]> git.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
FIX: I think the dumping of data is correct now in tnp3.lua. MD5 string vs bytearra...
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <pthread.h>
15 #include "mifarehost.h"
16 #include "proxmark3.h"
17
18 // MIFARE
19 int compar_int(const void * a, const void * b) {
20 // didn't work: (the result is truncated to 32 bits)
21 //return (*(uint64_t*)b - *(uint64_t*)a);
22
23 // better:
24 if (*(uint64_t*)b == *(uint64_t*)a) return 0;
25 else if (*(uint64_t*)b > *(uint64_t*)a) return 1;
26 else return -1;
27 }
28
29 // Compare 16 Bits out of cryptostate
30 int Compare16Bits(const void * a, const void * b) {
31 if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
32 else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
33 else return -1;
34 }
35
36 typedef
37 struct {
38 union {
39 struct Crypto1State *slhead;
40 uint64_t *keyhead;
41 } head;
42 union {
43 struct Crypto1State *sltail;
44 uint64_t *keytail;
45 } tail;
46 uint32_t len;
47 uint32_t uid;
48 uint32_t blockNo;
49 uint32_t keyType;
50 uint32_t nt;
51 uint32_t ks1;
52 } StateList_t;
53
54
55 // wrapper function for multi-threaded lfsr_recovery32
56 void* nested_worker_thread(void *arg)
57 {
58 struct Crypto1State *p1;
59 StateList_t *statelist = arg;
60
61 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
62 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
63 statelist->len = p1 - statelist->head.slhead;
64 statelist->tail.sltail = --p1;
65 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
66
67 return statelist->head.slhead;
68 }
69
70 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
71 {
72 uint16_t i, len;
73 uint32_t uid;
74 UsbCommand resp;
75
76 StateList_t statelists[2];
77 struct Crypto1State *p1, *p2, *p3, *p4;
78
79 // flush queue
80 WaitForResponseTimeout(CMD_ACK,NULL,100);
81
82 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
83 memcpy(c.d.asBytes, key, 6);
84 SendCommand(&c);
85
86 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
87 len = resp.arg[1];
88 if (len == 2) {
89 memcpy(&uid, resp.d.asBytes, 4);
90 PrintAndLog("uid:%08x len=%d trgbl=%d trgkey=%x", uid, len, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
91
92 for (i = 0; i < 2; i++) {
93 statelists[i].blockNo = resp.arg[2] & 0xff;
94 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
95 statelists[i].uid = uid;
96
97 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
98 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
99 }
100 }
101 else {
102 PrintAndLog("Got 0 keys from proxmark.");
103 return 1;
104 }
105 }
106
107 // calc keys
108
109 pthread_t thread_id[2];
110
111 // create and run worker threads
112 for (i = 0; i < 2; i++) {
113 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
114 }
115
116 // wait for threads to terminate:
117 for (i = 0; i < 2; i++) {
118 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
119 }
120
121
122 // the first 16 Bits of the cryptostate already contain part of our key.
123 // Create the intersection of the two lists based on these 16 Bits and
124 // roll back the cryptostate
125 p1 = p3 = statelists[0].head.slhead;
126 p2 = p4 = statelists[1].head.slhead;
127 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
128 if (Compare16Bits(p1, p2) == 0) {
129 struct Crypto1State savestate, *savep = &savestate;
130 savestate = *p1;
131 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
132 *p3 = *p1;
133 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
134 p3++;
135 p1++;
136 }
137 savestate = *p2;
138 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
139 *p4 = *p2;
140 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
141 p4++;
142 p2++;
143 }
144 }
145 else {
146 while (Compare16Bits(p1, p2) == -1) p1++;
147 while (Compare16Bits(p1, p2) == 1) p2++;
148 }
149 }
150 p3->even = 0; p3->odd = 0;
151 p4->even = 0; p4->odd = 0;
152 statelists[0].len = p3 - statelists[0].head.slhead;
153 statelists[1].len = p4 - statelists[1].head.slhead;
154 statelists[0].tail.sltail=--p3;
155 statelists[1].tail.sltail=--p4;
156
157 // the statelists now contain possible keys. The key we are searching for must be in the
158 // intersection of both lists. Create the intersection:
159 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
160 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
161
162 uint64_t *p5, *p6, *p7;
163 p5 = p7 = statelists[0].head.keyhead;
164 p6 = statelists[1].head.keyhead;
165 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
166 if (compar_int(p5, p6) == 0) {
167 *p7++ = *p5++;
168 p6++;
169 }
170 else {
171 while (compar_int(p5, p6) == -1) p5++;
172 while (compar_int(p5, p6) == 1) p6++;
173 }
174 }
175 statelists[0].len = p7 - statelists[0].head.keyhead;
176 statelists[0].tail.keytail=--p7;
177
178 memset(resultKey, 0, 6);
179 // The list may still contain several key candidates. Test each of them with mfCheckKeys
180 for (i = 0; i < statelists[0].len; i++) {
181 uint8_t keyBlock[6];
182 uint64_t key64;
183 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
184 num_to_bytes(key64, 6, keyBlock);
185 key64 = 0;
186 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, 1, keyBlock, &key64)) {
187 num_to_bytes(key64, 6, resultKey);
188 break;
189 }
190 }
191
192 free(statelists[0].head.slhead);
193 free(statelists[1].head.slhead);
194
195 return 0;
196 }
197
198 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
199
200 *key = 0;
201
202 UsbCommand c = {CMD_MIFARE_CHKKEYS, {blockNo, keyType, keycnt}};
203 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
204 SendCommand(&c);
205
206 UsbCommand resp;
207 if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
208 if ((resp.arg[0] & 0xff) != 0x01) return 2;
209 *key = bytes_to_num(resp.d.asBytes, 6);
210 return 0;
211 }
212
213 // EMULATOR
214
215 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
216 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
217 SendCommand(&c);
218
219 UsbCommand resp;
220 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
221 memcpy(data, resp.d.asBytes, blocksCount * 16);
222 return 0;
223 }
224
225 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
226 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
227 memcpy(c.d.asBytes, data, blocksCount * 16);
228 SendCommand(&c);
229 return 0;
230 }
231
232 // "MAGIC" CARD
233
234 int mfCSetUID(uint8_t *uid, uint8_t *oldUID, int wantWipe) {
235 uint8_t block0[16];
236 memset(block0, 0, 16);
237 memcpy(block0, uid, 4);
238 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // Mifare UID BCC
239 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7)
240 block0[5] = 0x88;
241 block0[6] = 0x04;
242 block0[7] = 0x00;
243
244 return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);
245 }
246
247 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, int wantWipe, uint8_t params) {
248 uint8_t isOK = 0;
249
250 UsbCommand c = {CMD_MIFARE_EML_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
251 memcpy(c.d.asBytes, data, 16);
252 SendCommand(&c);
253
254 UsbCommand resp;
255 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
256 isOK = resp.arg[0] & 0xff;
257 if (uid != NULL) memcpy(uid, resp.d.asBytes, 4);
258 if (!isOK) return 2;
259 } else {
260 PrintAndLog("Command execute timeout");
261 return 1;
262 }
263 return 0;
264 }
265
266 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
267 uint8_t isOK = 0;
268
269 UsbCommand c = {CMD_MIFARE_EML_CGETBLOCK, {params, 0, blockNo}};
270 SendCommand(&c);
271
272 UsbCommand resp;
273 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
274 isOK = resp.arg[0] & 0xff;
275 memcpy(data, resp.d.asBytes, 16);
276 if (!isOK) return 2;
277 } else {
278 PrintAndLog("Command execute timeout");
279 return 1;
280 }
281 return 0;
282 }
283
284 // SNIFFER
285
286 // constants
287 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
288
289 // variables
290 char logHexFileName[200] = {0x00};
291 static uint8_t traceCard[4096] = {0x00};
292 static char traceFileName[200] = {0x00};
293 static int traceState = TRACE_IDLE;
294 static uint8_t traceCurBlock = 0;
295 static uint8_t traceCurKey = 0;
296
297 struct Crypto1State *traceCrypto1 = NULL;
298
299 struct Crypto1State *revstate;
300 uint64_t lfsr;
301 uint32_t ks2;
302 uint32_t ks3;
303
304 uint32_t uid; // serial number
305 uint32_t nt; // tag challenge
306 uint32_t nt_par;
307 uint32_t nr_enc; // encrypted reader challenge
308 uint32_t ar_enc; // encrypted reader response
309 uint32_t nr_ar_par;
310 uint32_t at_enc; // encrypted tag response
311 uint32_t at_par;
312
313 int isTraceCardEmpty(void) {
314 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
315 }
316
317 int isBlockEmpty(int blockN) {
318 for (int i = 0; i < 16; i++)
319 if (traceCard[blockN * 16 + i] != 0) return 0;
320
321 return 1;
322 }
323
324 int isBlockTrailer(int blockN) {
325 return ((blockN & 0x03) == 0x03);
326 }
327
328 int loadTraceCard(uint8_t *tuid) {
329 FILE * f;
330 char buf[64];
331 uint8_t buf8[64];
332 int i, blockNum;
333
334 if (!isTraceCardEmpty()) saveTraceCard();
335 memset(traceCard, 0x00, 4096);
336 memcpy(traceCard, tuid + 3, 4);
337 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
338
339 f = fopen(traceFileName, "r");
340 if (!f) return 1;
341
342 blockNum = 0;
343 while(!feof(f)){
344 memset(buf, 0, sizeof(buf));
345 if (fgets(buf, sizeof(buf), f) == NULL) {
346 PrintAndLog("File reading error.");
347 return 2;
348 }
349
350 if (strlen(buf) < 32){
351 if (feof(f)) break;
352 PrintAndLog("File content error. Block data must include 32 HEX symbols");
353 return 2;
354 }
355 for (i = 0; i < 32; i += 2)
356 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
357
358 memcpy(traceCard + blockNum * 16, buf8, 16);
359
360 blockNum++;
361 }
362 fclose(f);
363
364 return 0;
365 }
366
367 int saveTraceCard(void) {
368 FILE * f;
369
370 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
371
372 f = fopen(traceFileName, "w+");
373 for (int i = 0; i < 64; i++) { // blocks
374 for (int j = 0; j < 16; j++) // bytes
375 fprintf(f, "%02x", *(traceCard + i * 16 + j));
376 fprintf(f,"\n");
377 }
378 fclose(f);
379
380 return 0;
381 }
382
383 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
384
385 if (traceCrypto1) crypto1_destroy(traceCrypto1);
386 traceCrypto1 = NULL;
387
388 if (wantSaveToEmlFile) loadTraceCard(tuid);
389 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
390 traceCard[5] = sak;
391 memcpy(&traceCard[6], atqa, 2);
392 traceCurBlock = 0;
393 uid = bytes_to_num(tuid + 3, 4);
394
395 traceState = TRACE_IDLE;
396
397 return 0;
398 }
399
400 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
401 uint8_t bt = 0;
402 int i;
403
404 if (len != 1) {
405 for (i = 0; i < len; i++)
406 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
407 } else {
408 bt = 0;
409 for (i = 0; i < 4; i++)
410 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
411
412 data[0] = bt;
413 }
414 return;
415 }
416
417
418 int mfTraceDecode(uint8_t *data_src, int len, uint32_t parity, bool wantSaveToEmlFile) {
419 uint8_t data[64];
420
421 if (traceState == TRACE_ERROR) return 1;
422 if (len > 64) {
423 traceState = TRACE_ERROR;
424 return 1;
425 }
426
427 memcpy(data, data_src, len);
428 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
429 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
430 PrintAndLog("dec> %s", sprint_hex(data, len));
431 AddLogHex(logHexFileName, "dec> ", data, len);
432 }
433
434 switch (traceState) {
435 case TRACE_IDLE:
436 // check packet crc16!
437 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
438 PrintAndLog("dec> CRC ERROR!!!");
439 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
440 traceState = TRACE_ERROR; // do not decrypt the next commands
441 return 1;
442 }
443
444 // AUTHENTICATION
445 if ((len == 4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
446 traceState = TRACE_AUTH1;
447 traceCurBlock = data[1];
448 traceCurKey = data[0] == 60 ? 1:0;
449 return 0;
450 }
451
452 // READ
453 if ((len ==4) && ((data[0] == 0x30))) {
454 traceState = TRACE_READ_DATA;
455 traceCurBlock = data[1];
456 return 0;
457 }
458
459 // WRITE
460 if ((len ==4) && ((data[0] == 0xA0))) {
461 traceState = TRACE_WRITE_OK;
462 traceCurBlock = data[1];
463 return 0;
464 }
465
466 // HALT
467 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
468 traceState = TRACE_ERROR; // do not decrypt the next commands
469 return 0;
470 }
471
472 return 0;
473 break;
474
475 case TRACE_READ_DATA:
476 if (len == 18) {
477 traceState = TRACE_IDLE;
478
479 if (isBlockTrailer(traceCurBlock)) {
480 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
481 } else {
482 memcpy(traceCard + traceCurBlock * 16, data, 16);
483 }
484 if (wantSaveToEmlFile) saveTraceCard();
485 return 0;
486 } else {
487 traceState = TRACE_ERROR;
488 return 1;
489 }
490 break;
491
492 case TRACE_WRITE_OK:
493 if ((len == 1) && (data[0] == 0x0a)) {
494 traceState = TRACE_WRITE_DATA;
495
496 return 0;
497 } else {
498 traceState = TRACE_ERROR;
499 return 1;
500 }
501 break;
502
503 case TRACE_WRITE_DATA:
504 if (len == 18) {
505 traceState = TRACE_IDLE;
506
507 memcpy(traceCard + traceCurBlock * 16, data, 16);
508 if (wantSaveToEmlFile) saveTraceCard();
509 return 0;
510 } else {
511 traceState = TRACE_ERROR;
512 return 1;
513 }
514 break;
515
516 case TRACE_AUTH1:
517 if (len == 4) {
518 traceState = TRACE_AUTH2;
519
520 nt = bytes_to_num(data, 4);
521 nt_par = parity;
522 return 0;
523 } else {
524 traceState = TRACE_ERROR;
525 return 1;
526 }
527 break;
528
529 case TRACE_AUTH2:
530 if (len == 8) {
531 traceState = TRACE_AUTH_OK;
532
533 nr_enc = bytes_to_num(data, 4);
534 ar_enc = bytes_to_num(data + 4, 4);
535 nr_ar_par = parity;
536 return 0;
537 } else {
538 traceState = TRACE_ERROR;
539 return 1;
540 }
541 break;
542
543 case TRACE_AUTH_OK:
544 if (len ==4) {
545 traceState = TRACE_IDLE;
546
547 at_enc = bytes_to_num(data, 4);
548 at_par = parity;
549
550 // decode key here)
551 ks2 = ar_enc ^ prng_successor(nt, 64);
552 ks3 = at_enc ^ prng_successor(nt, 96);
553 revstate = lfsr_recovery64(ks2, ks3);
554 lfsr_rollback_word(revstate, 0, 0);
555 lfsr_rollback_word(revstate, 0, 0);
556 lfsr_rollback_word(revstate, nr_enc, 1);
557 lfsr_rollback_word(revstate, uid ^ nt, 0);
558
559 crypto1_get_lfsr(revstate, &lfsr);
560 printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF));
561 AddLogUint64(logHexFileName, "key> ", lfsr);
562
563 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
564 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
565
566 if (traceCurKey) {
567 num_to_bytes(lfsr, 6, traceCard + blockShift + 10);
568 } else {
569 num_to_bytes(lfsr, 6, traceCard + blockShift);
570 }
571 if (wantSaveToEmlFile) saveTraceCard();
572
573 if (traceCrypto1) {
574 crypto1_destroy(traceCrypto1);
575 }
576
577 // set cryptosystem state
578 traceCrypto1 = lfsr_recovery64(ks2, ks3);
579
580 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
581
582 /* traceCrypto1 = crypto1_create(lfsr); // key in lfsr
583 crypto1_word(traceCrypto1, nt ^ uid, 0);
584 crypto1_word(traceCrypto1, ar, 1);
585 crypto1_word(traceCrypto1, 0, 0);
586 crypto1_word(traceCrypto1, 0, 0);*/
587
588 return 0;
589 } else {
590 traceState = TRACE_ERROR;
591 return 1;
592 }
593 break;
594
595 default:
596 traceState = TRACE_ERROR;
597 return 1;
598 }
599
600 return 0;
601 }
Impressum, Datenschutz