3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2014 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
28 for(i
= 0; i
< 1 << 20; ++i
)
29 filterlut
[i
] = filter(i
);
31 #define filter(x) (filterlut[(x) & 0xfffff])
36 typedef struct bucket
{
41 typedef bucket_t bucket_array_t
[2][0x100];
43 typedef struct bucket_info
{
45 uint32_t *head
, *tail
;
46 } bucket_info
[2][0x100];
51 static void bucket_sort_intersect(uint32_t* const estart
, uint32_t* const estop
,
52 uint32_t* const ostart
, uint32_t* const ostop
,
53 bucket_info_t
*bucket_info
, bucket_array_t bucket
)
64 // init buckets to be empty
65 for (uint32_t i
= 0; i
< 2; i
++) {
66 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
67 bucket
[i
][j
].bp
= bucket
[i
][j
].head
;
71 // sort the lists into the buckets based on the MSB (contribution bits)
72 for (uint32_t i
= 0; i
< 2; i
++) {
73 for (p1
= start
[i
]; p1
<= stop
[i
]; p1
++) {
74 uint32_t bucket_index
= (*p1
& 0xff000000) >> 24;
75 *(bucket
[i
][bucket_index
].bp
++) = *p1
;
80 // write back intersecting buckets as sorted list.
81 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
82 uint32_t nonempty_bucket
;
83 for (uint32_t i
= 0; i
< 2; i
++) {
86 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
87 if (bucket
[0][j
].bp
!= bucket
[0][j
].head
&& bucket
[1][j
].bp
!= bucket
[1][j
].head
) { // non-empty intersecting buckets only
88 bucket_info
->bucket_info
[i
][nonempty_bucket
].head
= p1
;
89 for (p2
= bucket
[i
][j
].head
; p2
< bucket
[i
][j
].bp
; *p1
++ = *p2
++);
90 bucket_info
->bucket_info
[i
][nonempty_bucket
].tail
= p1
- 1;
94 bucket_info
->numbuckets
= nonempty_bucket
;
98 /** update_contribution
99 * helper, calculates the partial linear feedback contributions and puts in MSB
101 static inline void update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
103 uint32_t p
= *item
>> 25;
105 p
= p
<< 1 | parity(*item
& mask1
);
106 p
= p
<< 1 | parity(*item
& mask2
);
107 *item
= p
<< 24 | (*item
& 0xffffff);
111 * using a bit of the keystream extend the table of possible lfsr states
113 static inline void extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
116 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
117 if(filter(*tbl
) ^ filter(*tbl
| 1)) {
118 *tbl
|= filter(*tbl
) ^ bit
;
119 update_contribution(tbl
, m1
, m2
);
121 } else if(filter(*tbl
) == bit
) {
124 update_contribution(tbl
, m1
, m2
);
126 update_contribution(tbl
, m1
, m2
);
131 /** extend_table_simple
132 * using a bit of the keystream extend the table of possible lfsr states
134 static inline void extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
136 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1) {
137 if(filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
138 *tbl
|= filter(*tbl
) ^ bit
;
139 } else if(filter(*tbl
) == bit
) { // insert
148 * recursively narrow down the search space, 4 bits of keystream at a time
150 static struct Crypto1State
*
151 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
152 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
153 struct Crypto1State
*sl
, uint32_t in
, bucket_array_t bucket
)
156 bucket_info_t bucket_info
;
159 for(e
= e_head
; e
<= e_tail
; ++e
) {
160 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
161 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
163 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
164 sl
[1].odd
= sl
[1].even
= 0;
170 for(uint32_t i
= 0; i
< 4 && rem
--; i
++) {
174 extend_table(o_head
, &o_tail
, oks
& 1, LF_POLY_EVEN
<< 1 | 1, LF_POLY_ODD
<< 1, 0);
178 extend_table(e_head
, &e_tail
, eks
& 1, LF_POLY_ODD
, LF_POLY_EVEN
<< 1 | 1, in
& 3);
183 bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
);
185 for (int i
= bucket_info
.numbuckets
- 1; i
>= 0; i
--) {
186 sl
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
,
187 bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
,
188 rem
, sl
, in
, bucket
);
194 * recover the state of the lfsr given 32 bits of the keystream
195 * additionally you can use the in parameter to specify the value
196 * that was fed into the lfsr at the time the keystream was generated
198 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
200 struct Crypto1State
*statelist
;
201 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
202 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
205 // split the keystream into an odd and even part
206 for(i
= 31; i
>= 0; i
-= 2)
207 oks
= oks
<< 1 | BEBIT(ks2
, i
);
208 for(i
= 30; i
>= 0; i
-= 2)
209 eks
= eks
<< 1 | BEBIT(ks2
, i
);
211 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
212 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
213 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
214 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
220 statelist
->odd
= statelist
->even
= 0;
222 // allocate memory for out of place bucket_sort
223 bucket_array_t bucket
;
225 for (uint32_t i
= 0; i
< 2; i
++) {
226 for (uint32_t j
= 0; j
<= 0xff; j
++) {
227 bucket
[i
][j
].head
= malloc(sizeof(uint32_t)<<14);
228 if (!bucket
[i
][j
].head
) {
234 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
235 for(i
= 1 << 20; i
>= 0; --i
) {
236 if(filter(i
) == (oks
& 1))
238 if(filter(i
) == (eks
& 1))
242 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
243 for(i
= 0; i
< 4; i
++) {
244 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
245 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
248 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
249 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
250 // parameter into account.
251 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00); // Byte swapping
252 recover(odd_head
, odd_tail
, oks
, even_head
, even_tail
, eks
, 11, statelist
, in
<< 1, bucket
);
255 for (uint32_t i
= 0; i
< 2; i
++)
256 for (uint32_t j
= 0; j
<= 0xff; j
++)
257 free(bucket
[i
][j
].head
);
263 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
264 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
265 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
266 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
267 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
268 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
269 0x7EC7EE90, 0x7F63F748, 0x79117020};
270 static const uint32_t T1
[] = {
271 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
272 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
273 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
274 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
275 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
276 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
277 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
278 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
279 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
280 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
281 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
282 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
283 /** Reverse 64 bits of keystream into possible cipher states
284 * Variation mentioned in the paper. Somewhat optimized version
286 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
288 struct Crypto1State
*statelist
, *sl
;
289 uint8_t oks
[32], eks
[32], hi
[32];
290 uint32_t low
= 0, win
= 0;
291 uint32_t *tail
, table
[1 << 16];
294 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
297 sl
->odd
= sl
->even
= 0;
299 for(i
= 30; i
>= 0; i
-= 2) {
300 oks
[i
>> 1] = BEBIT(ks2
, i
);
301 oks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
303 for(i
= 31; i
>= 0; i
-= 2) {
304 eks
[i
>> 1] = BEBIT(ks2
, i
);
305 eks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
308 for(i
= 0xfffff; i
>= 0; --i
) {
309 if (filter(i
) != oks
[0])
313 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
314 extend_table_simple(table
, &tail
, oks
[j
]);
319 for(j
= 0; j
< 19; ++j
)
320 low
= low
<< 1 | parity(i
& S1
[j
]);
321 for(j
= 0; j
< 32; ++j
)
322 hi
[j
] = parity(i
& T1
[j
]);
324 for(; tail
>= table
; --tail
) {
325 for(j
= 0; j
< 3; ++j
) {
327 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
328 if(filter(*tail
) != oks
[29 + j
])
332 for(j
= 0; j
< 19; ++j
)
333 win
= win
<< 1 | parity(*tail
& S2
[j
]);
336 for(j
= 0; j
< 32; ++j
) {
337 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
338 if(filter(win
) != eks
[j
])
342 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
343 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
346 sl
->odd
= sl
->even
= 0;
353 /** lfsr_rollback_bit
354 * Rollback the shift register in order to get previous states
356 uint8_t lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
363 t
= s
->odd
, s
->odd
= s
->even
, s
->even
= t
;
366 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
367 out
^= LF_POLY_ODD
& s
->odd
;
369 out
^= (ret
= filter(s
->odd
)) & !!fb
;
371 s
->even
|= parity(out
) << 23;
374 /** lfsr_rollback_byte
375 * Rollback the shift register in order to get previous states
377 uint8_t lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
381 for (i = 7; i >= 0; --i)
382 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
384 // unfold loop 20160112
386 ret
|= lfsr_rollback_bit(s
, BIT(in
, 7), fb
) << 7;
387 ret
|= lfsr_rollback_bit(s
, BIT(in
, 6), fb
) << 6;
388 ret
|= lfsr_rollback_bit(s
, BIT(in
, 5), fb
) << 5;
389 ret
|= lfsr_rollback_bit(s
, BIT(in
, 4), fb
) << 4;
390 ret
|= lfsr_rollback_bit(s
, BIT(in
, 3), fb
) << 3;
391 ret
|= lfsr_rollback_bit(s
, BIT(in
, 2), fb
) << 2;
392 ret
|= lfsr_rollback_bit(s
, BIT(in
, 1), fb
) << 1;
393 ret
|= lfsr_rollback_bit(s
, BIT(in
, 0), fb
) << 0;
396 /** lfsr_rollback_word
397 * Rollback the shift register in order to get previous states
399 uint32_t lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
404 for (i = 31; i >= 0; --i)
405 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
407 // unfold loop 20160112
409 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 31), fb
) << (31 ^ 24);
410 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 30), fb
) << (30 ^ 24);
411 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 29), fb
) << (29 ^ 24);
412 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 28), fb
) << (28 ^ 24);
413 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 27), fb
) << (27 ^ 24);
414 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 26), fb
) << (26 ^ 24);
415 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 25), fb
) << (25 ^ 24);
416 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 24), fb
) << (24 ^ 24);
418 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 23), fb
) << (23 ^ 24);
419 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 22), fb
) << (22 ^ 24);
420 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 21), fb
) << (21 ^ 24);
421 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 20), fb
) << (20 ^ 24);
422 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 19), fb
) << (19 ^ 24);
423 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 18), fb
) << (18 ^ 24);
424 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 17), fb
) << (17 ^ 24);
425 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 16), fb
) << (16 ^ 24);
427 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 15), fb
) << (15 ^ 24);
428 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 14), fb
) << (14 ^ 24);
429 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 13), fb
) << (13 ^ 24);
430 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 12), fb
) << (12 ^ 24);
431 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 11), fb
) << (11 ^ 24);
432 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 10), fb
) << (10 ^ 24);
433 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 9), fb
) << (9 ^ 24);
434 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 8), fb
) << (8 ^ 24);
436 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 7), fb
) << (7 ^ 24);
437 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 6), fb
) << (6 ^ 24);
438 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 5), fb
) << (5 ^ 24);
439 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 4), fb
) << (4 ^ 24);
440 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 3), fb
) << (3 ^ 24);
441 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 2), fb
) << (2 ^ 24);
442 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 1), fb
) << (1 ^ 24);
443 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 0), fb
) << (0 ^ 24);
448 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
450 static uint16_t *dist
= 0;
451 int nonce_distance(uint32_t from
, uint32_t to
)
455 dist
= malloc(2 << 16);
458 for (x
= i
= 1; i
; ++i
) {
459 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
460 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
463 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
467 static uint32_t fastfwd
[2][8] = {
468 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
469 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
474 * Is an exported helper function from the common prefix attack
475 * Described in the "dark side" paper. It returns an -1 terminated array
476 * of possible partial(21 bit) secret state.
477 * The required keystream(ks) needs to contain the keystream that was used to
478 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
479 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
481 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
483 uint32_t *candidates
= malloc(4 << 10);
484 if(!candidates
) return 0;
487 int size
= 0, i
, good
;
489 for(i
= 0; i
< 1 << 21; ++i
) {
490 for(c
= 0, good
= 1; good
&& c
< 8; ++c
) {
491 entry
= i
^ fastfwd
[isodd
][c
];
492 good
&= (BIT(ks
[c
], isodd
) == filter(entry
>> 1));
493 good
&= (BIT(ks
[c
], isodd
+ 2) == filter(entry
));
496 candidates
[size
++] = i
;
499 candidates
[size
] = -1;
505 * helper function which eliminates possible secret states using parity bits
507 static struct Crypto1State
* check_pfx_parity(uint32_t prefix
, uint32_t rresp
, uint8_t parities
[8][8], uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
)
509 uint32_t ks1
, nr
, ks2
, rr
, ks3
, c
, good
= 1;
511 for(c
= 0; good
&& c
< 8; ++c
) {
512 sl
->odd
= odd
^ fastfwd
[1][c
];
513 sl
->even
= even
^ fastfwd
[0][c
];
515 lfsr_rollback_bit(sl
, 0, 0);
516 lfsr_rollback_bit(sl
, 0, 0);
518 ks3
= lfsr_rollback_bit(sl
, 0, 0);
519 ks2
= lfsr_rollback_word(sl
, 0, 0);
520 ks1
= lfsr_rollback_word(sl
, prefix
| c
<< 5, 1);
522 nr
= ks1
^ (prefix
| c
<< 5);
525 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
526 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
527 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
528 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
529 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ ks3
;
535 /** lfsr_common_prefix
536 * Implentation of the common prefix attack.
537 * Requires the 28 bit constant prefix used as reader nonce (pfx)
538 * The reader response used (rr)
539 * The keystream used to encrypt the observed NACK's (ks)
540 * The parity bits (par)
541 * It returns a zero terminated list of possible cipher states after the
542 * tag nonce was fed in
545 struct Crypto1State
* lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8])
547 struct Crypto1State
*statelist
, *s
;
548 uint32_t *odd
, *even
, *o
, *e
, top
;
550 odd
= lfsr_prefix_ks(ks
, 1);
551 even
= lfsr_prefix_ks(ks
, 0);
553 s
= statelist
= malloc((sizeof *statelist
) << 20);
554 if(!s
|| !odd
|| !even
) {
560 for(o
= odd
; *o
+ 1; ++o
)
561 for(e
= even
; *e
+ 1; ++e
)
562 for(top
= 0; top
< 64; ++top
) {
564 *e
+= (!(top
& 7) + 1) << 21;
565 s
= check_pfx_parity(pfx
, rr
, par
, *o
, *e
, s
);
568 s
->odd
= s
->even
= 0;