]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
FIX: 'standalone_14a mode' - cleaned up the standalone14a mode code. It now detects...
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12 #include "usb_cdc.h"
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "printf.h"
17 #include "string.h"
18 #include "legicrf.h"
19 #include "lfsampling.h"
20 #include "BigBuf.h"
21 #include "mifareutil.h"
22
23 #ifdef WITH_LCD
24 #include "LCD.h"
25 #endif
26
27 // Craig Young - 14a stand-alone code
28 #ifdef WITH_ISO14443a_StandAlone
29 #include "iso14443a.h"
30 #include "protocols.h"
31 #endif
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend[TOSEND_BUFFER_SIZE];
41 int ToSendMax = 0;
42 static int ToSendBit;
43 struct common_area common_area __attribute__((section(".commonarea")));
44
45 void ToSendReset(void)
46 {
47 ToSendMax = -1;
48 ToSendBit = 8;
49 }
50
51 void ToSendStuffBit(int b) {
52 if(ToSendBit >= 8) {
53 ++ToSendMax;
54 ToSend[ToSendMax] = 0;
55 ToSendBit = 0;
56 }
57
58 if(b)
59 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
60
61 ++ToSendBit;
62
63 if(ToSendMax >= sizeof(ToSend)) {
64 ToSendBit = 0;
65 DbpString("ToSendStuffBit overflowed!");
66 }
67 }
68
69 void PrintToSendBuffer(void){
70 DbpString("Printing ToSendBuffer:");
71 Dbhexdump(ToSendMax, ToSend, 0);
72 }
73
74 void print_result(char *name, uint8_t *buf, size_t len) {
75 uint8_t *p = buf;
76
77 if ( len % 16 == 0 ) {
78 for(; p-buf < len; p += 16)
79 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
80 name,
81 p-buf,
82 len,
83 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
84 );
85 }
86 else {
87 for(; p-buf < len; p += 8)
88 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
89 name,
90 p-buf,
91 len,
92 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
93 }
94 }
95
96 //=============================================================================
97 // Debug print functions, to go out over USB, to the usual PC-side client.
98 //=============================================================================
99
100 void DbpStringEx(char *str, uint32_t cmd){
101 byte_t len = strlen(str);
102 cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len);
103 }
104
105 void DbpString(char *str) {
106 DbpStringEx(str, 0);
107 }
108
109 #if 0
110 void DbpIntegers(int x1, int x2, int x3) {
111 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
112 }
113 #endif
114 void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
115 // should probably limit size here; oh well, let's just use a big buffer
116 char output_string[128] = {0x00};
117 va_list ap;
118
119 va_start(ap, fmt);
120 kvsprintf(fmt, output_string, 10, ap);
121 va_end(ap);
122
123 DbpStringEx(output_string, cmd);
124 }
125
126 void Dbprintf(const char *fmt, ...) {
127 // should probably limit size here; oh well, let's just use a big buffer
128 char output_string[128] = {0x00};
129 va_list ap;
130
131 va_start(ap, fmt);
132 kvsprintf(fmt, output_string, 10, ap);
133 va_end(ap);
134
135 DbpString(output_string);
136 }
137
138 // prints HEX & ASCII
139 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
140 int l=0, i;
141 char ascii[9];
142
143 while (len>0) {
144
145 l = (len>8) ? 8 : len;
146
147 memcpy(ascii,d,l);
148 ascii[l]=0;
149
150 // filter safe ascii
151 for (i=0; i<l; ++i)
152 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
153
154 if (bAsci)
155 Dbprintf("%-8s %*D",ascii,l,d," ");
156 else
157 Dbprintf("%*D",l,d," ");
158
159 len -= 8;
160 d += 8;
161 }
162 }
163
164 //-----------------------------------------------------------------------------
165 // Read an ADC channel and block till it completes, then return the result
166 // in ADC units (0 to 1023). Also a routine to average 32 samples and
167 // return that.
168 //-----------------------------------------------------------------------------
169 static int ReadAdc(int ch)
170 {
171 uint32_t d;
172
173 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
174 AT91C_BASE_ADC->ADC_MR =
175 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
176 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
177 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
178
179 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
180 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
181 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
182 //
183 // The maths are:
184 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
185 //
186 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
187 //
188 // Note: with the "historic" values in the comments above, the error was 34% !!!
189
190 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
191
192 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
193
194 while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ;
195
196 d = AT91C_BASE_ADC->ADC_CDR[ch];
197 return d;
198 }
199
200 int AvgAdc(int ch) // was static - merlok
201 {
202 int i, a = 0;
203 for(i = 0; i < 32; ++i)
204 a += ReadAdc(ch);
205
206 return (a + 15) >> 5;
207 }
208
209
210 void MeasureAntennaTuning(void) {
211
212 uint8_t LF_Results[256];
213 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
214 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
215
216 memset(LF_Results, 0, sizeof(LF_Results));
217 LED_B_ON();
218
219 /*
220 * Sweeps the useful LF range of the proxmark from
221 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
222 * read the voltage in the antenna, the result left
223 * in the buffer is a graph which should clearly show
224 * the resonating frequency of your LF antenna
225 * ( hopefully around 95 if it is tuned to 125kHz!)
226 */
227
228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
230
231 for (i = 255; i >= 19; i--) {
232 WDT_HIT();
233 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
234 SpinDelay(20);
235 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
236 if (i==95) vLf125 = adcval; // voltage at 125Khz
237 if (i==89) vLf134 = adcval; // voltage at 134Khz
238
239 LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes
240 if(LF_Results[i] > peak) {
241 peakv = adcval;
242 peak = LF_Results[i];
243 peakf = i;
244 }
245 }
246
247 LED_A_ON();
248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
251 SpinDelay(20);
252 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
253
254 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256);
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
256 LEDsoff();
257 }
258
259 void MeasureAntennaTuningHf(void) {
260 int vHf = 0; // in mV
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
264
265 while ( !BUTTON_PRESS() ){
266 SpinDelay(20);
267 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
268 //Dbprintf("%d mV",vHf);
269 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf);
270 }
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
272 DbpString("cancelled");
273 }
274
275
276 void ReadMem(int addr) {
277 const uint8_t *data = ((uint8_t *)addr);
278
279 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
280 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
281 }
282
283 /* osimage version information is linked in */
284 extern struct version_information version_information;
285 /* bootrom version information is pointed to from _bootphase1_version_pointer */
286 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
287 void SendVersion(void)
288 {
289 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
290 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
291
292 /* Try to find the bootrom version information. Expect to find a pointer at
293 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
294 * pointer, then use it.
295 */
296 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
297
298 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
299 strcat(VersionString, "bootrom version information appears invalid\n");
300 } else {
301 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
302 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
303 }
304
305 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
306 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
307
308 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
309 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
310
311 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
312 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
313
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
316 uint32_t compressed_data_section_size = common_area.arg1;
317 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
318 }
319
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
323 {
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
326
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data = BigBuf_get_addr();
329 uint32_t end_time;
330
331 uint32_t start_time = end_time = GetTickCount();
332 uint32_t bytes_transferred = 0;
333
334 LED_B_ON();
335 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
337 end_time = GetTickCount();
338 bytes_transferred += USB_CMD_DATA_SIZE;
339 }
340 LED_B_OFF();
341
342 Dbprintf(" Time elapsed: %dms", end_time - start_time);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred / (end_time - start_time));
346
347 }
348
349 /**
350 * Prints runtime information about the PM3.
351 **/
352 void SendStatus(void) {
353 BigBuf_print_status();
354 Fpga_print_status();
355 printConfig(); //LF Sampling config
356 printUSBSpeed();
357 Dbprintf("Various");
358 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
359 Dbprintf(" ToSendMax..........%d", ToSendMax);
360 Dbprintf(" ToSendBit..........%d", ToSendBit);
361 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
362
363 cmd_send(CMD_ACK,1,0,0,0,0);
364 }
365
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
367
368 #define OPTS 2
369 void StandAloneMode()
370 {
371 DbpString("Stand-alone mode! No PC necessary.");
372 // Oooh pretty -- notify user we're in elite samy mode now
373 LED(LED_RED, 200);
374 LED(LED_ORANGE, 200);
375 LED(LED_GREEN, 200);
376 LED(LED_ORANGE, 200);
377 LED(LED_RED, 200);
378 LED(LED_ORANGE, 200);
379 LED(LED_GREEN, 200);
380 LED(LED_ORANGE, 200);
381 LED(LED_RED, 200);
382 }
383 #endif
384
385 #ifdef WITH_ISO14443a_StandAlone
386
387 typedef struct {
388 uint8_t uid[10];
389 uint8_t uidlen;
390 uint8_t atqa[2];
391 uint8_t sak;
392 } __attribute__((__packed__)) card_clone_t;
393
394 void StandAloneMode14a()
395 {
396 StandAloneMode();
397 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
398
399 int selected = 0, playing = 0, iGotoRecord = 0, iGotoClone = 0;
400 int cardRead[OPTS] = {0};
401
402 card_clone_t uids[OPTS];
403 iso14a_card_select_t card_info[OPTS];
404 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
405
406 LED(selected + 1, 0);
407
408 for (;;)
409 {
410 usb_poll();
411 WDT_HIT();
412 SpinDelay(300);
413
414 if (iGotoRecord == 1 || cardRead[selected] == 0)
415 {
416 iGotoRecord = 0;
417 LEDsoff();
418 LED(selected + 1, 0);
419 LED(LED_RED2, 0);
420
421 // record
422 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
423 /* need this delay to prevent catching some weird data */
424 SpinDelay(500);
425 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
426
427 for ( ; ; )
428 {
429 WDT_HIT();
430 if (BUTTON_PRESS()) {
431 if (cardRead[selected]) {
432 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
433 break;
434 }
435 else if (cardRead[(selected+1) % OPTS]) {
436 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
437 selected = (selected+1) % OPTS;
438 break; // playing = 1;
439 }
440 else {
441 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
442 SpinDelay(300);
443 }
444 }
445 if (!iso14443a_select_card(NULL, &card_info[selected], NULL, true, 0))
446 continue;
447 else
448 {
449 Dbprintf("Read UID:");
450 Dbhexdump(card_info[selected].uidlen, card_info[selected].uid, 0);
451
452 if (memcmp(uids[(selected+1)%OPTS].uid, card_info[selected].uid, card_info[selected].uidlen ) == 0 ) {
453 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
454 }
455 else {
456
457 uids[selected].sak = card_info[selected].sak;
458 uids[selected].uidlen = card_info[selected].uidlen;
459 memcpy(uids[selected].uid , card_info[selected].uid, uids[selected].uidlen);
460 memcpy(uids[selected].atqa, card_info[selected].atqa, 2);
461
462 if (uids[selected].uidlen > 4)
463 Dbprintf("Bank[%d] received a 7-byte UID", selected);
464 else
465 Dbprintf("Bank[%d] received a 4-byte UID", selected);
466 break;
467 }
468 }
469 }
470 Dbprintf("ATQA = %02X%02X", uids[selected].atqa[0], uids[selected].atqa[1]);
471 Dbprintf("SAK = %02X", uids[selected].sak);
472 LEDsoff();
473 LED(LED_GREEN, 200);
474 LED(LED_ORANGE, 200);
475 LED(LED_GREEN, 200);
476 LED(LED_ORANGE, 200);
477
478 LEDsoff();
479 LED(selected + 1, 0);
480
481 // Next state is replay:
482 playing = 1;
483
484 cardRead[selected] = 1;
485 }
486 /* MF Classic UID clone */
487 else if (iGotoClone==1)
488 {
489 iGotoClone=0;
490 LEDsoff();
491 LED(selected + 1, 0);
492 LED(LED_ORANGE, 250);
493
494 // magiccards holds 4bytes uid.
495 uint64_t tmpuid = bytes_to_num(uids[selected].uid, 4);
496
497 // record
498 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, tmpuid & 0xFFFFFFFF);
499
500 // wait for button to be released
501 // Delay cloning until card is in place
502 while(BUTTON_PRESS())
503 WDT_HIT();
504
505 Dbprintf("Starting clone. [Bank: %u]", selected);
506 // need this delay to prevent catching some weird data
507 SpinDelay(500);
508 // Begin clone function here:
509 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
510 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
511 memcpy(c.d.asBytes, data, 16);
512 SendCommand(&c);
513
514 Block read is similar:
515 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
516 We need to imitate that call with blockNo 0 to set a uid.
517
518 The get and set commands are handled in this file:
519 // Work with "magic Chinese" card
520 case CMD_MIFARE_CSETBLOCK:
521 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
522 break;
523 case CMD_MIFARE_CGETBLOCK:
524 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
525 break;
526
527 mfCSetUID provides example logic for UID set workflow:
528 -Read block0 from card in field with MifareCGetBlock()
529 -Configure new values without replacing reserved bytes
530 memcpy(block0, uid, 4); // Copy UID bytes from byte array
531 // Mifare UID BCC
532 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
533 Bytes 5-7 are reserved SAK and ATQA for mifare classic
534 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
535 */
536 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
537 // arg0 = Flags, arg1=blockNo
538 MifareCGetBlock(params, 0, oldBlock0);
539 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
540 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
541 playing = 1;
542 }
543 else {
544 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]);
545 memcpy(newBlock0, oldBlock0, 16);
546
547 // Copy uid for bank (2nd is for longer UIDs not supported if classic)
548 memcpy(newBlock0, uids[selected].uid, 4);
549 newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3];
550
551 // arg0 = workFlags, arg1 = blockNo, datain
552 MifareCSetBlock(params, 0, newBlock0);
553 MifareCGetBlock(params, 0, testBlock0);
554
555 if (memcmp(testBlock0, newBlock0, 16)==0) {
556 DbpString("Cloned successfull!");
557 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
558 playing = 0;
559 iGotoRecord = 1;
560 selected = (selected + 1) % OPTS;
561 } else {
562 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
563 playing = 1;
564 }
565 }
566 LEDsoff();
567 LED(selected + 1, 0);
568 }
569 // Change where to record (or begin playing)
570 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
571 {
572 LEDsoff();
573 LED(selected + 1, 0);
574
575 // Begin transmitting
576 if (playing)
577 {
578 LED(LED_GREEN, 0);
579 DbpString("Playing");
580 for ( ; ; ) {
581 WDT_HIT();
582 int button_action = BUTTON_HELD(1000);
583 if (button_action == 0) { // No button action, proceed with sim
584
585 uint8_t flags = FLAG_4B_UID_IN_DATA;
586 uint8_t data[USB_CMD_DATA_SIZE] = {0}; // in case there is a read command received we shouldn't break
587
588 memcpy(data, uids[selected].uid, uids[selected].uidlen);
589
590 uint64_t tmpuid = bytes_to_num(uids[selected].uid, uids[selected].uidlen);
591
592 if ( uids[selected].uidlen == 7 ) {
593 flags = FLAG_7B_UID_IN_DATA;
594 Dbprintf("Simulating ISO14443a tag with uid: %02x%08x [Bank: %u]", tmpuid >> 32, tmpuid & 0xFFFFFFFF , selected);
595 } else {
596 Dbprintf("Simulating ISO14443a tag with uid: %08x [Bank: %u]", tmpuid & 0xFFFFFFFF , selected);
597 }
598
599 if (uids[selected].sak == 8 && uids[selected].atqa[0] == 4 && uids[selected].atqa[1] == 0) {
600 DbpString("Mifare Classic");
601 SimulateIso14443aTag(1, flags, data); // Mifare Classic
602 }
603 else if (uids[selected].sak == 0 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 0) {
604 DbpString("Mifare Ultralight");
605 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
606 }
607 else if (uids[selected].sak == 20 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 3) {
608 DbpString("Mifare DESFire");
609 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
610 }
611 else {
612 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
613 SimulateIso14443aTag(1, flags, data); // Mifare Classic
614 }
615 }
616 else if (button_action == BUTTON_SINGLE_CLICK) {
617 selected = (selected + 1) % OPTS;
618 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
619 iGotoRecord = 1;
620 break;
621 }
622 else if (button_action == BUTTON_HOLD) {
623 Dbprintf("Playtime over. Begin cloning...");
624 iGotoClone = 1;
625 break;
626 }
627 WDT_HIT();
628 }
629
630 /* We pressed a button so ignore it here with a delay */
631 SpinDelay(300);
632 LEDsoff();
633 LED(selected + 1, 0);
634 }
635 else
636 while(BUTTON_PRESS())
637 WDT_HIT();
638 }
639 }
640 }
641 #elif WITH_LF
642 // samy's sniff and repeat routine
643 void SamyRun()
644 {
645 StandAloneMode();
646 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
647
648 int high[OPTS], low[OPTS];
649 int selected = 0;
650 int playing = 0;
651 int cardRead = 0;
652
653 // Turn on selected LED
654 LED(selected + 1, 0);
655
656 for (;;) {
657 usb_poll();
658 WDT_HIT();
659
660 // Was our button held down or pressed?
661 int button_pressed = BUTTON_HELD(1000);
662 SpinDelay(300);
663
664 // Button was held for a second, begin recording
665 if (button_pressed > 0 && cardRead == 0)
666 {
667 LEDsoff();
668 LED(selected + 1, 0);
669 LED(LED_RED2, 0);
670
671 // record
672 DbpString("Starting recording");
673
674 // wait for button to be released
675 while(BUTTON_PRESS())
676 WDT_HIT();
677
678 /* need this delay to prevent catching some weird data */
679 SpinDelay(500);
680
681 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
682 Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]);
683
684 LEDsoff();
685 LED(selected + 1, 0);
686 // Finished recording
687 // If we were previously playing, set playing off
688 // so next button push begins playing what we recorded
689 playing = 0;
690 cardRead = 1;
691 }
692 else if (button_pressed > 0 && cardRead == 1) {
693 LEDsoff();
694 LED(selected + 1, 0);
695 LED(LED_ORANGE, 0);
696
697 // record
698 Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]);
699
700 // wait for button to be released
701 while(BUTTON_PRESS())
702 WDT_HIT();
703
704 /* need this delay to prevent catching some weird data */
705 SpinDelay(500);
706
707 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
708 Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]);
709
710 LEDsoff();
711 LED(selected + 1, 0);
712 // Finished recording
713
714 // If we were previously playing, set playing off
715 // so next button push begins playing what we recorded
716 playing = 0;
717 cardRead = 0;
718 }
719
720 // Change where to record (or begin playing)
721 else if (button_pressed) {
722 // Next option if we were previously playing
723 if (playing)
724 selected = (selected + 1) % OPTS;
725 playing = !playing;
726
727 LEDsoff();
728 LED(selected + 1, 0);
729
730 // Begin transmitting
731 if (playing)
732 {
733 LED(LED_GREEN, 0);
734 DbpString("Playing");
735 // wait for button to be released
736 while(BUTTON_PRESS())
737 WDT_HIT();
738
739 Dbprintf("%x %x %08x", selected, high[selected], low[selected]);
740 CmdHIDsimTAG(high[selected], low[selected], 0);
741 DbpString("Done playing");
742
743 if (BUTTON_HELD(1000) > 0) {
744 DbpString("Exiting");
745 LEDsoff();
746 return;
747 }
748
749 /* We pressed a button so ignore it here with a delay */
750 SpinDelay(300);
751
752 // when done, we're done playing, move to next option
753 selected = (selected + 1) % OPTS;
754 playing = !playing;
755 LEDsoff();
756 LED(selected + 1, 0);
757 }
758 else
759 while(BUTTON_PRESS())
760 WDT_HIT();
761 }
762 }
763 }
764
765 #endif
766 /*
767 OBJECTIVE
768 Listen and detect an external reader. Determine the best location
769 for the antenna.
770
771 INSTRUCTIONS:
772 Inside the ListenReaderField() function, there is two mode.
773 By default, when you call the function, you will enter mode 1.
774 If you press the PM3 button one time, you will enter mode 2.
775 If you press the PM3 button a second time, you will exit the function.
776
777 DESCRIPTION OF MODE 1:
778 This mode just listens for an external reader field and lights up green
779 for HF and/or red for LF. This is the original mode of the detectreader
780 function.
781
782 DESCRIPTION OF MODE 2:
783 This mode will visually represent, using the LEDs, the actual strength of the
784 current compared to the maximum current detected. Basically, once you know
785 what kind of external reader is present, it will help you spot the best location to place
786 your antenna. You will probably not get some good results if there is a LF and a HF reader
787 at the same place! :-)
788
789 LIGHT SCHEME USED:
790 */
791 static const char LIGHT_SCHEME[] = {
792 0x0, /* ---- | No field detected */
793 0x1, /* X--- | 14% of maximum current detected */
794 0x2, /* -X-- | 29% of maximum current detected */
795 0x4, /* --X- | 43% of maximum current detected */
796 0x8, /* ---X | 57% of maximum current detected */
797 0xC, /* --XX | 71% of maximum current detected */
798 0xE, /* -XXX | 86% of maximum current detected */
799 0xF, /* XXXX | 100% of maximum current detected */
800 };
801 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
802
803 void ListenReaderField(int limit) {
804 #define LF_ONLY 1
805 #define HF_ONLY 2
806 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
807
808 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
809 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
810 int mode=1, display_val, display_max, i;
811
812 // switch off FPGA - we don't want to measure our own signal
813 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
814 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
815
816 LEDsoff();
817
818 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
819
820 if(limit != HF_ONLY) {
821 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
822 lf_baseline = lf_av;
823 }
824
825 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
826
827 if (limit != LF_ONLY) {
828 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
829 hf_baseline = hf_av;
830 }
831
832 for(;;) {
833 if (BUTTON_PRESS()) {
834 SpinDelay(500);
835 switch (mode) {
836 case 1:
837 mode=2;
838 DbpString("Signal Strength Mode");
839 break;
840 case 2:
841 default:
842 DbpString("Stopped");
843 LEDsoff();
844 return;
845 break;
846 }
847 }
848 WDT_HIT();
849
850 if (limit != HF_ONLY) {
851 if(mode == 1) {
852 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
853 LED_D_ON();
854 else
855 LED_D_OFF();
856 }
857
858 lf_av_new = AvgAdc(ADC_CHAN_LF);
859 // see if there's a significant change
860 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
861 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
862 lf_av = lf_av_new;
863 if (lf_av > lf_max)
864 lf_max = lf_av;
865 }
866 }
867
868 if (limit != LF_ONLY) {
869 if (mode == 1){
870 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
871 LED_B_ON();
872 else
873 LED_B_OFF();
874 }
875
876 hf_av_new = AvgAdc(ADC_CHAN_HF);
877 // see if there's a significant change
878 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
879 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
880 hf_av = hf_av_new;
881 if (hf_av > hf_max)
882 hf_max = hf_av;
883 }
884 }
885
886 if(mode == 2) {
887 if (limit == LF_ONLY) {
888 display_val = lf_av;
889 display_max = lf_max;
890 } else if (limit == HF_ONLY) {
891 display_val = hf_av;
892 display_max = hf_max;
893 } else { /* Pick one at random */
894 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
895 display_val = hf_av;
896 display_max = hf_max;
897 } else {
898 display_val = lf_av;
899 display_max = lf_max;
900 }
901 }
902 for (i=0; i<LIGHT_LEN; i++) {
903 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
904 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
905 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
906 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
907 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
908 break;
909 }
910 }
911 }
912 }
913 }
914
915 void UsbPacketReceived(uint8_t *packet, int len)
916 {
917 UsbCommand *c = (UsbCommand *)packet;
918
919 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
920
921 switch(c->cmd) {
922 #ifdef WITH_LF
923 case CMD_SET_LF_SAMPLING_CONFIG:
924 setSamplingConfig((sample_config *) c->d.asBytes);
925 break;
926 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
927 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
928 break;
929 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
930 ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
931 break;
932 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
933 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
934 break;
935 case CMD_HID_DEMOD_FSK:
936 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
937 break;
938 case CMD_HID_SIM_TAG:
939 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
940 break;
941 case CMD_FSK_SIM_TAG:
942 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
943 break;
944 case CMD_ASK_SIM_TAG:
945 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
946 break;
947 case CMD_PSK_SIM_TAG:
948 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
949 break;
950 case CMD_HID_CLONE_TAG:
951 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
952 break;
953 case CMD_IO_DEMOD_FSK:
954 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
955 break;
956 case CMD_IO_CLONE_TAG:
957 CopyIOtoT55x7(c->arg[0], c->arg[1]);
958 break;
959 case CMD_EM410X_DEMOD:
960 CmdEM410xdemod(c->arg[0], 0, 0, 1);
961 break;
962 case CMD_EM410X_WRITE_TAG:
963 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
964 break;
965 case CMD_READ_TI_TYPE:
966 ReadTItag();
967 break;
968 case CMD_WRITE_TI_TYPE:
969 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
970 break;
971 case CMD_SIMULATE_TAG_125K:
972 LED_A_ON();
973 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
974 LED_A_OFF();
975 break;
976 case CMD_LF_SIMULATE_BIDIR:
977 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
978 break;
979 case CMD_INDALA_CLONE_TAG:
980 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
981 break;
982 case CMD_INDALA_CLONE_TAG_L:
983 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
984 break;
985 case CMD_T55XX_READ_BLOCK:
986 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
987 break;
988 case CMD_T55XX_WRITE_BLOCK:
989 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
990 break;
991 case CMD_T55XX_WAKEUP:
992 T55xxWakeUp(c->arg[0]);
993 break;
994 case CMD_T55XX_RESET_READ:
995 T55xxResetRead();
996 break;
997 case CMD_PCF7931_READ:
998 ReadPCF7931();
999 break;
1000 case CMD_PCF7931_WRITE:
1001 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
1002 break;
1003 case CMD_EM4X_READ_WORD:
1004 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
1005 break;
1006 case CMD_EM4X_WRITE_WORD:
1007 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1008 break;
1009 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1010 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1011 break;
1012 case CMD_VIKING_CLONE_TAG:
1013 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1014 break;
1015 case CMD_COTAG:
1016 Cotag();
1017 break;
1018 #endif
1019
1020 #ifdef WITH_HITAG
1021 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1022 SnoopHitag(c->arg[0]);
1023 break;
1024 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1025 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1026 break;
1027 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1028 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1029 break;
1030 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1031 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1032 break;
1033 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1034 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1035 break;
1036 case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
1037 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1038 break;
1039 case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
1040 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1041 break;
1042 #endif
1043
1044 #ifdef WITH_ISO15693
1045 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1046 AcquireRawAdcSamplesIso15693();
1047 break;
1048 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1049 RecordRawAdcSamplesIso15693();
1050 break;
1051 case CMD_ISO_15693_COMMAND:
1052 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1053 break;
1054 case CMD_ISO_15693_FIND_AFI:
1055 BruteforceIso15693Afi(c->arg[0]);
1056 break;
1057 case CMD_ISO_15693_DEBUG:
1058 SetDebugIso15693(c->arg[0]);
1059 break;
1060 case CMD_READER_ISO_15693:
1061 ReaderIso15693(c->arg[0]);
1062 break;
1063 case CMD_SIMTAG_ISO_15693:
1064 SimTagIso15693(c->arg[0], c->d.asBytes);
1065 break;
1066 #endif
1067
1068 #ifdef WITH_LEGICRF
1069 case CMD_SIMULATE_TAG_LEGIC_RF:
1070 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1071 break;
1072 case CMD_WRITER_LEGIC_RF:
1073 LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1074 break;
1075 case CMD_READER_LEGIC_RF:
1076 LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
1077 break;
1078 case CMD_LEGIC_INFO:
1079 LegicRfInfo();
1080 break;
1081 case CMD_LEGIC_ESET:
1082 LegicEMemSet(c->arg[0], c->arg[1], c->d.asBytes);
1083 break;
1084 #endif
1085
1086 #ifdef WITH_ISO14443b
1087 case CMD_READ_SRI_TAG:
1088 ReadSTMemoryIso14443b(c->arg[0]);
1089 break;
1090 case CMD_SNOOP_ISO_14443B:
1091 SnoopIso14443b();
1092 break;
1093 case CMD_SIMULATE_TAG_ISO_14443B:
1094 SimulateIso14443bTag(c->arg[0]);
1095 break;
1096 case CMD_ISO_14443B_COMMAND:
1097 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1098 SendRawCommand14443B_Ex(c);
1099 break;
1100 #endif
1101
1102 #ifdef WITH_ISO14443a
1103 case CMD_SNOOP_ISO_14443a:
1104 SniffIso14443a(c->arg[0]);
1105 break;
1106 case CMD_READER_ISO_14443a:
1107 ReaderIso14443a(c);
1108 break;
1109 case CMD_SIMULATE_TAG_ISO_14443a:
1110 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1111 break;
1112 case CMD_EPA_PACE_COLLECT_NONCE:
1113 EPA_PACE_Collect_Nonce(c);
1114 break;
1115 case CMD_EPA_PACE_REPLAY:
1116 EPA_PACE_Replay(c);
1117 break;
1118 case CMD_READER_MIFARE:
1119 ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
1120 break;
1121 case CMD_MIFARE_READBL:
1122 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1123 break;
1124 case CMD_MIFAREU_READBL:
1125 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1126 break;
1127 case CMD_MIFAREUC_AUTH:
1128 MifareUC_Auth(c->arg[0],c->d.asBytes);
1129 break;
1130 case CMD_MIFAREU_READCARD:
1131 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1132 break;
1133 case CMD_MIFAREUC_SETPWD:
1134 MifareUSetPwd(c->arg[0], c->d.asBytes);
1135 break;
1136 case CMD_MIFARE_READSC:
1137 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1138 break;
1139 case CMD_MIFARE_WRITEBL:
1140 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1141 break;
1142 //case CMD_MIFAREU_WRITEBL_COMPAT:
1143 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1144 //break;
1145 case CMD_MIFAREU_WRITEBL:
1146 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1147 break;
1148 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1149 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1150 break;
1151 case CMD_MIFARE_NESTED:
1152 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1153 break;
1154 case CMD_MIFARE_CHKKEYS:
1155 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1156 break;
1157 case CMD_SIMULATE_MIFARE_CARD:
1158 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1159 break;
1160
1161 // emulator
1162 case CMD_MIFARE_SET_DBGMODE:
1163 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1164 break;
1165 case CMD_MIFARE_EML_MEMCLR:
1166 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1167 break;
1168 case CMD_MIFARE_EML_MEMSET:
1169 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1170 break;
1171 case CMD_MIFARE_EML_MEMGET:
1172 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1173 break;
1174 case CMD_MIFARE_EML_CARDLOAD:
1175 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1176 break;
1177
1178 // Work with "magic Chinese" card
1179 case CMD_MIFARE_CSETBLOCK:
1180 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1181 break;
1182 case CMD_MIFARE_CGETBLOCK:
1183 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1184 break;
1185 case CMD_MIFARE_CIDENT:
1186 MifareCIdent();
1187 break;
1188
1189 // mifare sniffer
1190 case CMD_MIFARE_SNIFFER:
1191 SniffMifare(c->arg[0]);
1192 break;
1193
1194 //mifare desfire
1195 case CMD_MIFARE_DESFIRE_READBL: break;
1196 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1197 case CMD_MIFARE_DESFIRE_AUTH1:
1198 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1199 break;
1200 case CMD_MIFARE_DESFIRE_AUTH2:
1201 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1202 break;
1203 case CMD_MIFARE_DES_READER:
1204 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1205 break;
1206 case CMD_MIFARE_DESFIRE_INFO:
1207 MifareDesfireGetInformation();
1208 break;
1209 case CMD_MIFARE_DESFIRE:
1210 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1211 break;
1212 case CMD_MIFARE_COLLECT_NONCES:
1213 break;
1214 #endif
1215 #ifdef WITH_EMV
1216 case CMD_EMV_TRANSACTION:
1217 EMVTransaction();
1218 break;
1219 case CMD_EMV_GET_RANDOM_NUM:
1220 //EMVgetUDOL();
1221 break;
1222 case CMD_EMV_LOAD_VALUE:
1223 EMVloadvalue(c->arg[0], c->d.asBytes);
1224 break;
1225 case CMD_EMV_DUMP_CARD:
1226 EMVdumpcard();
1227 #endif
1228 #ifdef WITH_ICLASS
1229 // Makes use of ISO14443a FPGA Firmware
1230 case CMD_SNOOP_ICLASS:
1231 SnoopIClass();
1232 break;
1233 case CMD_SIMULATE_TAG_ICLASS:
1234 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1235 break;
1236 case CMD_READER_ICLASS:
1237 ReaderIClass(c->arg[0]);
1238 break;
1239 case CMD_READER_ICLASS_REPLAY:
1240 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1241 break;
1242 case CMD_ICLASS_EML_MEMSET:
1243 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1244 break;
1245 case CMD_ICLASS_WRITEBLOCK:
1246 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1247 break;
1248 case CMD_ICLASS_READCHECK: // auth step 1
1249 iClass_ReadCheck(c->arg[0], c->arg[1]);
1250 break;
1251 case CMD_ICLASS_READBLOCK:
1252 iClass_ReadBlk(c->arg[0]);
1253 break;
1254 case CMD_ICLASS_AUTHENTICATION: //check
1255 iClass_Authentication(c->d.asBytes);
1256 break;
1257 case CMD_ICLASS_DUMP:
1258 iClass_Dump(c->arg[0], c->arg[1]);
1259 break;
1260 case CMD_ICLASS_CLONE:
1261 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1262 break;
1263 #endif
1264 #ifdef WITH_HFSNOOP
1265 case CMD_HF_SNIFFER:
1266 HfSnoop(c->arg[0], c->arg[1]);
1267 break;
1268 #endif
1269
1270 case CMD_BUFF_CLEAR:
1271 BigBuf_Clear();
1272 break;
1273
1274 case CMD_MEASURE_ANTENNA_TUNING:
1275 MeasureAntennaTuning();
1276 break;
1277
1278 case CMD_MEASURE_ANTENNA_TUNING_HF:
1279 MeasureAntennaTuningHf();
1280 break;
1281
1282 case CMD_LISTEN_READER_FIELD:
1283 ListenReaderField(c->arg[0]);
1284 break;
1285
1286 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1287 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1288 SpinDelay(200);
1289 LED_D_OFF(); // LED D indicates field ON or OFF
1290 break;
1291
1292 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
1293 LED_B_ON();
1294 uint8_t *BigBuf = BigBuf_get_addr();
1295 size_t len = 0;
1296 size_t startidx = c->arg[0];
1297 uint8_t isok = FALSE;
1298 // arg0 = startindex
1299 // arg1 = length bytes to transfer
1300 // arg2 = RFU
1301 //Dbprintf("transfer to client parameters: %llu | %llu | %llu", c->arg[0], c->arg[1], c->arg[2]);
1302
1303 for(size_t i = 0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1304 len = MIN( (c->arg[1] - i), USB_CMD_DATA_SIZE);
1305 isok = cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, i, len, BigBuf_get_traceLen(), BigBuf + startidx + i, len);
1306 if (!isok)
1307 Dbprintf("transfer to client failed :: | bytes %d", len);
1308 }
1309 // Trigger a finish downloading signal with an ACK frame
1310 cmd_send(CMD_ACK, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config));
1311 LED_B_OFF();
1312 break;
1313 }
1314 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1315 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1316 // to be able to use this one for uploading data to device
1317 // arg1 = 0 upload for LF usage
1318 // 1 upload for HF usage
1319 if ( c->arg[1] == 0 )
1320 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1321 else
1322 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1323 uint8_t *b = BigBuf_get_addr();
1324 memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1325 cmd_send(CMD_ACK,1,0,0,0,0);
1326 break;
1327 }
1328 case CMD_DOWNLOAD_EML_BIGBUF: {
1329 LED_B_ON();
1330 uint8_t *cardmem = BigBuf_get_EM_addr();
1331 size_t len = 0;
1332 for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1333 len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE);
1334 cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len);
1335 }
1336 // Trigger a finish downloading signal with an ACK frame
1337 cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0);
1338 LED_B_OFF();
1339 break;
1340 }
1341 case CMD_READ_MEM:
1342 ReadMem(c->arg[0]);
1343 break;
1344
1345 case CMD_SET_LF_DIVISOR:
1346 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1347 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1348 break;
1349
1350 case CMD_SET_ADC_MUX:
1351 switch(c->arg[0]) {
1352 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1353 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1354 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1355 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1356 }
1357 break;
1358
1359 case CMD_VERSION:
1360 SendVersion();
1361 break;
1362 case CMD_STATUS:
1363 SendStatus();
1364 break;
1365 case CMD_PING:
1366 cmd_send(CMD_ACK,0,0,0,0,0);
1367 break;
1368 #ifdef WITH_LCD
1369 case CMD_LCD_RESET:
1370 LCDReset();
1371 break;
1372 case CMD_LCD:
1373 LCDSend(c->arg[0]);
1374 break;
1375 #endif
1376 case CMD_SETUP_WRITE:
1377 case CMD_FINISH_WRITE:
1378 case CMD_HARDWARE_RESET:
1379 usb_disable();
1380 SpinDelay(2000);
1381 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1382 for(;;) {
1383 // We're going to reset, and the bootrom will take control.
1384 }
1385 break;
1386
1387 case CMD_START_FLASH:
1388 if(common_area.flags.bootrom_present) {
1389 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1390 }
1391 usb_disable();
1392 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1393 for(;;);
1394 break;
1395
1396 case CMD_DEVICE_INFO: {
1397 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1398 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1399 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1400 break;
1401 }
1402 default:
1403 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1404 break;
1405 }
1406 }
1407
1408 void __attribute__((noreturn)) AppMain(void)
1409 {
1410 SpinDelay(100);
1411 clear_trace();
1412 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1413 /* Initialize common area */
1414 memset(&common_area, 0, sizeof(common_area));
1415 common_area.magic = COMMON_AREA_MAGIC;
1416 common_area.version = 1;
1417 }
1418 common_area.flags.osimage_present = 1;
1419
1420 LEDsoff();
1421
1422 // Init USB device
1423 usb_enable();
1424
1425 // The FPGA gets its clock from us from PCK0 output, so set that up.
1426 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1427 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1428 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1429 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1430 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1431 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1432
1433 // Reset SPI
1434 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1435 // Reset SSC
1436 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1437
1438 // Load the FPGA image, which we have stored in our flash.
1439 // (the HF version by default)
1440 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1441
1442 StartTickCount();
1443
1444 #ifdef WITH_LCD
1445 LCDInit();
1446 #endif
1447
1448 byte_t rx[sizeof(UsbCommand)];
1449 size_t rx_len;
1450
1451 for(;;) {
1452 if ( usb_poll_validate_length() ) {
1453 rx_len = usb_read(rx, sizeof(UsbCommand));
1454
1455 if (rx_len)
1456 UsbPacketReceived(rx, rx_len);
1457 }
1458 WDT_HIT();
1459
1460 #ifdef WITH_LF
1461 #ifndef WITH_ISO14443a_StandAlone
1462 if (BUTTON_HELD(1000) > 0)
1463 SamyRun();
1464 #endif
1465 #endif
1466 #ifdef WITH_ISO14443a
1467 #ifdef WITH_ISO14443a_StandAlone
1468 if (BUTTON_HELD(1000) > 0)
1469 StandAloneMode14a();
1470 #endif
1471 #endif
1472 }
1473 }
Impressum, Datenschutz