
= uid_resp_bits
%8;
1924 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1925 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1927 // finally, add the last bits and BCC of the UID
1928 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1929 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1930 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1933 } else { // no collision, use the response to SELECT_ALL as current uid
1934 memcpy(uid_resp
, resp
, 4);
1938 // calculate crypto UID. Always use last 4 Bytes.
1940 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1943 // Construct SELECT UID command
1944 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1945 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1946 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1947 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1948 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1951 if (!ReaderReceive(resp
, resp_par
)) return 0;
1954 // Test if more parts of the uid are coming
1955 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1956 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1957 // http://www.nxp.com/documents/application_note/AN10927.pdf
1958 uid_resp
[0] = uid_resp
[1];
1959 uid_resp
[1] = uid_resp
[2];
1960 uid_resp
[2] = uid_resp
[3];
1966 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1970 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1971 p_hi14a_card
->uidlen
+= uid_resp_len
;
1976 p_hi14a_card
->sak
= sak
;
1977 p_hi14a_card
->ats_len
= 0;
1980 // non iso14443a compliant tag
1981 if( (sak
& 0x20) == 0) return 2;
1983 // Request for answer to select
1984 AppendCrc14443a(rats
, 2);
1985 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1987 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1991 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1992 p_hi14a_card
->ats_len
= len
;
1995 // reset the PCB block number
1996 iso14_pcb_blocknum
= 0;
1998 // set default timeout based on ATS
1999 iso14a_set_ATS_timeout(resp
);
2004 void iso14443a_setup(uint8_t fpga_minor_mode
) {
2005 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
2006 // Set up the synchronous serial port
2008 // connect Demodulated Signal to ADC:
2009 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2011 // Signal field is on with the appropriate LED
2012 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
2013 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
2018 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
2025 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
2026 iso14a_set_timeout(10*106); // 10ms default
2029 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
2030 uint8_t parity
[MAX_PARITY_SIZE
];
2031 uint8_t real_cmd
[cmd_len
+4];
2032 real_cmd
[0] = 0x0a; //I-Block
2033 // put block number into the PCB
2034 real_cmd
[0] |= iso14_pcb_blocknum
;
2035 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2036 memcpy(real_cmd
+2, cmd
, cmd_len
);
2037 AppendCrc14443a(real_cmd
,cmd_len
+2);
2039 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
2040 size_t len
= ReaderReceive(data
, parity
);
2041 uint8_t *data_bytes
= (uint8_t *) data
;
2043 return 0; //DATA LINK ERROR
2044 // if we received an I- or R(ACK)-Block with a block number equal to the
2045 // current block number, toggle the current block number
2046 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
2047 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
2048 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2049 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
2051 iso14_pcb_blocknum
^= 1;
2057 //-----------------------------------------------------------------------------
2058 // Read an ISO 14443a tag. Send out commands and store answers.
2060 //-----------------------------------------------------------------------------
2061 void ReaderIso14443a(UsbCommand
*c
)
2063 iso14a_command_t param
= c
->arg
[0];
2064 uint8_t *cmd
= c
->d
.asBytes
;
2065 size_t len
= c
->arg
[1] & 0xffff;
2066 size_t lenbits
= c
->arg
[1] >> 16;
2067 uint32_t timeout
= c
->arg
[2];
2069 byte_t buf
[USB_CMD_DATA_SIZE
];
2070 uint8_t par
[MAX_PARITY_SIZE
];
2072 if(param
& ISO14A_CONNECT
) {
2078 if(param
& ISO14A_REQUEST_TRIGGER
) {
2079 iso14a_set_trigger(TRUE
);
2082 if(param
& ISO14A_CONNECT
) {
2083 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
2084 if(!(param
& ISO14A_NO_SELECT
)) {
2085 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
2086 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
2087 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
2091 if(param
& ISO14A_SET_TIMEOUT
) {
2092 iso14a_set_timeout(timeout
);
2095 if(param
& ISO14A_APDU
) {
2096 arg0
= iso14_apdu(cmd
, len
, buf
);
2097 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2100 if(param
& ISO14A_RAW
) {
2101 if(param
& ISO14A_APPEND_CRC
) {
2102 if(param
& ISO14A_TOPAZMODE
) {
2103 AppendCrc14443b(cmd
,len
);
2105 AppendCrc14443a(cmd
,len
);
2108 if (lenbits
) lenbits
+= 16;
2110 if(lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
2111 if(param
& ISO14A_TOPAZMODE
) {
2112 int bits_to_send
= lenbits
;
2114 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
2116 while (bits_to_send
> 0) {
2117 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
2121 GetParity(cmd
, lenbits
/8, par
);
2122 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
2124 } else { // want to send complete bytes only
2125 if(param
& ISO14A_TOPAZMODE
) {
2127 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
2129 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
2132 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
2135 arg0
= ReaderReceive(buf
, par
);
2136 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2139 if(param
& ISO14A_REQUEST_TRIGGER
) {
2140 iso14a_set_trigger(FALSE
);
2143 if(param
& ISO14A_NO_DISCONNECT
) {
2147 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2152 // Determine the distance between two nonces.
2153 // Assume that the difference is small, but we don't know which is first.
2154 // Therefore try in alternating directions.
2155 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2157 if (nt1
== nt2
) return 0;
2160 uint32_t nttmp1
= nt1
;
2161 uint32_t nttmp2
= nt2
;
2163 for (i
= 1; i
< 32768; i
++) {
2164 nttmp1
= prng_successor(nttmp1
, 1);
2165 if (nttmp1
== nt2
) return i
;
2166 nttmp2
= prng_successor(nttmp2
, 1);
2167 if (nttmp2
== nt1
) return -i
;
2170 return(-99999); // either nt1 or nt2 are invalid nonces
2174 //-----------------------------------------------------------------------------
2175 // Recover several bits of the cypher stream. This implements (first stages of)
2176 // the algorithm described in "The Dark Side of Security by Obscurity and
2177 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2178 // (article by Nicolas T. Courtois, 2009)
2179 //-----------------------------------------------------------------------------
2180 void ReaderMifare(bool first_try
) {
2181 // free eventually allocated BigBuf memory. We want all for tracing.
2188 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
2189 uint8_t mf_nr_ar
[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
2190 static uint8_t mf_nr_ar3
= 0;
2192 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
] = { 0x00 };
2193 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
] = { 0x00 };
2196 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2197 static byte_t par_low
= 0;
2199 uint8_t uid
[10] = {0x00};
2200 //uint32_t cuid = 0x00;
2203 uint32_t previous_nt
= 0;
2204 static uint32_t nt_attacked
= 0;
2205 byte_t par_list
[8] = {0x00};
2206 byte_t ks_list
[8] = {0x00};
2208 static uint32_t sync_time
= 0;
2209 static uint32_t sync_cycles
= 0;
2210 int catch_up_cycles
= 0;
2211 int last_catch_up
= 0;
2212 uint16_t consecutive_resyncs
= 0;
2215 int numWrongDistance
= 0;
2219 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2220 sync_time
= GetCountSspClk() & 0xfffffff8;
2221 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2227 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2229 mf_nr_ar
[3] = mf_nr_ar3
;
2238 for(uint16_t i
= 0; TRUE
; i
++) {
2242 // Test if the action was cancelled
2243 if(BUTTON_PRESS()) break;
2245 if (numWrongDistance
> 1000) {
2250 //if(!iso14443a_select_card(uid, NULL, &cuid)) {
2251 if(!iso14443a_select_card(uid
, NULL
, NULL
)) {
2252 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2256 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2257 catch_up_cycles
= 0;
2259 // if we missed the sync time already, advance to the next nonce repeat
2260 while(GetCountSspClk() > sync_time
) {
2261 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2264 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2265 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2267 // Receive the (4 Byte) "random" nonce
2268 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2269 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2274 nt
= bytes_to_num(receivedAnswer
, 4);
2276 // Transmit reader nonce with fake par
2277 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2279 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2280 int nt_distance
= dist_nt(previous_nt
, nt
);
2281 if (nt_distance
== 0) {
2286 // invalid nonce received, try again
2287 if (nt_distance
== -99999) {
2289 if (MF_DBGLEVEL
>= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
2293 sync_cycles
= (sync_cycles
- nt_distance
);
2294 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2299 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2300 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2301 if (catch_up_cycles
>= 99999) { // invalid nonce received. Don't resync on that one.
2302 catch_up_cycles
= 0;
2305 if (catch_up_cycles
== last_catch_up
) {
2306 consecutive_resyncs
++;
2309 last_catch_up
= catch_up_cycles
;
2310 consecutive_resyncs
= 0;
2312 if (consecutive_resyncs
< 3) {
2313 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2316 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2317 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2322 consecutive_resyncs
= 0;
2324 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2325 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2327 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2331 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2335 if(led_on
) LED_B_ON(); else LED_B_OFF();
2337 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2338 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2340 // Test if the information is complete
2341 if (nt_diff
== 0x07) {
2346 nt_diff
= (nt_diff
+ 1) & 0x07;
2347 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2350 if (nt_diff
== 0 && first_try
)
2354 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2359 mf_nr_ar
[3] &= 0x1F;
2361 byte_t buf
[28] = {0x00};
2363 memcpy(buf
+ 0, uid
, 4);
2364 num_to_bytes(nt
, 4, buf
+ 4);
2365 memcpy(buf
+ 8, par_list
, 8);
2366 memcpy(buf
+ 16, ks_list
, 8);
2367 memcpy(buf
+ 24, mf_nr_ar
, 4);
2369 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2372 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2378 *MIFARE 1K simulate.
2381 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2382 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2383 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2384 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2385 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2387 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2389 int cardSTATE
= MFEMUL_NOFIELD
;
2391 int vHf
= 0; // in mV
2393 uint32_t selTimer
= 0;
2394 uint32_t authTimer
= 0;
2396 uint8_t cardWRBL
= 0;
2397 uint8_t cardAUTHSC
= 0;
2398 uint8_t cardAUTHKEY
= 0xff; // no authentication
2399 // uint32_t cardRr = 0;
2401 //uint32_t rn_enc = 0;
2403 uint32_t cardINTREG
= 0;
2404 uint8_t cardINTBLOCK
= 0;
2405 struct Crypto1State mpcs
= {0, 0};
2406 struct Crypto1State
*pcs
;
2408 uint32_t numReads
= 0;//Counts numer of times reader read a block
2409 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2410 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
];
2411 uint8_t response
[MAX_MIFARE_FRAME_SIZE
];
2412 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
];
2414 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2415 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2416 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2417 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2418 uint8_t rSAK
[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2419 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2421 uint8_t rAUTH_NT
[] = {0x01, 0x01, 0x01, 0x01};
2422 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2424 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2425 // This can be used in a reader-only attack.
2426 // (it can also be retrieved via 'hf 14a list', but hey...
2427 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0,0};
2428 uint8_t ar_nr_collected
= 0;
2430 // free eventually allocated BigBuf memory but keep Emulator Memory
2431 BigBuf_free_keep_EM();
2437 // Authenticate response - nonce
2438 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2440 //-- Determine the UID
2441 // Can be set from emulator memory, incoming data
2442 // and can be 7 or 4 bytes long
2443 if (flags
& FLAG_4B_UID_IN_DATA
)
2445 // 4B uid comes from data-portion of packet
2446 memcpy(rUIDBCC1
,datain
,4);
2447 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2449 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2450 // 7B uid comes from data-portion of packet
2451 memcpy(&rUIDBCC1
[1],datain
,3);
2452 memcpy(rUIDBCC2
, datain
+3, 4);
2455 // get UID from emul memory
2456 emlGetMemBt(receivedCmd
, 7, 1);
2457 _7BUID
= !(receivedCmd
[0] == 0x00);
2458 if (!_7BUID
) { // ---------- 4BUID
2459 emlGetMemBt(rUIDBCC1
, 0, 4);
2460 } else { // ---------- 7BUID
2461 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2462 emlGetMemBt(rUIDBCC2
, 3, 4);
2467 ar_nr_responses
[0*5] = bytes_to_num(rUIDBCC1
+1, 3);
2469 ar_nr_responses
[0*5+1] = bytes_to_num(rUIDBCC2
, 4);
2472 * Regardless of what method was used to set the UID, set fifth byte and modify
2473 * the ATQA for 4 or 7-byte UID
2475 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2479 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2480 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2483 // We need to listen to the high-frequency, peak-detected path.
2484 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2487 if (MF_DBGLEVEL
>= 1) {
2489 Dbprintf("4B UID: %02x%02x%02x%02x",
2490 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2492 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2493 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2494 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2498 bool finished
= FALSE
;
2499 while (!BUTTON_PRESS() && !finished
) {
2502 // find reader field
2503 if (cardSTATE
== MFEMUL_NOFIELD
) {
2504 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2505 if (vHf
> MF_MINFIELDV
) {
2506 cardSTATE_TO_IDLE();
2510 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2513 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2514 if (res
== 2) { //Field is off!
2515 cardSTATE
= MFEMUL_NOFIELD
;
2518 } else if (res
== 1) {
2519 break; //return value 1 means button press
2522 // REQ or WUP request in ANY state and WUP in HALTED state
2523 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2524 selTimer
= GetTickCount();
2525 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2526 cardSTATE
= MFEMUL_SELECT1
;
2528 // init crypto block
2531 crypto1_destroy(pcs
);
2536 switch (cardSTATE
) {
2537 case MFEMUL_NOFIELD
:
2540 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2543 case MFEMUL_SELECT1
:{
2545 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2546 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2547 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2551 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2553 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2557 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2558 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2559 cuid
= bytes_to_num(rUIDBCC1
, 4);
2561 cardSTATE
= MFEMUL_WORK
;
2563 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2566 cardSTATE
= MFEMUL_SELECT2
;
2574 cardSTATE_TO_IDLE();
2575 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2579 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2580 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2583 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2584 if(ar_nr_collected
< 2){
2585 if(ar_nr_responses
[2] != ar
)
2586 {// Avoid duplicates... probably not necessary, ar should vary.
2587 //ar_nr_responses[ar_nr_collected*5] = 0;
2588 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2589 ar_nr_responses
[ar_nr_collected
*5+2] = nonce
;
2590 ar_nr_responses
[ar_nr_collected
*5+3] = nr
;
2591 ar_nr_responses
[ar_nr_collected
*5+4] = ar
;
2594 // Interactive mode flag, means we need to send ACK
2595 if(flags
& FLAG_INTERACTIVE
&& ar_nr_collected
== 2)
2602 //crypto1_word(pcs, ar , 1);
2603 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2606 //if (cardRr != prng_successor(nonce, 64)){
2608 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2609 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2610 // cardRr, prng_successor(nonce, 64));
2611 // Shouldn't we respond anything here?
2612 // Right now, we don't nack or anything, which causes the
2613 // reader to do a WUPA after a while. /Martin
2614 // -- which is the correct response. /piwi
2615 //cardSTATE_TO_IDLE();
2616 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2620 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2622 num_to_bytes(ans
, 4, rAUTH_AT
);
2624 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2626 cardSTATE
= MFEMUL_WORK
;
2627 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2628 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2629 GetTickCount() - authTimer
);
2632 case MFEMUL_SELECT2
:{
2634 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2637 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2638 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2644 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2645 EmSendCmd(rSAK
, sizeof(rSAK
));
2646 cuid
= bytes_to_num(rUIDBCC2
, 4);
2647 cardSTATE
= MFEMUL_WORK
;
2649 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2653 // i guess there is a command). go into the work state.
2655 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2658 cardSTATE
= MFEMUL_WORK
;
2660 //intentional fall-through to the next case-stmt
2665 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2669 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2671 if(encrypted_data
) {
2673 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2676 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2677 authTimer
= GetTickCount();
2678 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2679 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2680 crypto1_destroy(pcs
);//Added by martin
2681 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2683 if (!encrypted_data
) { // first authentication
2684 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2686 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2687 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2688 } else { // nested authentication
2689 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2690 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2691 num_to_bytes(ans
, 4, rAUTH_AT
);
2694 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2695 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2696 cardSTATE
= MFEMUL_AUTH1
;
2700 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2701 // BUT... ACK --> NACK
2702 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2703 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2707 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2708 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2709 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2714 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2718 if(receivedCmd
[0] == 0x30 // read block
2719 || receivedCmd
[0] == 0xA0 // write block
2720 || receivedCmd
[0] == 0xC0 // inc
2721 || receivedCmd
[0] == 0xC1 // dec
2722 || receivedCmd
[0] == 0xC2 // restore
2723 || receivedCmd
[0] == 0xB0) { // transfer
2724 if (receivedCmd
[1] >= 16 * 4) {
2725 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2726 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2730 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2731 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2732 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2737 if (receivedCmd
[0] == 0x30) {
2738 if (MF_DBGLEVEL
>= 4) {
2739 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2741 emlGetMem(response
, receivedCmd
[1], 1);
2742 AppendCrc14443a(response
, 16);
2743 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2744 EmSendCmdPar(response
, 18, response_par
);
2746 if(exitAfterNReads
> 0 && numReads
>= exitAfterNReads
) {
2747 Dbprintf("%d reads done, exiting", numReads
);
2753 if (receivedCmd
[0] == 0xA0) {
2754 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2755 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2756 cardSTATE
= MFEMUL_WRITEBL2
;
2757 cardWRBL
= receivedCmd
[1];
2760 // increment, decrement, restore
2761 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2762 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2763 if (emlCheckValBl(receivedCmd
[1])) {
2764 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2765 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2768 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2769 if (receivedCmd
[0] == 0xC1)
2770 cardSTATE
= MFEMUL_INTREG_INC
;
2771 if (receivedCmd
[0] == 0xC0)
2772 cardSTATE
= MFEMUL_INTREG_DEC
;
2773 if (receivedCmd
[0] == 0xC2)
2774 cardSTATE
= MFEMUL_INTREG_REST
;
2775 cardWRBL
= receivedCmd
[1];
2779 if (receivedCmd
[0] == 0xB0) {
2780 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2781 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2782 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2784 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2788 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2791 cardSTATE
= MFEMUL_HALTED
;
2792 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2793 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2797 if (receivedCmd
[0] == 0xe0) {//RATS
2798 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2801 // command not allowed
2802 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2803 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2806 case MFEMUL_WRITEBL2
:{
2808 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2809 emlSetMem(receivedCmd
, cardWRBL
, 1);
2810 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2811 cardSTATE
= MFEMUL_WORK
;
2813 cardSTATE_TO_IDLE();
2814 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2819 case MFEMUL_INTREG_INC
:{
2820 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2821 memcpy(&ans
, receivedCmd
, 4);
2822 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2823 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2824 cardSTATE_TO_IDLE();
2827 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2828 cardINTREG
= cardINTREG
+ ans
;
2829 cardSTATE
= MFEMUL_WORK
;
2832 case MFEMUL_INTREG_DEC
:{
2833 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2834 memcpy(&ans
, receivedCmd
, 4);
2835 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2836 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2837 cardSTATE_TO_IDLE();
2840 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2841 cardINTREG
= cardINTREG
- ans
;
2842 cardSTATE
= MFEMUL_WORK
;
2845 case MFEMUL_INTREG_REST
:{
2846 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2847 memcpy(&ans
, receivedCmd
, 4);
2848 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2849 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2850 cardSTATE_TO_IDLE();
2853 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2854 cardSTATE
= MFEMUL_WORK
;
2860 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2863 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2865 //May just aswell send the collected ar_nr in the response aswell
2866 uint8_t len
= ar_nr_collected
*5*4;
2867 cmd_send(CMD_ACK
, CMD_SIMULATE_MIFARE_CARD
, len
, 0, &ar_nr_responses
, len
);
2870 if(flags
& FLAG_NR_AR_ATTACK
&& MF_DBGLEVEL
>= 1 )
2872 if(ar_nr_collected
> 1 ) {
2873 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2874 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
2875 ar_nr_responses
[0], // UID1
2876 ar_nr_responses
[1], // UID2
2877 ar_nr_responses
[2], // NT
2878 ar_nr_responses
[3], // AR1
2879 ar_nr_responses
[4], // NR1
2880 ar_nr_responses
[8], // AR2
2881 ar_nr_responses
[9] // NR2
2884 Dbprintf("Failed to obtain two AR/NR pairs!");
2885 if(ar_nr_collected
> 0 ) {
2886 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2887 ar_nr_responses
[0], // UID1
2888 ar_nr_responses
[1], // UID2
2889 ar_nr_responses
[2], // NT
2890 ar_nr_responses
[3], // AR1
2891 ar_nr_responses
[4] // NR1
2896 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
2900 //-----------------------------------------------------------------------------
2903 //-----------------------------------------------------------------------------
2904 void RAMFUNC
SniffMifare(uint8_t param
) {
2906 // bit 0 - trigger from first card answer
2907 // bit 1 - trigger from first reader 7-bit request
2909 // free eventually allocated BigBuf memory
2912 // C(red) A(yellow) B(green)
2914 // init trace buffer
2918 // The command (reader -> tag) that we're receiving.
2919 // The length of a received command will in most cases be no more than 18 bytes.
2920 // So 32 should be enough!
2921 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2922 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
2923 // The response (tag -> reader) that we're receiving.
2924 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
2925 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
2927 // allocate the DMA buffer, used to stream samples from the FPGA
2928 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2929 uint8_t *data
= dmaBuf
;
2930 uint8_t previous_data
= 0;
2933 bool ReaderIsActive
= FALSE
;
2934 bool TagIsActive
= FALSE
;
2936 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2938 // Set up the demodulator for tag -> reader responses.
2939 DemodInit(receivedResponse
, receivedResponsePar
);
2941 // Set up the demodulator for the reader -> tag commands
2942 UartInit(receivedCmd
, receivedCmdPar
);
2944 // Setup for the DMA.
2945 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2952 // And now we loop, receiving samples.
2953 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2955 if(BUTTON_PRESS()) {
2956 DbpString("cancelled by button");
2963 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2964 // check if a transaction is completed (timeout after 2000ms).
2965 // if yes, stop the DMA transfer and send what we have so far to the client
2966 if (MfSniffSend(2000)) {
2967 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2971 ReaderIsActive
= FALSE
;
2972 TagIsActive
= FALSE
;
2973 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2977 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2978 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2979 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2980 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2982 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2984 // test for length of buffer
2985 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2986 maxDataLen
= dataLen
;
2987 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
2988 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2992 if(dataLen
< 1) continue;
2994 // primary buffer was stopped ( <-- we lost data!
2995 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2996 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2997 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2998 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
3000 // secondary buffer sets as primary, secondary buffer was stopped
3001 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
3002 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
3003 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
3008 if (sniffCounter
& 0x01) {
3010 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
3011 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
3012 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
3014 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
3016 /* And ready to receive another command. */
3017 //UartInit(receivedCmd, receivedCmdPar);
3020 /* And also reset the demod code */
3023 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
3026 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
3027 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
3028 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
3031 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
3033 // And ready to receive another response.
3036 // And reset the Miller decoder including its (now outdated) input buffer
3037 UartInit(receivedCmd
, receivedCmdPar
);
3039 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
3043 previous_data
= *data
;
3046 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
3052 DbpString("COMMAND FINISHED");
3054 FpgaDisableSscDma();
3057 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);