3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
28 for(i
= 0; i
< 1 << 20; ++i
)
29 filterlut
[i
] = filter(i
);
31 #define filter(x) (filterlut[(x) & 0xfffff])
36 typedef struct bucket
{
41 typedef bucket_t bucket_array_t
[2][0x100];
43 typedef struct bucket_info
{
45 uint32_t *head
, *tail
;
46 } bucket_info
[2][0x100];
51 static void bucket_sort_intersect(uint32_t* const estart
, uint32_t* const estop
,
52 uint32_t* const ostart
, uint32_t* const ostop
,
53 bucket_info_t
*bucket_info
, bucket_array_t bucket
)
64 // init buckets to be empty
65 for (uint32_t i
= 0; i
< 2; i
++) {
66 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
67 bucket
[i
][j
].bp
= bucket
[i
][j
].head
;
71 // sort the lists into the buckets based on the MSB (contribution bits)
72 for (uint32_t i
= 0; i
< 2; i
++) {
73 for (p1
= start
[i
]; p1
<= stop
[i
]; p1
++) {
74 uint32_t bucket_index
= (*p1
& 0xff000000) >> 24;
75 *(bucket
[i
][bucket_index
].bp
++) = *p1
;
80 // write back intersecting buckets as sorted list.
81 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
82 uint32_t nonempty_bucket
;
83 for (uint32_t i
= 0; i
< 2; i
++) {
86 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
87 if (bucket
[0][j
].bp
!= bucket
[0][j
].head
&& bucket
[1][j
].bp
!= bucket
[1][j
].head
) { // non-empty intersecting buckets only
88 bucket_info
->bucket_info
[i
][nonempty_bucket
].head
= p1
;
89 for (p2
= bucket
[i
][j
].head
; p2
< bucket
[i
][j
].bp
; *p1
++ = *p2
++);
90 bucket_info
->bucket_info
[i
][nonempty_bucket
].tail
= p1
- 1;
94 bucket_info
->numbuckets
= nonempty_bucket
;
99 static void quicksort(uint32_t* const start
, uint32_t* const stop
)
101 uint32_t *it
= start
+ 1, *rit
= stop
;
109 else if(*rit
> *start
)
112 *it
^= (*it
^= *rit
, *rit
^= *it
);
117 *rit
^= (*rit
^= *start
, *start
^= *rit
);
119 quicksort(start
, rit
- 1);
120 quicksort(rit
+ 1, stop
);
125 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
127 static inline uint32_t*
128 binsearch(uint32_t *start
, uint32_t *stop
)
130 uint32_t mid
, val
= *stop
& 0xff000000;
132 if(start
[mid
= (stop
- start
) >> 1] > val
)
140 /** update_contribution
141 * helper, calculates the partial linear feedback contributions and puts in MSB
144 update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
146 uint32_t p
= *item
>> 25;
148 p
= p
<< 1 | parity(*item
& mask1
);
149 p
= p
<< 1 | parity(*item
& mask2
);
150 *item
= p
<< 24 | (*item
& 0xffffff);
154 * using a bit of the keystream extend the table of possible lfsr states
157 extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
161 for(uint32_t *p
= tbl
; p
<= *end
; p
++) {
163 if(filter(*p
) != filter(*p
| 1)) { // replace
164 *p
|= filter(*p
) ^ bit
;
165 update_contribution(p
, m1
, m2
);
167 } else if(filter(*p
) == bit
) { // insert
170 update_contribution(p
, m1
, m2
);
172 update_contribution(p
, m1
, m2
);
182 /** extend_table_simple
183 * using a bit of the keystream extend the table of possible lfsr states
186 extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
188 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
189 if(filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
190 *tbl
|= filter(*tbl
) ^ bit
;
191 } else if(filter(*tbl
) == bit
) { // insert
200 * recursively narrow down the search space, 4 bits of keystream at a time
202 static struct Crypto1State
*
203 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
204 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
205 struct Crypto1State
*sl
, uint32_t in
, bucket_array_t bucket
)
208 bucket_info_t bucket_info
;
211 for(e
= e_head
; e
<= e_tail
; ++e
) {
212 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
213 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
215 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
218 sl
->odd
= sl
->even
= 0;
222 for(uint32_t i
= 0; i
< 4 && rem
--; i
++) {
223 extend_table(o_head
, &o_tail
, (oks
>>= 1) & 1,
224 LF_POLY_EVEN
<< 1 | 1, LF_POLY_ODD
<< 1, 0);
228 extend_table(e_head
, &e_tail
, (eks
>>= 1) & 1,
229 LF_POLY_ODD
, LF_POLY_EVEN
<< 1 | 1, (in
>>= 2) & 3);
234 bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
);
236 for (int i
= bucket_info
.numbuckets
- 1; i
>= 0; i
--) {
237 sl
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
,
238 bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
,
239 rem
, sl
, in
, bucket
);
245 * recover the state of the lfsr given 32 bits of the keystream
246 * additionally you can use the in parameter to specify the value
247 * that was fed into the lfsr at the time the keystream was generated
249 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
251 struct Crypto1State
*statelist
;
252 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
253 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
256 // split the keystream into an odd and even part
257 for(i
= 31; i
>= 0; i
-= 2)
258 oks
= oks
<< 1 | BEBIT(ks2
, i
);
259 for(i
= 30; i
>= 0; i
-= 2)
260 eks
= eks
<< 1 | BEBIT(ks2
, i
);
262 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
263 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
264 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
265 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
268 statelist
->odd
= statelist
->even
= 0;
270 // allocate memory for out of place bucket_sort
271 bucket_array_t bucket
;
272 for (uint32_t i
= 0; i
< 2; i
++)
273 for (uint32_t j
= 0; j
<= 0xff; j
++) {
274 bucket
[i
][j
].head
= malloc(sizeof(uint32_t)<<14);
275 if (!bucket
[i
][j
].head
) {
281 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
282 for(i
= 1 << 20; i
>= 0; --i
) {
283 if(filter(i
) == (oks
& 1))
285 if(filter(i
) == (eks
& 1))
289 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
290 for(i
= 0; i
< 4; i
++) {
291 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
292 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
295 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
296 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
297 // parameter into account.
299 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00); // Byte swapping
301 recover(odd_head
, odd_tail
, oks
,
302 even_head
, even_tail
, eks
, 11, statelist
, in
<< 1, bucket
);
308 for (uint32_t i
= 0; i
< 2; i
++)
309 for (uint32_t j
= 0; j
<= 0xff; j
++)
310 free(bucket
[i
][j
].head
);
315 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
316 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
317 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
318 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
319 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
320 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
321 0x7EC7EE90, 0x7F63F748, 0x79117020};
322 static const uint32_t T1
[] = {
323 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
324 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
325 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
326 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
327 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
328 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
329 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
330 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
331 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
332 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
333 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
334 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
335 /** Reverse 64 bits of keystream into possible cipher states
336 * Variation mentioned in the paper. Somewhat optimized version
338 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
340 struct Crypto1State
*statelist
, *sl
;
341 uint8_t oks
[32], eks
[32], hi
[32];
342 uint32_t low
= 0, win
= 0;
343 uint32_t *tail
, table
[1 << 16];
346 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
349 sl
->odd
= sl
->even
= 0;
351 for(i
= 30; i
>= 0; i
-= 2) {
352 oks
[i
>> 1] = BIT(ks2
, i
^ 24);
353 oks
[16 + (i
>> 1)] = BIT(ks3
, i
^ 24);
355 for(i
= 31; i
>= 0; i
-= 2) {
356 eks
[i
>> 1] = BIT(ks2
, i
^ 24);
357 eks
[16 + (i
>> 1)] = BIT(ks3
, i
^ 24);
360 for(i
= 0xfffff; i
>= 0; --i
) {
361 if (filter(i
) != oks
[0])
365 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
366 extend_table_simple(table
, &tail
, oks
[j
]);
371 for(j
= 0; j
< 19; ++j
)
372 low
= low
<< 1 | parity(i
& S1
[j
]);
373 for(j
= 0; j
< 32; ++j
)
374 hi
[j
] = parity(i
& T1
[j
]);
376 for(; tail
>= table
; --tail
) {
377 for(j
= 0; j
< 3; ++j
) {
379 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
380 if(filter(*tail
) != oks
[29 + j
])
384 for(j
= 0; j
< 19; ++j
)
385 win
= win
<< 1 | parity(*tail
& S2
[j
]);
388 for(j
= 0; j
< 32; ++j
) {
389 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
390 if(filter(win
) != eks
[j
])
394 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
395 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
398 sl
->odd
= sl
->even
= 0;
405 /** lfsr_rollback_bit
406 * Rollback the shift register in order to get previous states
408 void lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
413 s
->odd
^= (s
->odd
^= s
->even
, s
->even
^= s
->odd
);
416 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
417 out
^= LF_POLY_ODD
& s
->odd
;
419 out
^= filter(s
->odd
) & !!fb
;
421 s
->even
|= parity(out
) << 23;
423 /** lfsr_rollback_byte
424 * Rollback the shift register in order to get previous states
426 void lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
429 for (i
= 7; i
>= 0; --i
)
430 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
);
432 /** lfsr_rollback_word
433 * Rollback the shift register in order to get previous states
435 void lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
438 for (i
= 31; i
>= 0; --i
)
439 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
);
443 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
445 static uint16_t *dist
= 0;
446 int nonce_distance(uint32_t from
, uint32_t to
)
450 dist
= malloc(2 << 16);
453 for (x
= i
= 1; i
; ++i
) {
454 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
455 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
458 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
462 static uint32_t fastfwd
[2][8] = {
463 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
464 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
469 * Is an exported helper function from the common prefix attack
470 * Described in the "dark side" paper. It returns an -1 terminated array
471 * of possible partial(21 bit) secret state.
472 * The required keystream(ks) needs to contain the keystream that was used to
473 * encrypt the NACK which is observed when varying only the 4 last bits of Nr
474 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
476 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
478 uint32_t *candidates
= malloc(4 << 21);
485 size
= (1 << 21) - 1;
486 for(i
= 0; i
<= size
; ++i
)
489 for(c
= 0; c
< 8; ++c
)
490 for(i
= 0;i
<= size
; ++i
) {
491 entry
= candidates
[i
] ^ fastfwd
[isodd
][c
];
493 if(filter(entry
>> 1) == BIT(ks
[c
], isodd
))
494 if(filter(entry
) == BIT(ks
[c
], isodd
+ 2))
497 candidates
[i
--] = candidates
[size
--];
500 candidates
[size
+ 1] = -1;
506 * helper function which eliminates possible secret states using parity bits
508 static struct Crypto1State
*
509 brute_top(uint32_t prefix
, uint32_t rresp
, unsigned char parities
[8][8],
510 uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
, uint8_t no_chk
)
512 struct Crypto1State s
;
513 uint32_t ks1
, nr
, ks2
, rr
, ks3
, good
, c
;
515 for(c
= 0; c
< 8; ++c
) {
516 s
.odd
= odd
^ fastfwd
[1][c
];
517 s
.even
= even
^ fastfwd
[0][c
];
519 lfsr_rollback_bit(&s
, 0, 0);
520 lfsr_rollback_bit(&s
, 0, 0);
521 lfsr_rollback_bit(&s
, 0, 0);
523 lfsr_rollback_word(&s
, 0, 0);
524 lfsr_rollback_word(&s
, prefix
| c
<< 5, 1);
532 ks1
= crypto1_word(&s
, prefix
| c
<< 5, 1);
533 ks2
= crypto1_word(&s
,0,0);
534 ks3
= crypto1_word(&s
, 0,0);
535 nr
= ks1
^ (prefix
| c
<< 5);
539 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
540 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
541 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
542 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
543 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ BIT(ks3
, 24);
553 /** lfsr_common_prefix
554 * Implentation of the common prefix attack.
555 * Requires the 28 bit constant prefix used as reader nonce (pfx)
556 * The reader response used (rr)
557 * The keystream used to encrypt the observed NACK's (ks)
558 * The parity bits (par)
559 * It returns a zero terminated list of possible cipher states after the
560 * tag nonce was fed in
563 lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8], uint8_t no_par
)
565 struct Crypto1State
*statelist
, *s
;
566 uint32_t *odd
, *even
, *o
, *e
, top
;
568 odd
= lfsr_prefix_ks(ks
, 1);
569 even
= lfsr_prefix_ks(ks
, 0);
571 statelist
= malloc((sizeof *statelist
) << 21); //how large should be?
572 if(!statelist
|| !odd
|| !even
)
576 for(o
= odd
; *o
!= -1; ++o
)
577 for(e
= even
; *e
!= -1; ++e
)
578 for(top
= 0; top
< 64; ++top
) {
579 *o
= (*o
& 0x1fffff) | (top
<< 21);
580 *e
= (*e
& 0x1fffff) | (top
>> 3) << 21;
581 s
= brute_top(pfx
, rr
, par
, *o
, *e
, s
, no_par
);
584 s
->odd
= s
->even
= -1;
585 //printf("state count = %d\n",s-statelist);