1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
14 #include "proxmark3.h"
23 #include "lfsampling.h"
25 #include "mifareutil.h"
32 // Craig Young - 14a stand-alone code
33 #ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
35 #include "protocols.h"
38 //=============================================================================
39 // A buffer where we can queue things up to be sent through the FPGA, for
40 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
41 // is the order in which they go out on the wire.
42 //=============================================================================
44 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
48 struct common_area common_area
__attribute__((section(".commonarea")));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
) {
59 ToSend
[ToSendMax
] = 0;
64 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
68 if(ToSendMax
>= sizeof(ToSend
)) {
70 DbpString("ToSendStuffBit overflowed!");
74 void PrintToSendBuffer(void){
75 DbpString("Printing ToSendBuffer:");
76 Dbhexdump(ToSendMax
, ToSend
, 0);
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
83 void DbpStringEx(char *str
, uint32_t cmd
){
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
88 void DbpString(char *str
) {
93 void DbpIntegers(int x1
, int x2
, int x3
) {
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128] = {0x00};
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpStringEx(output_string
, cmd
);
109 void Dbprintf(const char *fmt
, ...) {
110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string
[128] = {0x00};
115 kvsprintf(fmt
, output_string
, 10, ap
);
118 DbpString(output_string
);
121 // prints HEX & ASCII
122 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
128 l
= (len
>8) ? 8 : len
;
135 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
138 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
140 Dbprintf("%*D",l
,d
," ");
147 //-----------------------------------------------------------------------------
148 // Read an ADC channel and block till it completes, then return the result
149 // in ADC units (0 to 1023). Also a routine to average 32 samples and
151 //-----------------------------------------------------------------------------
152 static int ReadAdc(int ch
)
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
157 AT91C_BASE_ADC
->ADC_MR
=
158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
173 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
175 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
177 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
179 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
183 int AvgAdc(int ch
) // was static - merlok
188 for(i
= 0; i
< 32; ++i
)
191 return (a
+ 15) >> 5;
195 void MeasureAntennaTuning(void) {
197 uint8_t LF_Results
[256];
198 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;
199 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
201 memset(LF_Results
, 0, sizeof(LF_Results
));
205 * Sweeps the useful LF range of the proxmark from
206 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
207 * read the voltage in the antenna, the result left
208 * in the buffer is a graph which should clearly show
209 * the resonating frequency of your LF antenna
210 * ( hopefully around 95 if it is tuned to 125kHz!)
213 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
214 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
216 for (i
= 255; i
>= 19; i
--) {
218 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
220 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
221 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
222 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
224 LF_Results
[i
] = adcval
>> 8; // scale int to fit in byte for graphing purposes
225 if(LF_Results
[i
] > peak
) {
227 peak
= LF_Results
[i
];
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
237 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
239 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<< 16), vHf
, peakf
| (peakv
<< 16), LF_Results
, 256);
240 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
244 void MeasureAntennaTuningHf(void) {
245 int vHf
= 0; // in mV
246 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
247 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
250 while ( !BUTTON_PRESS() ){
252 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
253 //Dbprintf("%d mV",vHf);
254 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
257 DbpString("cancelled");
261 void ReadMem(int addr
) {
262 const uint8_t *data
= ((uint8_t *)addr
);
264 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
265 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
268 /* osimage version information is linked in */
269 extern struct version_information version_information
;
270 /* bootrom version information is pointed to from _bootphase1_version_pointer */
271 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
272 void SendVersion(void)
274 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
275 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
277 /* Try to find the bootrom version information. Expect to find a pointer at
278 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
279 * pointer, then use it.
281 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
283 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
284 strcat(VersionString
, "bootrom version information appears invalid\n");
286 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
287 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
290 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
291 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
296 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
297 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
299 // Send Chip ID and used flash memory
300 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
301 uint32_t compressed_data_section_size
= common_area
.arg1
;
302 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
305 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
306 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
307 void printUSBSpeed(void)
309 Dbprintf("USB Speed:");
310 Dbprintf(" Sending USB packets to client...");
312 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
313 uint8_t *test_data
= BigBuf_get_addr();
316 uint32_t start_time
= end_time
= GetTickCount();
317 uint32_t bytes_transferred
= 0;
320 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
321 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
322 end_time
= GetTickCount();
323 bytes_transferred
+= USB_CMD_DATA_SIZE
;
327 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
328 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
329 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
330 1000 * bytes_transferred
/ (end_time
- start_time
));
335 * Prints runtime information about the PM3.
337 void SendStatus(void) {
338 BigBuf_print_status();
340 printConfig(); //LF Sampling config
343 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
344 Dbprintf(" ToSendMax..........%d", ToSendMax
);
345 Dbprintf(" ToSendBit..........%d", ToSendBit
);
346 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
348 cmd_send(CMD_ACK
,1,0,0,0,0);
351 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
354 void StandAloneMode()
356 DbpString("Stand-alone mode! No PC necessary.");
357 // Oooh pretty -- notify user we're in elite samy mode now
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
365 LED(LED_ORANGE
, 200);
370 #ifdef WITH_ISO14443a_StandAlone
371 void StandAloneMode14a()
374 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
377 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
378 int cardRead
[OPTS
] = {0};
379 uint8_t readUID
[10] = {0};
380 uint32_t uid_1st
[OPTS
]={0};
381 uint32_t uid_2nd
[OPTS
]={0};
382 uint32_t uid_tmp1
= 0;
383 uint32_t uid_tmp2
= 0;
384 iso14a_card_select_t hi14a_card
[OPTS
];
386 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
388 LED(selected
+ 1, 0);
396 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
400 LED(selected
+ 1, 0);
404 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
405 /* need this delay to prevent catching some weird data */
407 /* Code for reading from 14a tag */
408 uint8_t uid
[10] = {0};
410 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
415 if (BUTTON_PRESS()) {
416 if (cardRead
[selected
]) {
417 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
420 else if (cardRead
[(selected
+1)%OPTS
]) {
421 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
422 selected
= (selected
+1)%OPTS
;
423 break; // playing = 1;
426 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
430 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
434 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
435 memcpy(readUID
,uid
,10*sizeof(uint8_t));
436 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
437 // Set UID byte order
438 for (int i
=0; i
<4; i
++)
440 dst
= (uint8_t *)&uid_tmp2
;
441 for (int i
=0; i
<4; i
++)
443 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
444 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
448 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
449 uid_1st
[selected
] = (uid_tmp1
)>>8;
450 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
453 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
454 uid_1st
[selected
] = uid_tmp1
;
455 uid_2nd
[selected
] = uid_tmp2
;
461 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
462 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
465 LED(LED_ORANGE
, 200);
467 LED(LED_ORANGE
, 200);
470 LED(selected
+ 1, 0);
472 // Next state is replay:
475 cardRead
[selected
] = 1;
477 /* MF Classic UID clone */
478 else if (iGotoClone
==1)
482 LED(selected
+ 1, 0);
483 LED(LED_ORANGE
, 250);
486 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
488 // wait for button to be released
489 // Delay cloning until card is in place
490 while(BUTTON_PRESS())
493 Dbprintf("Starting clone. [Bank: %u]", selected
);
494 // need this delay to prevent catching some weird data
496 // Begin clone function here:
497 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
498 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
499 memcpy(c.d.asBytes, data, 16);
502 Block read is similar:
503 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
504 We need to imitate that call with blockNo 0 to set a uid.
506 The get and set commands are handled in this file:
507 // Work with "magic Chinese" card
508 case CMD_MIFARE_CSETBLOCK:
509 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
511 case CMD_MIFARE_CGETBLOCK:
512 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
515 mfCSetUID provides example logic for UID set workflow:
516 -Read block0 from card in field with MifareCGetBlock()
517 -Configure new values without replacing reserved bytes
518 memcpy(block0, uid, 4); // Copy UID bytes from byte array
520 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
521 Bytes 5-7 are reserved SAK and ATQA for mifare classic
522 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
524 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
525 // arg0 = Flags, arg1=blockNo
526 MifareCGetBlock(params
, 0, oldBlock0
);
527 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
528 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
532 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
533 memcpy(newBlock0
,oldBlock0
,16);
534 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
536 newBlock0
[0] = uid_1st
[selected
]>>24;
537 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
538 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
539 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
540 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
542 // arg0 = workFlags, arg1 = blockNo, datain
543 MifareCSetBlock(params
, 0, newBlock0
);
544 MifareCGetBlock(params
, 0, testBlock0
);
546 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
547 DbpString("Cloned successfull!");
548 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
551 selected
= (selected
+ 1) % OPTS
;
553 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
558 LED(selected
+ 1, 0);
560 // Change where to record (or begin playing)
561 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
564 LED(selected
+ 1, 0);
566 // Begin transmitting
570 DbpString("Playing");
573 int button_action
= BUTTON_HELD(1000);
574 if (button_action
== 0) { // No button action, proceed with sim
575 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
576 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
577 num_to_bytes(uid_1st
[selected
], 3, data
);
578 num_to_bytes(uid_2nd
[selected
], 4, data
);
580 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
581 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
582 DbpString("Mifare Classic");
583 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
585 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
586 DbpString("Mifare Ultralight");
587 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
589 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
590 DbpString("Mifare DESFire");
591 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
594 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
595 SimulateIso14443aTag(1, flags
, data
);
598 else if (button_action
== BUTTON_SINGLE_CLICK
) {
599 selected
= (selected
+ 1) % OPTS
;
600 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
604 else if (button_action
== BUTTON_HOLD
) {
605 Dbprintf("Playtime over. Begin cloning...");
612 /* We pressed a button so ignore it here with a delay */
615 LED(selected
+ 1, 0);
618 while(BUTTON_PRESS())
624 // samy's sniff and repeat routine
628 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
630 int high
[OPTS
], low
[OPTS
];
635 // Turn on selected LED
636 LED(selected
+ 1, 0);
642 // Was our button held down or pressed?
643 int button_pressed
= BUTTON_HELD(1000);
646 // Button was held for a second, begin recording
647 if (button_pressed
> 0 && cardRead
== 0)
650 LED(selected
+ 1, 0);
654 DbpString("Starting recording");
656 // wait for button to be released
657 while(BUTTON_PRESS())
660 /* need this delay to prevent catching some weird data */
663 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
664 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
667 LED(selected
+ 1, 0);
668 // Finished recording
669 // If we were previously playing, set playing off
670 // so next button push begins playing what we recorded
674 else if (button_pressed
> 0 && cardRead
== 1) {
676 LED(selected
+ 1, 0);
680 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
682 // wait for button to be released
683 while(BUTTON_PRESS())
686 /* need this delay to prevent catching some weird data */
689 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
690 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
693 LED(selected
+ 1, 0);
694 // Finished recording
696 // If we were previously playing, set playing off
697 // so next button push begins playing what we recorded
702 // Change where to record (or begin playing)
703 else if (button_pressed
) {
704 // Next option if we were previously playing
706 selected
= (selected
+ 1) % OPTS
;
710 LED(selected
+ 1, 0);
712 // Begin transmitting
716 DbpString("Playing");
717 // wait for button to be released
718 while(BUTTON_PRESS())
721 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
722 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
723 DbpString("Done playing");
725 if (BUTTON_HELD(1000) > 0) {
726 DbpString("Exiting");
731 /* We pressed a button so ignore it here with a delay */
734 // when done, we're done playing, move to next option
735 selected
= (selected
+ 1) % OPTS
;
738 LED(selected
+ 1, 0);
741 while(BUTTON_PRESS())
750 Listen and detect an external reader. Determine the best location
754 Inside the ListenReaderField() function, there is two mode.
755 By default, when you call the function, you will enter mode 1.
756 If you press the PM3 button one time, you will enter mode 2.
757 If you press the PM3 button a second time, you will exit the function.
759 DESCRIPTION OF MODE 1:
760 This mode just listens for an external reader field and lights up green
761 for HF and/or red for LF. This is the original mode of the detectreader
764 DESCRIPTION OF MODE 2:
765 This mode will visually represent, using the LEDs, the actual strength of the
766 current compared to the maximum current detected. Basically, once you know
767 what kind of external reader is present, it will help you spot the best location to place
768 your antenna. You will probably not get some good results if there is a LF and a HF reader
769 at the same place! :-)
773 static const char LIGHT_SCHEME
[] = {
774 0x0, /* ---- | No field detected */
775 0x1, /* X--- | 14% of maximum current detected */
776 0x2, /* -X-- | 29% of maximum current detected */
777 0x4, /* --X- | 43% of maximum current detected */
778 0x8, /* ---X | 57% of maximum current detected */
779 0xC, /* --XX | 71% of maximum current detected */
780 0xE, /* -XXX | 86% of maximum current detected */
781 0xF, /* XXXX | 100% of maximum current detected */
783 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
785 void ListenReaderField(int limit
) {
788 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
790 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
791 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
792 int mode
=1, display_val
, display_max
, i
;
794 // switch off FPGA - we don't want to measure our own signal
795 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
796 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
800 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
802 if(limit
!= HF_ONLY
) {
803 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
807 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
809 if (limit
!= LF_ONLY
) {
810 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
815 if (BUTTON_PRESS()) {
820 DbpString("Signal Strength Mode");
824 DbpString("Stopped");
832 if (limit
!= HF_ONLY
) {
834 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
840 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
841 // see if there's a significant change
842 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
843 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
850 if (limit
!= LF_ONLY
) {
852 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
858 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
859 // see if there's a significant change
860 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
861 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
869 if (limit
== LF_ONLY
) {
871 display_max
= lf_max
;
872 } else if (limit
== HF_ONLY
) {
874 display_max
= hf_max
;
875 } else { /* Pick one at random */
876 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
878 display_max
= hf_max
;
881 display_max
= lf_max
;
884 for (i
=0; i
<LIGHT_LEN
; i
++) {
885 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
886 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
887 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
888 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
889 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
897 void UsbPacketReceived(uint8_t *packet
, int len
)
899 UsbCommand
*c
= (UsbCommand
*)packet
;
901 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
905 case CMD_SET_LF_SAMPLING_CONFIG
:
906 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
908 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
909 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
911 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
912 ModThenAcquireRawAdcSamples125k(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
914 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
915 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
917 case CMD_HID_DEMOD_FSK
:
918 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
920 case CMD_HID_SIM_TAG
:
921 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
923 case CMD_FSK_SIM_TAG
:
924 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
926 case CMD_ASK_SIM_TAG
:
927 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
929 case CMD_PSK_SIM_TAG
:
930 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
932 case CMD_HID_CLONE_TAG
:
933 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
935 case CMD_IO_DEMOD_FSK
:
936 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
938 case CMD_IO_CLONE_TAG
:
939 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
941 case CMD_EM410X_DEMOD
:
942 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
944 case CMD_EM410X_WRITE_TAG
:
945 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
947 case CMD_READ_TI_TYPE
:
950 case CMD_WRITE_TI_TYPE
:
951 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
953 case CMD_SIMULATE_TAG_125K
:
955 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
958 case CMD_LF_SIMULATE_BIDIR
:
959 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
961 case CMD_INDALA_CLONE_TAG
:
962 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
964 case CMD_INDALA_CLONE_TAG_L
:
965 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
967 case CMD_T55XX_READ_BLOCK
:
968 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
970 case CMD_T55XX_WRITE_BLOCK
:
971 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
973 case CMD_T55XX_WAKEUP
:
974 T55xxWakeUp(c
->arg
[0]);
976 case CMD_T55XX_RESET_READ
:
979 case CMD_PCF7931_READ
:
982 case CMD_PCF7931_WRITE
:
983 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
985 case CMD_EM4X_READ_WORD
:
986 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
988 case CMD_EM4X_WRITE_WORD
:
989 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
991 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
992 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
994 case CMD_VIKING_CLONE_TAG
:
995 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1000 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1001 SnoopHitag(c
->arg
[0]);
1003 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1004 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1006 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1007 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1009 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1010 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1012 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1013 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1015 case CMD_READ_HITAG_S
: //Reader for only Hitag S tags, args = key or challenge
1016 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1018 case CMD_WR_HITAG_S
: //writer for Hitag tags args=data to write,page and key or challenge
1019 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1023 #ifdef WITH_ISO15693
1024 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1025 AcquireRawAdcSamplesIso15693();
1027 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1028 RecordRawAdcSamplesIso15693();
1031 case CMD_ISO_15693_COMMAND
:
1032 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1035 case CMD_ISO_15693_FIND_AFI
:
1036 BruteforceIso15693Afi(c
->arg
[0]);
1039 case CMD_ISO_15693_DEBUG
:
1040 SetDebugIso15693(c
->arg
[0]);
1043 case CMD_READER_ISO_15693
:
1044 ReaderIso15693(c
->arg
[0]);
1046 case CMD_SIMTAG_ISO_15693
:
1047 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1052 case CMD_SIMULATE_TAG_LEGIC_RF
:
1053 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1056 case CMD_WRITER_LEGIC_RF
:
1057 LegicRfWriter( c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1060 case CMD_RAW_WRITER_LEGIC_RF
:
1061 LegicRfRawWriter(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1064 case CMD_READER_LEGIC_RF
:
1065 LegicRfReader(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1069 #ifdef WITH_ISO14443b
1070 case CMD_READ_SRI_TAG
:
1071 ReadSTMemoryIso14443b(c
->arg
[0]);
1073 case CMD_SNOOP_ISO_14443B
:
1076 case CMD_SIMULATE_TAG_ISO_14443B
:
1077 SimulateIso14443bTag(c
->arg
[0]);
1079 case CMD_ISO_14443B_COMMAND
:
1080 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1081 SendRawCommand14443B_Ex(c
);
1085 #ifdef WITH_ISO14443a
1086 case CMD_SNOOP_ISO_14443a
:
1087 SniffIso14443a(c
->arg
[0]);
1089 case CMD_READER_ISO_14443a
:
1092 case CMD_SIMULATE_TAG_ISO_14443a
:
1093 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1095 case CMD_EPA_PACE_COLLECT_NONCE
:
1096 EPA_PACE_Collect_Nonce(c
);
1098 case CMD_EPA_PACE_REPLAY
:
1101 case CMD_READER_MIFARE
:
1102 ReaderMifare(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1104 case CMD_MIFARE_READBL
:
1105 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1107 case CMD_MIFAREU_READBL
:
1108 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1110 case CMD_MIFAREUC_AUTH
:
1111 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1113 case CMD_MIFAREU_READCARD
:
1114 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1116 case CMD_MIFAREUC_SETPWD
:
1117 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1119 case CMD_MIFARE_READSC
:
1120 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1122 case CMD_MIFARE_WRITEBL
:
1123 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1125 //case CMD_MIFAREU_WRITEBL_COMPAT:
1126 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1128 case CMD_MIFAREU_WRITEBL
:
1129 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1131 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1132 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1134 case CMD_MIFARE_NESTED
:
1135 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1137 case CMD_MIFARE_CHKKEYS
:
1138 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1140 case CMD_SIMULATE_MIFARE_CARD
:
1141 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1145 case CMD_MIFARE_SET_DBGMODE
:
1146 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1148 case CMD_MIFARE_EML_MEMCLR
:
1149 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1151 case CMD_MIFARE_EML_MEMSET
:
1152 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1154 case CMD_MIFARE_EML_MEMGET
:
1155 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1157 case CMD_MIFARE_EML_CARDLOAD
:
1158 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1161 // Work with "magic Chinese" card
1162 case CMD_MIFARE_CSETBLOCK
:
1163 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1165 case CMD_MIFARE_CGETBLOCK
:
1166 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1168 case CMD_MIFARE_CIDENT
:
1173 case CMD_MIFARE_SNIFFER
:
1174 SniffMifare(c
->arg
[0]);
1178 case CMD_MIFARE_DESFIRE_READBL
: break;
1179 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1180 case CMD_MIFARE_DESFIRE_AUTH1
:
1181 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1183 case CMD_MIFARE_DESFIRE_AUTH2
:
1184 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1186 case CMD_MIFARE_DES_READER
:
1187 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1189 case CMD_MIFARE_DESFIRE_INFO
:
1190 MifareDesfireGetInformation();
1192 case CMD_MIFARE_DESFIRE
:
1193 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1196 case CMD_MIFARE_COLLECT_NONCES
:
1200 case CMD_EMV_TRANSACTION
:
1203 case CMD_EMV_GET_RANDOM_NUM
:
1206 case CMD_EMV_LOAD_VALUE
:
1207 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1209 case CMD_EMV_DUMP_CARD
:
1213 // Makes use of ISO14443a FPGA Firmware
1214 case CMD_SNOOP_ICLASS
:
1217 case CMD_SIMULATE_TAG_ICLASS
:
1218 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1220 case CMD_READER_ICLASS
:
1221 ReaderIClass(c
->arg
[0]);
1223 case CMD_READER_ICLASS_REPLAY
:
1224 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1226 case CMD_ICLASS_EML_MEMSET
:
1227 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1229 case CMD_ICLASS_WRITEBLOCK
:
1230 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1232 case CMD_ICLASS_READCHECK
: // auth step 1
1233 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1235 case CMD_ICLASS_READBLOCK
:
1236 iClass_ReadBlk(c
->arg
[0]);
1238 case CMD_ICLASS_AUTHENTICATION
: //check
1239 iClass_Authentication(c
->d
.asBytes
);
1241 case CMD_ICLASS_DUMP
:
1242 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1244 case CMD_ICLASS_CLONE
:
1245 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1249 case CMD_HF_SNIFFER
:
1250 HfSnoop(c
->arg
[0], c
->arg
[1]);
1254 case CMD_BUFF_CLEAR
:
1258 case CMD_MEASURE_ANTENNA_TUNING
:
1259 MeasureAntennaTuning();
1262 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1263 MeasureAntennaTuningHf();
1266 case CMD_LISTEN_READER_FIELD
:
1267 ListenReaderField(c
->arg
[0]);
1270 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1273 LED_D_OFF(); // LED D indicates field ON or OFF
1276 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1278 uint8_t *BigBuf
= BigBuf_get_addr();
1280 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1281 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1282 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1284 // Trigger a finish downloading signal with an ACK frame
1285 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1289 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1290 uint8_t *b
= BigBuf_get_addr();
1291 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1292 cmd_send(CMD_ACK
,0,0,0,0,0);
1295 case CMD_DOWNLOAD_EML_BIGBUF
: {
1297 uint8_t *cardmem
= BigBuf_get_EM_addr();
1299 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1300 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1301 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1303 // Trigger a finish downloading signal with an ACK frame
1304 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1312 case CMD_SET_LF_DIVISOR
:
1313 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1314 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1317 case CMD_SET_ADC_MUX
:
1319 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1320 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1321 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1322 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1333 cmd_send(CMD_ACK
,0,0,0,0,0);
1343 case CMD_SETUP_WRITE
:
1344 case CMD_FINISH_WRITE
:
1345 case CMD_HARDWARE_RESET
:
1348 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1350 // We're going to reset, and the bootrom will take control.
1354 case CMD_START_FLASH
:
1355 if(common_area
.flags
.bootrom_present
) {
1356 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1359 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1363 case CMD_DEVICE_INFO
: {
1364 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1365 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1366 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1370 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1375 void __attribute__((noreturn
)) AppMain(void)
1379 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1380 /* Initialize common area */
1381 memset(&common_area
, 0, sizeof(common_area
));
1382 common_area
.magic
= COMMON_AREA_MAGIC
;
1383 common_area
.version
= 1;
1385 common_area
.flags
.osimage_present
= 1;
1392 // The FPGA gets its clock from us from PCK0 output, so set that up.
1393 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1394 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1395 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1396 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1397 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
| AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1398 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1401 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1403 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1405 // Load the FPGA image, which we have stored in our flash.
1406 // (the HF version by default)
1407 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1415 byte_t rx
[sizeof(UsbCommand
)];
1419 if ( usb_poll_validate_length() ) {
1420 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1423 UsbPacketReceived(rx
, rx_len
);
1428 #ifndef WITH_ISO14443a_StandAlone
1429 if (BUTTON_HELD(1000) > 0)
1433 #ifdef WITH_ISO14443a
1434 #ifdef WITH_ISO14443a_StandAlone
1435 if (BUTTON_HELD(1000) > 0)
1436 StandAloneMode14a();