]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
CHG: one step closer to finish merging @marshmellow42 's 4x05 changes.
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include "cmdlfem4x.h"
12
13 uint64_t g_em410xid = 0;
14
15 static int CmdHelp(const char *Cmd);
16
17 int CmdEMdemodASK(const char *Cmd)
18 {
19 char cmdp = param_getchar(Cmd, 0);
20 uint8_t findone = (cmdp == '1') ? 1 : 0;
21 UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}};
22 SendCommand(&c);
23 return 0;
24 }
25
26 /* Read the ID of an EM410x tag.
27 * Format:
28 * 1111 1111 1 <-- standard non-repeatable header
29 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
30 * ....
31 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
32 * 0 <-- stop bit, end of tag
33 */
34 int CmdEM410xRead(const char *Cmd)
35 {
36 uint32_t hi = 0;
37 uint64_t lo = 0;
38
39 if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
40 if (hi)
41 PrintAndLog ("EM410x XL pattern found");
42 else
43 PrintAndLog("EM410x pattern found: ");
44
45 printEM410x(hi, lo);
46 g_em410xid = lo;
47 return 1;
48 }
49
50
51 int usage_lf_em410x_sim(void) {
52 PrintAndLog("Simulating EM410x tag");
53 PrintAndLog("");
54 PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
55 PrintAndLog("Options:");
56 PrintAndLog(" h - this help");
57 PrintAndLog(" uid - uid (10 HEX symbols)");
58 PrintAndLog(" clock - clock (32|64) (optional)");
59 PrintAndLog("samples:");
60 PrintAndLog(" lf em 410xsim 0F0368568B");
61 PrintAndLog(" lf em 410xsim 0F0368568B 32");
62 return 0;
63 }
64
65 // emulate an EM410X tag
66 int CmdEM410xSim(const char *Cmd)
67 {
68 int i, n, j, binary[4], parity[4];
69 uint8_t uid[5] = {0x00};
70
71 char cmdp = param_getchar(Cmd, 0);
72 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
73
74 /* clock is 64 in EM410x tags */
75 uint8_t clock = 64;
76
77 if (param_gethex(Cmd, 0, uid, 10)) {
78 PrintAndLog("UID must include 10 HEX symbols");
79 return 0;
80 }
81
82 param_getdec(Cmd, 1, &clock);
83
84 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
85 PrintAndLog("Press pm3-button to about simulation");
86
87 /* clear our graph */
88 ClearGraph(0);
89
90 /* write 9 start bits */
91 for (i = 0; i < 9; i++)
92 AppendGraph(0, clock, 1);
93
94 /* for each hex char */
95 parity[0] = parity[1] = parity[2] = parity[3] = 0;
96 for (i = 0; i < 10; i++)
97 {
98 /* read each hex char */
99 sscanf(&Cmd[i], "%1x", &n);
100 for (j = 3; j >= 0; j--, n/= 2)
101 binary[j] = n % 2;
102
103 /* append each bit */
104 AppendGraph(0, clock, binary[0]);
105 AppendGraph(0, clock, binary[1]);
106 AppendGraph(0, clock, binary[2]);
107 AppendGraph(0, clock, binary[3]);
108
109 /* append parity bit */
110 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
111
112 /* keep track of column parity */
113 parity[0] ^= binary[0];
114 parity[1] ^= binary[1];
115 parity[2] ^= binary[2];
116 parity[3] ^= binary[3];
117 }
118
119 /* parity columns */
120 AppendGraph(0, clock, parity[0]);
121 AppendGraph(0, clock, parity[1]);
122 AppendGraph(0, clock, parity[2]);
123 AppendGraph(0, clock, parity[3]);
124
125 /* stop bit */
126 AppendGraph(1, clock, 0);
127
128 CmdLFSim("0"); //240 start_gap.
129 return 0;
130 }
131
132 /* Function is equivalent of lf read + data samples + em410xread
133 * looped until an EM410x tag is detected
134 *
135 * Why is CmdSamples("16000")?
136 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
137 * rate gets lower, then grow the number of samples
138 * Changed by martin, 4000 x 4 = 16000,
139 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
140 */
141 int CmdEM410xWatch(const char *Cmd) {
142 do {
143 if (ukbhit()) {
144 printf("\naborted via keyboard!\n");
145 break;
146 }
147 CmdLFRead("s");
148 getSamples("6144",true);
149 } while (!CmdEM410xRead(""));
150 return 0;
151 }
152
153 //currently only supports manchester modulations
154 // todo: helptext
155 int CmdEM410xWatchnSpoof(const char *Cmd)
156 {
157 // loops if the captured ID was in XL-format.
158 CmdEM410xWatch(Cmd);
159 PrintAndLog("# Replaying captured ID: %" PRIu64 , g_em410xid);
160 CmdLFaskSim("");
161 return 0;
162 }
163
164 int CmdEM410xWrite(const char *Cmd)
165 {
166 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
167 int card = 0xFF; // invalid card value
168 uint32_t clock = 0; // invalid clock value
169
170 sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
171
172 // Check ID
173 if (id == 0xFFFFFFFFFFFFFFFF) {
174 PrintAndLog("Error! ID is required.\n");
175 return 0;
176 }
177 if (id >= 0x10000000000) {
178 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
179 return 0;
180 }
181
182 // Check Card
183 if (card == 0xFF) {
184 PrintAndLog("Error! Card type required.\n");
185 return 0;
186 }
187 if (card < 0) {
188 PrintAndLog("Error! Bad card type selected.\n");
189 return 0;
190 }
191
192 // Check Clock
193 // Default: 64
194 if (clock == 0)
195 clock = 64;
196
197 // Allowed clock rates: 16, 32, 40 and 64
198 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
199 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
200 return 0;
201 }
202
203 if (card == 1) {
204 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
205 // NOTE: We really should pass the clock in as a separate argument, but to
206 // provide for backwards-compatibility for older firmware, and to avoid
207 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
208 // the clock rate in bits 8-15 of the card value
209 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
210 } else if (card == 0) {
211 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
212 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
213 } else {
214 PrintAndLog("Error! Bad card type selected.\n");
215 return 0;
216 }
217
218 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
219 SendCommand(&c);
220 return 0;
221 }
222
223 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
224 {
225 if (rows*cols>size) return FALSE;
226 uint8_t colP=0;
227 //assume last col is a parity and do not test
228 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
229 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
230 colP ^= BitStream[(rowNum*cols)+colNum];
231 }
232 if (colP != pType) return FALSE;
233 }
234 return TRUE;
235 }
236
237 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
238 {
239 if (rows*cols>size) return FALSE;
240 uint8_t rowP=0;
241 //assume last row is a parity row and do not test
242 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
243 for (uint8_t colNum = 0; colNum < cols; colNum++) {
244 rowP ^= BitStream[(rowNum*cols)+colNum];
245 }
246 if (rowP != pType) return FALSE;
247 }
248 return TRUE;
249 }
250
251 // EM word parity test.
252 // 9*5 = 45 bits in total
253 // 012345678|r1
254 // 012345678|r2
255 // 012345678|r3
256 // 012345678|r4
257 // ------------
258 //c012345678| 0
259 // |- must be zero
260
261 bool EMwordparitytest(uint8_t *bits){
262
263 // last row/col parity must be 0
264 if (bits[44] != 0 ) return FALSE;
265
266 // col parity check
267 uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits+9, 8) ^ bytebits_to_byte(bits+18, 8) ^ bytebits_to_byte(bits+27, 8);
268 uint8_t c2 = bytebits_to_byte(bits+36, 8);
269 if ( c1 != c2 ) return FALSE;
270
271 // row parity check
272 uint8_t rowP = 0;
273 for ( uint8_t i = 0; i < 36; ++i ) {
274
275 rowP ^= bits[i];
276 if ( i>0 && (i % 9) == 0) {
277
278 if ( rowP != EVEN )
279 return FALSE;
280
281 rowP = 0;
282 }
283 }
284 // all checks ok.
285 return TRUE;
286 }
287
288
289 //////////////// 4050 / 4450 commands
290 int usage_lf_em4x50_dump(void) {
291 PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. ");
292 PrintAndLog("");
293 PrintAndLog("Usage: lf em 4x50dump [h] <pwd>");
294 PrintAndLog("Options:");
295 PrintAndLog(" h - this help");
296 PrintAndLog(" pwd - password (hex) (optional)");
297 PrintAndLog("samples:");
298 PrintAndLog(" lf em 4x50dump");
299 PrintAndLog(" lf em 4x50dump 11223344");
300 return 0;
301 }
302 int usage_lf_em4x50_read(void) {
303 PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. ");
304 PrintAndLog("");
305 PrintAndLog("Usage: lf em 4x50read [h] <address> <pwd>");
306 PrintAndLog("Options:");
307 PrintAndLog(" h - this help");
308 PrintAndLog(" address - memory address to read. (0-15)");
309 PrintAndLog(" pwd - password (hex) (optional)");
310 PrintAndLog("samples:");
311 PrintAndLog(" lf em 4x50read 1");
312 PrintAndLog(" lf em 4x50read 1 11223344");
313 return 0;
314 }
315 int usage_lf_em4x50_write(void) {
316 PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. ");
317 PrintAndLog("");
318 PrintAndLog("Usage: lf em 4x50write [h] <address> <data> <pwd>");
319 PrintAndLog("Options:");
320 PrintAndLog(" h - this help");
321 PrintAndLog(" address - memory address to write to. (0-15)");
322 PrintAndLog(" data - data to write (hex)");
323 PrintAndLog(" pwd - password (hex) (optional)");
324 PrintAndLog("samples:");
325 PrintAndLog(" lf em 4x50write 1 deadc0de");
326 PrintAndLog(" lf em 4x50write 1 deadc0de 11223344");
327 return 0;
328 }
329
330 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
331 {
332 if (size<45) return 0;
333
334 uint32_t code = bytebits_to_byte(BitStream,8);
335 code = code<<8 | bytebits_to_byte(BitStream+9,8);
336 code = code<<8 | bytebits_to_byte(BitStream+18,8);
337 code = code<<8 | bytebits_to_byte(BitStream+27,8);
338
339 if (verbose || g_debugMode){
340 for (uint8_t i = 0; i<5; i++){
341 if (i == 4) PrintAndLog(""); //parity byte spacer
342 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
343 BitStream[i*9],
344 BitStream[i*9+1],
345 BitStream[i*9+2],
346 BitStream[i*9+3],
347 BitStream[i*9+4],
348 BitStream[i*9+5],
349 BitStream[i*9+6],
350 BitStream[i*9+7],
351 BitStream[i*9+8],
352 bytebits_to_byte(BitStream+i*9,8)
353 );
354 }
355 if (pTest)
356 PrintAndLog("Parity Passed");
357 else
358 PrintAndLog("Parity Failed");
359 }
360 return code;
361 }
362
363
364 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
365 * Format:
366 *
367 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
368 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
369 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
370 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
371 * CCCCCCCC <- column parity bits
372 * 0 <- stop bit
373 * LW <- Listen Window
374 *
375 * This pattern repeats for every block of data being transmitted.
376 * Transmission starts with two Listen Windows (LW - a modulated
377 * pattern of 320 cycles each (32/32/128/64/64)).
378 *
379 * Note that this data may or may not be the UID. It is whatever data
380 * is stored in the blocks defined in the control word First and Last
381 * Word Read values. UID is stored in block 32.
382 */
383 //completed by Marshmellow
384 int EM4x50Read(const char *Cmd, bool verbose) {
385 uint8_t fndClk[] = {8,16,32,40,50,64,128};
386 int clk = 0;
387 int invert = 0;
388 int tol = 0;
389 int i, j, startblock, skip, block, start, end, low, high, minClk;
390 bool complete = false;
391 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
392 uint32_t Code[6];
393 char tmp[6];
394 char tmp2[20];
395 int phaseoff;
396 high = low = 0;
397 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
398
399 // get user entry if any
400 sscanf(Cmd, "%i %i", &clk, &invert);
401
402 // save GraphBuffer - to restore it later
403 save_restoreGB(1);
404
405 // first get high and low values
406 for (i = 0; i < GraphTraceLen; i++) {
407 if (GraphBuffer[i] > high)
408 high = GraphBuffer[i];
409 else if (GraphBuffer[i] < low)
410 low = GraphBuffer[i];
411 }
412
413 i = 0;
414 j = 0;
415 minClk = 255;
416 // get to first full low to prime loop and skip incomplete first pulse
417 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
418 ++i;
419 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
420 ++i;
421 skip = i;
422
423 // populate tmpbuff buffer with pulse lengths
424 while (i < GraphTraceLen) {
425 // measure from low to low
426 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
427 ++i;
428 start= i;
429 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
430 ++i;
431 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
432 ++i;
433 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
434 break;
435 }
436 tmpbuff[j++]= i - start;
437 if (i-start < minClk && i < GraphTraceLen) {
438 minClk = i - start;
439 }
440 }
441 // set clock
442 if (!clk) {
443 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
444 tol = fndClk[clkCnt]/8;
445 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
446 clk=fndClk[clkCnt];
447 break;
448 }
449 }
450 if (!clk) {
451 PrintAndLog("ERROR: EM4x50 - didn't find a clock");
452 return 0;
453 }
454 } else tol = clk/8;
455
456 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
457 start = -1;
458 for (i= 0; i < j - 4 ; ++i) {
459 skip += tmpbuff[i];
460 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
461 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
462 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
463 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
464 {
465 start= i + 4;
466 break;
467 }
468 }
469 startblock = i + 4;
470
471 // skip over the remainder of LW
472 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
473 if (tmpbuff[i+3]>clk)
474 phaseoff = tmpbuff[i+3]-clk;
475 else
476 phaseoff = 0;
477 // now do it again to find the end
478 end = skip;
479 for (i += 3; i < j - 4 ; ++i) {
480 end += tmpbuff[i];
481 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
482 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
483 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
484 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
485 {
486 complete= true;
487 break;
488 }
489 }
490 end = i;
491 // report back
492 if (verbose || g_debugMode) {
493 if (start >= 0) {
494 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
495 } else {
496 PrintAndLog("No data found!, clock tried:%d",clk);
497 PrintAndLog("Try again with more samples.");
498 PrintAndLog(" or after a 'data askedge' command to clean up the read");
499 return 0;
500 }
501 } else if (start < 0) return 0;
502 start = skip;
503 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
504 // get rid of leading crap
505 snprintf(tmp, sizeof(tmp), "%i", skip);
506 CmdLtrim(tmp);
507 bool pTest;
508 bool AllPTest = true;
509 // now work through remaining buffer printing out data blocks
510 block = 0;
511 i = startblock;
512 while (block < 6) {
513 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
514 skip = phaseoff;
515
516 // look for LW before start of next block
517 for ( ; i < j - 4 ; ++i) {
518 skip += tmpbuff[i];
519 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
520 if (tmpbuff[i+1] >= clk-tol)
521 break;
522 }
523 if (i >= j-4) break; //next LW not found
524 skip += clk;
525 if (tmpbuff[i+1]>clk)
526 phaseoff = tmpbuff[i+1]-clk;
527 else
528 phaseoff = 0;
529 i += 2;
530 if (ASKDemod(tmp2, false, false, 1) < 1) {
531 save_restoreGB(0);
532 return 0;
533 }
534 //set DemodBufferLen to just one block
535 DemodBufferLen = skip/clk;
536 //test parities
537 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
538 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
539 AllPTest &= pTest;
540 //get output
541 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
542 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
543 //skip to start of next block
544 snprintf(tmp,sizeof(tmp),"%i",skip);
545 CmdLtrim(tmp);
546 block++;
547 if (i >= end) break; //in case chip doesn't output 6 blocks
548 }
549 //print full code:
550 if (verbose || g_debugMode || AllPTest){
551 if (!complete) {
552 PrintAndLog("*** Warning!");
553 PrintAndLog("Partial data - no end found!");
554 PrintAndLog("Try again with more samples.");
555 }
556 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
557 end = block;
558 for (block=0; block < end; block++){
559 PrintAndLog("Block %d: %08x",block,Code[block]);
560 }
561 if (AllPTest) {
562 PrintAndLog("Parities Passed");
563 } else {
564 PrintAndLog("Parities Failed");
565 PrintAndLog("Try cleaning the read samples with 'data askedge'");
566 }
567 }
568
569 //restore GraphBuffer
570 save_restoreGB(0);
571 return (int)AllPTest;
572 }
573
574 int CmdEM4x50Read(const char *Cmd) {
575 uint8_t ctmp = param_getchar(Cmd, 0);
576 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read();
577 return EM4x50Read(Cmd, true);
578 }
579 int CmdEM4x50Write(const char *Cmd){
580 uint8_t ctmp = param_getchar(Cmd, 0);
581 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write();
582 PrintAndLog("no implemented yet");
583 return 0;
584 }
585 int CmdEM4x50Dump(const char *Cmd){
586 uint8_t ctmp = param_getchar(Cmd, 0);
587 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump();
588 PrintAndLog("no implemented yet");
589 return 0;
590 }
591
592 #define EM_PREAMBLE_LEN 6
593 // download samples from device and copy to Graphbuffer
594 bool downloadSamplesEM(){
595
596 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
597 uint8_t got[6000];
598 GetFromBigBuf(got, sizeof(got), 0);
599 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) {
600 PrintAndLog("command execution time out");
601 return FALSE;
602 }
603 setGraphBuf(got, sizeof(got));
604 return TRUE;
605 }
606
607 // em_demod
608 bool doPreambleSearch(size_t *startIdx){
609
610 // sanity check
611 if ( DemodBufferLen < EM_PREAMBLE_LEN) {
612 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small");
613 return FALSE;
614 }
615
616 // set size to 20 to only test first 14 positions for the preamble
617 size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20;
618 *startIdx = 0;
619 // skip first two 0 bits as they might have been missed in the demod
620 uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0};
621
622 if ( !preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, TRUE)) {
623 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx);
624 return FALSE;
625 }
626 return TRUE;
627 }
628
629 bool detectFSK(){
630 // detect fsk clock
631 if (!GetFskClock("", FALSE, FALSE)) {
632 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed");
633 return FALSE;
634 }
635 // demod
636 int ans = FSKrawDemod("0 0", FALSE);
637 if (!ans) {
638 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed");
639 return FALSE;
640 }
641 return TRUE;
642 }
643 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
644 bool detectPSK(){
645 int ans = GetPskClock("", FALSE, FALSE);
646 if (ans <= 0) {
647 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed");
648 return FALSE;
649 }
650 //demod
651 //try psk1 -- 0 0 6 (six errors?!?)
652 ans = PSKDemod("0 0 6", FALSE);
653 if (!ans) {
654 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed");
655
656 //try psk1 inverted
657 ans = PSKDemod("0 1 6", FALSE);
658 if (!ans) {
659 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed");
660 return FALSE;
661 }
662 }
663 // either PSK1 or PSK1 inverted is ok from here.
664 // lets check PSK2 later.
665 return TRUE;
666 }
667 // try manchester - NOTE: ST only applies to T55x7 tags.
668 bool detectASK_MAN(){
669 bool stcheck = FALSE;
670 int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck);
671 if (!ans) {
672 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed");
673 return FALSE;
674 }
675 return TRUE;
676 }
677 bool detectASK_BI(){
678 int ans = ASKbiphaseDemod("0 0 1", FALSE);
679 if (!ans) {
680 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed");
681
682 ans = ASKbiphaseDemod("0 1 1", FALSE);
683 if (!ans) {
684 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed");
685 return FALSE;
686 }
687 }
688 return TRUE;
689 }
690
691 // param: idx - start index in demoded data.
692 bool setDemodBufferEM(uint32_t *word, size_t idx){
693
694 //test for even parity bits.
695 uint8_t parity[45] = {0};
696 memcpy( parity, DemodBuffer, 45);
697 if (!EMwordparitytest(parity) ){
698 PrintAndLog("DEBUG: Error - EM Parity tests failed");
699 return FALSE;
700 }
701
702 // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
703 if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) {
704 if (g_debugMode) PrintAndLog("DEBUG: Error - EM, failed removing parity");
705 return FALSE;
706 }
707 setDemodBuf(DemodBuffer, 32, 0);
708 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
709 return TRUE;
710 }
711
712 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
713 // should cover 90% of known used configs
714 // the rest will need to be manually demoded for now...
715 bool demodEM4x05resp(uint32_t *word) {
716 size_t idx = 0;
717 *word = 0;
718 if (detectASK_MAN() && doPreambleSearch( &idx ))
719 return setDemodBufferEM(word, idx);
720
721 if (detectASK_BI() && doPreambleSearch( &idx ))
722 return setDemodBufferEM(word, idx);
723
724 if (detectFSK() && doPreambleSearch( &idx ))
725 return setDemodBufferEM(word, idx);
726
727 if (detectPSK()) {
728 if (doPreambleSearch( &idx ))
729 return setDemodBufferEM(word, idx);
730
731 psk1TOpsk2(DemodBuffer, DemodBufferLen);
732 if (doPreambleSearch( &idx ))
733 return setDemodBufferEM(word, idx);
734 }
735 return FALSE;
736 }
737
738 //////////////// 4205 / 4305 commands
739 int usage_lf_em4x05_dump(void) {
740 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
741 PrintAndLog("");
742 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
743 PrintAndLog("Options:");
744 PrintAndLog(" h - this help");
745 PrintAndLog(" pwd - password (hex) (optional)");
746 PrintAndLog("samples:");
747 PrintAndLog(" lf em 4x05dump");
748 PrintAndLog(" lf em 4x05dump 11223344");
749 return 0;
750 }
751 int usage_lf_em4x05_read(void) {
752 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
753 PrintAndLog("");
754 PrintAndLog("Usage: lf em 4x05read [h] <address> <pwd>");
755 PrintAndLog("Options:");
756 PrintAndLog(" h - this help");
757 PrintAndLog(" address - memory address to read. (0-15)");
758 PrintAndLog(" pwd - password (hex) (optional)");
759 PrintAndLog("samples:");
760 PrintAndLog(" lf em 4x05read 1");
761 PrintAndLog(" lf em 4x05read 1 11223344");
762 return 0;
763 }
764 int usage_lf_em4x05_write(void) {
765 PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. ");
766 PrintAndLog("");
767 PrintAndLog("Usage: lf em 4x05write [h] <address> <data> <pwd>");
768 PrintAndLog("Options:");
769 PrintAndLog(" h - this help");
770 PrintAndLog(" address - memory address to write to. (0-15)");
771 PrintAndLog(" data - data to write (hex)");
772 PrintAndLog(" pwd - password (hex) (optional)");
773 PrintAndLog("samples:");
774 PrintAndLog(" lf em 4x05write 1 deadc0de");
775 PrintAndLog(" lf em 4x05write 1 deadc0de 11223344");
776 return 0;
777 }
778 int usage_lf_em4x05_info(void) {
779 PrintAndLog("Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna.");
780 PrintAndLog("");
781 PrintAndLog("Usage: lf em 4x05info [h] <pwd>");
782 PrintAndLog("Options:");
783 PrintAndLog(" h - this help");
784 PrintAndLog(" pwd - password (hex) (optional)");
785 PrintAndLog("samples:");
786 PrintAndLog(" lf em 4x05info");
787 PrintAndLog(" lf em 4x05info deadc0de");
788 return 0;
789 }
790
791 int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *word) {
792 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
793 clearCommandBuffer();
794 SendCommand(&c);
795 UsbCommand resp;
796 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
797 PrintAndLog("Command timed out");
798 return -1;
799 }
800 if ( !downloadSamplesEM() ) {
801 return -1;
802 }
803 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
804 if (graphJustNoise(GraphBuffer, testLen)) {
805 PrintAndLog("no tag not found");
806 return -1;
807 }
808 return demodEM4x05resp(word);
809 }
810
811 int CmdEM4x05Dump(const char *Cmd) {
812 uint8_t addr = 0;
813 uint32_t pwd = 0;
814 bool usePwd = false;
815 uint8_t ctmp = param_getchar(Cmd, 0);
816 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump();
817
818 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
819 pwd = param_get32ex(Cmd, 0, 1, 16);
820
821 if ( pwd != 1 )
822 usePwd = true;
823
824 int success = 1;
825 uint32_t word = 0;
826 PrintAndLog("Addr | data | ascii");
827 PrintAndLog("-----+--------+------");
828 for (; addr < 16; addr++) {
829
830 if (addr == 2) {
831 if (usePwd) {
832 PrintAndLog(" %02u | %08X", addr, pwd, word );
833 } else {
834 PrintAndLog(" 02 | cannot read");
835 }
836 } else {
837 success &= EM4x05ReadWord_ext(addr, pwd, usePwd, &word);
838 }
839 }
840
841 return success;
842 }
843
844 int CmdEM4x05Read(const char *Cmd) {
845 uint8_t addr;
846 uint32_t pwd;
847 bool usePwd = false;
848 uint8_t ctmp = param_getchar(Cmd, 0);
849 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read();
850
851 addr = param_get8ex(Cmd, 0, 50, 10);
852 pwd = param_get32ex(Cmd, 1, 1, 16);
853
854 if (addr > 15) {
855 PrintAndLog("Address must be between 0 and 15");
856 return 1;
857 }
858 if ( pwd == 1 ) {
859 PrintAndLog("Reading address %02u", addr);
860 }
861 else {
862 usePwd = true;
863 PrintAndLog("Reading address %02u | password %08X", addr, pwd);
864 }
865
866 uint32_t word = 0;
867 int isOk = EM4x05ReadWord_ext(addr, pwd, usePwd, &word);
868 if (isOk)
869 PrintAndLog("Address %02d | %08X - %s", addr, word, (addr > 13) ? "Lock" : "");
870 else
871 PrintAndLog("Read Address %02d | failed",addr);
872 return isOk;
873 }
874
875 int CmdEM4x05Write(const char *Cmd) {
876 uint8_t ctmp = param_getchar(Cmd, 0);
877 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write();
878
879 bool usePwd = false;
880 uint8_t addr = 50; // default to invalid address
881 uint32_t data = 0; // default to blank data
882 uint32_t pwd = 1; // default to blank password
883
884 addr = param_get8ex(Cmd, 0, 50, 10);
885 data = param_get32ex(Cmd, 1, 0, 16);
886 pwd = param_get32ex(Cmd, 2, 1, 16);
887
888 if ( addr > 15 ) {
889 PrintAndLog("Address must be between 0 and 15");
890 return 1;
891 }
892 if ( pwd == -1 )
893 PrintAndLog("Writing address %d data %08X", addr, data);
894 else {
895 usePwd = true;
896 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
897 }
898
899 uint16_t flag = (addr << 8 ) | usePwd;
900
901 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
902 clearCommandBuffer();
903 SendCommand(&c);
904 UsbCommand resp;
905 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
906 PrintAndLog("Error occurred, device did not respond during write operation.");
907 return -1;
908 }
909
910 if (!downloadSamplesEM())
911 return -1;
912
913 //need 0 bits demoded (after preamble) to verify write cmd
914 uint32_t dummy = 0;
915 int isOk = demodEM4x05resp(&dummy);
916 if (isOk)
917 PrintAndLog("Write Verified");
918 else
919 PrintAndLog("Write could not be verified");
920 return isOk;
921 }
922
923 void printEM4x05config(uint32_t wordData) {
924 uint16_t datarate = (((wordData & 0x3F)+1)*2);
925 uint8_t encoder = ((wordData >> 6) & 0xF);
926 char enc[14];
927 memset(enc,0,sizeof(enc));
928
929 uint8_t PSKcf = (wordData >> 10) & 0x3;
930 char cf[10];
931 memset(cf,0,sizeof(cf));
932 uint8_t delay = (wordData >> 12) & 0x3;
933 char cdelay[33];
934 memset(cdelay,0,sizeof(cdelay));
935 uint8_t LWR = (wordData >> 14) & 0xF; //last word read
936
937 switch (encoder) {
938 case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
939 case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
940 case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
941 case 3: snprintf(enc,sizeof(enc),"Miller"); break;
942 case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
943 case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
944 case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
945 case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
946 case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
947 case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
948 default: snprintf(enc,sizeof(enc),"Unknown"); break;
949 }
950
951 switch (PSKcf) {
952 case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
953 case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
954 case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
955 case 3: snprintf(cf,sizeof(cf),"unknown"); break;
956 }
957
958 switch (delay) {
959 case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
960 case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
961 case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
962 case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
963 }
964 PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
965 PrintAndLog("Config Breakdown:", wordData);
966 PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
967 PrintAndLog(" Encoder: %u | %s", encoder, enc);
968 PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
969 PrintAndLog(" Delay: %u | %s", delay, cdelay);
970 PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR);
971 PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");
972 PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");
973 PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");
974 PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required");
975 PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
976 PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
977 PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
978 PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
979 }
980
981 void printEM4x05info(uint32_t block0, uint32_t serial) {
982
983 uint8_t chipType = (block0 >> 1) & 0xF;
984 uint8_t cap = (block0 >> 5) & 3;
985 uint16_t custCode = (block0 >> 9) & 0x3FF;
986
987 switch (chipType) {
988 case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
989 case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
990 case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
991 //add more here when known
992 default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
993 }
994
995 switch (cap) {
996 case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
997 case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
998 case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
999 case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
1000 default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
1001 }
1002
1003 PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
1004 if (serial != 0)
1005 PrintAndLog("\n Serial #: %08X\n", serial);
1006 }
1007
1008 void printEM4x05ProtectionBits(uint32_t word) {
1009 for (uint8_t i = 0; i < 15; i++) {
1010 PrintAndLog(" Word: %02u | %s", i, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1011 if (i==14)
1012 PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1013 }
1014 }
1015
1016 //quick test for EM4x05/EM4x69 tag
1017 bool EM4x05IsBlock0(uint32_t *word) {
1018 return EM4x05ReadWord_ext(0, 0, FALSE, word);
1019 }
1020
1021 int CmdEM4x05Info(const char *Cmd) {
1022 #define EM_SERIAL_BLOCK 1
1023 #define EM_CONFIG_BLOCK 4
1024 #define EM_PROT1_BLOCK 14
1025 #define EM_PROT2_BLOCK 15
1026 uint32_t pwd;
1027 uint32_t word = 0, block0 = 0, serial = 0;
1028 bool usePwd = false;
1029 uint8_t ctmp = param_getchar(Cmd, 0);
1030 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_info();
1031
1032 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
1033 pwd = param_get32ex(Cmd, 0, 1, 16);
1034
1035 if ( pwd != 1 )
1036 usePwd = true;
1037
1038 // read word 0 (chip info)
1039 // block 0 can be read even without a password.
1040 if ( !EM4x05IsBlock0(&block0) )
1041 return -1;
1042
1043 // read word 1 (serial #) doesn't need pwd
1044 // continue if failed, .. non blocking fail.
1045 EM4x05ReadWord_ext(EM_SERIAL_BLOCK, 0, false, &serial);
1046 printEM4x05info(block0, serial);
1047
1048 // read word 4 (config block)
1049 // needs password if one is set
1050 if ( EM4x05ReadWord_ext(EM_CONFIG_BLOCK, pwd, usePwd, &word) != 1 )
1051 return 0;
1052
1053 printEM4x05config(word);
1054
1055 // read word 14 and 15 to see which is being used for the protection bits
1056 if ( EM4x05ReadWord_ext(EM_PROT1_BLOCK, pwd, usePwd, &word) != 1 ) {
1057 return 0;
1058 }
1059 // if status bit says this is not the used protection word
1060 if (!(word & 0x8000)) {
1061 if ( EM4x05ReadWord_ext(EM_PROT2_BLOCK, pwd, usePwd, &word) != 1 )
1062 return 0;
1063 }
1064 //something went wrong
1065 if (!(word & 0x8000)) return 0;
1066 printEM4x05ProtectionBits(word);
1067 return 1;
1068 }
1069
1070 static command_t CommandTable[] = {
1071 {"help", CmdHelp, 1, "This help"},
1072 {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
1073 {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
1074 {"410xsim", CmdEM410xSim, 0, "simulate EM410x tag"},
1075 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
1076 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
1077 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
1078 {"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"},
1079 {"4x05info", CmdEM4x05Info, 0, "tag information EM4x05/EM4x69"},
1080 {"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"},
1081 {"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"},
1082 {"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"},
1083 {"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"},
1084 {"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"},
1085 {NULL, NULL, 0, NULL}
1086 };
1087
1088 int CmdLFEM4X(const char *Cmd) {
1089 clearCommandBuffer();
1090 CmdsParse(CommandTable, Cmd);
1091 return 0;
1092 }
1093
1094 int CmdHelp(const char *Cmd) {
1095 CmdsHelp(CommandTable);
1096 return 0;
1097 }
Impressum, Datenschutz