]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
I just merged @marshmellow's branch "iclass" and that was a lot of new functionality...
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "usb_cdc.h"
20
21
22 /**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
30 {
31
32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
34
35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
44 SpinDelay(2500);
45
46 LFSetupFPGAForADC(sc.divisor, 1);
47
48 // And a little more time for the tag to fully power up
49 SpinDelay(2000);
50
51 // now modulate the reader field
52 while(*command != '\0' && *command != ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
54 LED_D_OFF();
55 SpinDelayUs(delay_off);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
57
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
59 LED_D_ON();
60 if(*(command++) == '0')
61 SpinDelayUs(period_0);
62 else
63 SpinDelayUs(period_1);
64 }
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
66 LED_D_OFF();
67 SpinDelayUs(delay_off);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
69
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
71
72 // now do the read
73 DoAcquisition_config(false);
74 }
75
76
77
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
81 0011010010100001
82 01111111
83 101010101010101[0]000...
84
85 [5555fe852c5555555555555555fe0000]
86 */
87 void ReadTItag(void)
88 {
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
94 #define FREQLO 123200
95 #define FREQHI 134200
96
97 signed char *dest = (signed char *)BigBuf_get_addr();
98 uint16_t n = BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
101
102 int i, cycles=0, samples=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
107
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
111
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
117
118 // get TI tag data into the buffer
119 AcquireTiType();
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
122
123 for (i=0; i<n-1; i++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest[i]<0) && (dest[i+1]>0) ) {
126 cycles++;
127 // after 16 cycles, measure the frequency
128 if (cycles>15) {
129 cycles=0;
130 samples=i-samples; // number of samples in these 16 cycles
131
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0 = (shift0>>1) | (shift1 << 31);
135 shift1 = (shift1>>1) | (shift2 << 31);
136 shift2 = (shift2>>1) | (shift3 << 31);
137 shift3 >>= 1;
138
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
142 // low frequency represents a 1
143 shift3 |= (1<<31);
144 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
145 // high frequency represents a 0
146 } else {
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3 = shift2 = shift1 = shift0 = 0;
150 }
151 samples = i;
152
153 // for each bit we receive, test if we've detected a valid tag
154
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
160 cycles = 0xF0B; //use this as a flag (ugly but whatever)
161 break;
162 }
163 }
164 }
165 }
166 }
167
168 // if flag is set we have a tag
169 if (cycles!=0xF0B) {
170 DbpString("Info: No valid tag detected.");
171 } else {
172 // put 64 bit data into shift1 and shift0
173 shift0 = (shift0>>24) | (shift1 << 8);
174 shift1 = (shift1>>24) | (shift2 << 8);
175
176 // align 16 bit crc into lower half of shift2
177 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
178
179 // if r/w tag, check ident match
180 if (shift3 & (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
185 } else {
186 DbpString("Info: TI tag ident is valid");
187 }
188 } else {
189 DbpString("Info: TI tag is readonly");
190 }
191
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
195 // calculate CRC
196 uint32_t crc=0;
197
198 crc = update_crc16(crc, (shift0)&0xff);
199 crc = update_crc16(crc, (shift0>>8)&0xff);
200 crc = update_crc16(crc, (shift0>>16)&0xff);
201 crc = update_crc16(crc, (shift0>>24)&0xff);
202 crc = update_crc16(crc, (shift1)&0xff);
203 crc = update_crc16(crc, (shift1>>8)&0xff);
204 crc = update_crc16(crc, (shift1>>16)&0xff);
205 crc = update_crc16(crc, (shift1>>24)&0xff);
206
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
209 if (crc != (shift2&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
211 } else {
212 DbpString("Info: CRC is good");
213 }
214 }
215 }
216
217 void WriteTIbyte(uint8_t b)
218 {
219 int i = 0;
220
221 // modulate 8 bits out to the antenna
222 for (i=0; i<8; i++)
223 {
224 if (b&(1<<i)) {
225 // stop modulating antenna
226 LOW(GPIO_SSC_DOUT);
227 SpinDelayUs(1000);
228 // modulate antenna
229 HIGH(GPIO_SSC_DOUT);
230 SpinDelayUs(1000);
231 } else {
232 // stop modulating antenna
233 LOW(GPIO_SSC_DOUT);
234 SpinDelayUs(300);
235 // modulate antenna
236 HIGH(GPIO_SSC_DOUT);
237 SpinDelayUs(1700);
238 }
239 }
240 }
241
242 void AcquireTiType(void)
243 {
244 int i, j, n;
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
248
249 // clear buffer
250 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
251 memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
252
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
255 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
256
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
259 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
260
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
263
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC->SSC_CMR = 12;
267
268 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
270 AT91C_BASE_SSC->SSC_TCMR = 0;
271 AT91C_BASE_SSC->SSC_TFMR = 0;
272
273 LED_D_ON();
274
275 // modulate antenna
276 HIGH(GPIO_SSC_DOUT);
277
278 // Charge TI tag for 50ms.
279 SpinDelay(50);
280
281 // stop modulating antenna and listen
282 LOW(GPIO_SSC_DOUT);
283
284 LED_D_OFF();
285
286 i = 0;
287 for(;;) {
288 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
289 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
290 i++; if(i >= TIBUFLEN) break;
291 }
292 WDT_HIT();
293 }
294
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
297 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
298
299 char *dest = (char *)BigBuf_get_addr();
300 n = TIBUFLEN*32;
301 // unpack buffer
302 for (i=TIBUFLEN-1; i>=0; i--) {
303 for (j=0; j<32; j++) {
304 if(BigBuf[i] & (1 << j)) {
305 dest[--n] = 1;
306 } else {
307 dest[--n] = -1;
308 }
309 }
310 }
311 }
312
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
317 {
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
319 if(crc == 0) {
320 crc = update_crc16(crc, (idlo)&0xff);
321 crc = update_crc16(crc, (idlo>>8)&0xff);
322 crc = update_crc16(crc, (idlo>>16)&0xff);
323 crc = update_crc16(crc, (idlo>>24)&0xff);
324 crc = update_crc16(crc, (idhi)&0xff);
325 crc = update_crc16(crc, (idhi>>8)&0xff);
326 crc = update_crc16(crc, (idhi>>16)&0xff);
327 crc = update_crc16(crc, (idhi>>24)&0xff);
328 }
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi, (unsigned int) idlo, crc);
331
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
339 LED_A_ON();
340
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
343 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
344
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
354
355 // modulate antenna
356 HIGH(GPIO_SSC_DOUT);
357 SpinDelay(50); // charge time
358
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo )&0xff );
362 WriteTIbyte( (idlo>>8 )&0xff );
363 WriteTIbyte( (idlo>>16)&0xff );
364 WriteTIbyte( (idlo>>24)&0xff );
365 WriteTIbyte( (idhi )&0xff );
366 WriteTIbyte( (idhi>>8 )&0xff );
367 WriteTIbyte( (idhi>>16)&0xff );
368 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc )&0xff ); // crc lo
370 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
373 HIGH(GPIO_SSC_DOUT);
374 SpinDelay(50); // programming time
375
376 LED_A_OFF();
377
378 // get TI tag data into the buffer
379 AcquireTiType();
380
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
382 DbpString("Now use 'lf ti read' to check");
383 }
384
385 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
386 {
387 int i;
388 uint8_t *tab = BigBuf_get_addr();
389
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
392
393 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
394
395 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
396 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
397
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
400
401 i = 0;
402 for(;;) {
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
405 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
406 DbpString("Stopped");
407 return;
408 }
409 WDT_HIT();
410 }
411 if (ledcontrol)
412 LED_D_ON();
413
414 if(tab[i])
415 OPEN_COIL();
416 else
417 SHORT_COIL();
418
419 if (ledcontrol)
420 LED_D_OFF();
421 //wait until SSC_CLK goes LOW
422 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
423 if(BUTTON_PRESS()) {
424 DbpString("Stopped");
425 return;
426 }
427 WDT_HIT();
428 }
429
430 i++;
431 if(i == period) {
432
433 i = 0;
434 if (gap) {
435 SHORT_COIL();
436 SpinDelayUs(gap);
437 }
438 }
439 }
440 }
441
442 #define DEBUG_FRAME_CONTENTS 1
443 void SimulateTagLowFrequencyBidir(int divisor, int t0)
444 {
445 }
446
447 // compose fc/8 fc/10 waveform (FSK2)
448 static void fc(int c, int *n)
449 {
450 uint8_t *dest = BigBuf_get_addr();
451 int idx;
452
453 // for when we want an fc8 pattern every 4 logical bits
454 if(c==0) {
455 dest[((*n)++)]=1;
456 dest[((*n)++)]=1;
457 dest[((*n)++)]=1;
458 dest[((*n)++)]=1;
459 dest[((*n)++)]=0;
460 dest[((*n)++)]=0;
461 dest[((*n)++)]=0;
462 dest[((*n)++)]=0;
463 }
464
465 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
466 if(c==8) {
467 for (idx=0; idx<6; idx++) {
468 dest[((*n)++)]=1;
469 dest[((*n)++)]=1;
470 dest[((*n)++)]=1;
471 dest[((*n)++)]=1;
472 dest[((*n)++)]=0;
473 dest[((*n)++)]=0;
474 dest[((*n)++)]=0;
475 dest[((*n)++)]=0;
476 }
477 }
478
479 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
480 if(c==10) {
481 for (idx=0; idx<5; idx++) {
482 dest[((*n)++)]=1;
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=1;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
490 dest[((*n)++)]=0;
491 dest[((*n)++)]=0;
492 }
493 }
494 }
495 // compose fc/X fc/Y waveform (FSKx)
496 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
497 {
498 uint8_t *dest = BigBuf_get_addr();
499 uint8_t halfFC = fc/2;
500 uint8_t wavesPerClock = clock/fc;
501 uint8_t mod = clock % fc; //modifier
502 uint8_t modAdj = fc/mod; //how often to apply modifier
503 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
504 // loop through clock - step field clock
505 for (uint8_t idx=0; idx < wavesPerClock; idx++){
506 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
507 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
508 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
509 *n += fc;
510 }
511 if (mod>0) (*modCnt)++;
512 if ((mod>0) && modAdjOk){ //fsk2
513 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
514 memset(dest+(*n), 0, fc-halfFC);
515 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
516 *n += fc;
517 }
518 }
519 if (mod>0 && !modAdjOk){ //fsk1
520 memset(dest+(*n), 0, mod-(mod/2));
521 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
522 *n += mod;
523 }
524 }
525
526 // prepare a waveform pattern in the buffer based on the ID given then
527 // simulate a HID tag until the button is pressed
528 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
529 {
530 int n=0, i=0;
531 /*
532 HID tag bitstream format
533 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
534 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
535 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
536 A fc8 is inserted before every 4 bits
537 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
538 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
539 */
540
541 if (hi>0xFFF) {
542 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
543 return;
544 }
545 fc(0,&n);
546 // special start of frame marker containing invalid bit sequences
547 fc(8, &n); fc(8, &n); // invalid
548 fc(8, &n); fc(10, &n); // logical 0
549 fc(10, &n); fc(10, &n); // invalid
550 fc(8, &n); fc(10, &n); // logical 0
551
552 WDT_HIT();
553 // manchester encode bits 43 to 32
554 for (i=11; i>=0; i--) {
555 if ((i%4)==3) fc(0,&n);
556 if ((hi>>i)&1) {
557 fc(10, &n); fc(8, &n); // low-high transition
558 } else {
559 fc(8, &n); fc(10, &n); // high-low transition
560 }
561 }
562
563 WDT_HIT();
564 // manchester encode bits 31 to 0
565 for (i=31; i>=0; i--) {
566 if ((i%4)==3) fc(0,&n);
567 if ((lo>>i)&1) {
568 fc(10, &n); fc(8, &n); // low-high transition
569 } else {
570 fc(8, &n); fc(10, &n); // high-low transition
571 }
572 }
573
574 if (ledcontrol)
575 LED_A_ON();
576 SimulateTagLowFrequency(n, 0, ledcontrol);
577
578 if (ledcontrol)
579 LED_A_OFF();
580 }
581
582 // prepare a waveform pattern in the buffer based on the ID given then
583 // simulate a FSK tag until the button is pressed
584 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
585 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
586 {
587 int ledcontrol=1;
588 int n=0, i=0;
589 uint8_t fcHigh = arg1 >> 8;
590 uint8_t fcLow = arg1 & 0xFF;
591 uint16_t modCnt = 0;
592 uint8_t clk = arg2 & 0xFF;
593 uint8_t invert = (arg2 >> 8) & 1;
594
595 for (i=0; i<size; i++){
596 if (BitStream[i] == invert){
597 fcAll(fcLow, &n, clk, &modCnt);
598 } else {
599 fcAll(fcHigh, &n, clk, &modCnt);
600 }
601 }
602 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
603 /*Dbprintf("DEBUG: First 32:");
604 uint8_t *dest = BigBuf_get_addr();
605 i=0;
606 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
607 i+=16;
608 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
609 */
610 if (ledcontrol)
611 LED_A_ON();
612
613 SimulateTagLowFrequency(n, 0, ledcontrol);
614
615 if (ledcontrol)
616 LED_A_OFF();
617 }
618
619 // compose ask waveform for one bit(ASK)
620 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
621 {
622 uint8_t *dest = BigBuf_get_addr();
623 uint8_t halfClk = clock/2;
624 // c = current bit 1 or 0
625 if (manchester==1){
626 memset(dest+(*n), c, halfClk);
627 memset(dest+(*n) + halfClk, c^1, halfClk);
628 } else {
629 memset(dest+(*n), c, clock);
630 }
631 *n += clock;
632 }
633
634 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
635 {
636 uint8_t *dest = BigBuf_get_addr();
637 uint8_t halfClk = clock/2;
638 if (c){
639 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
640 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
641 } else {
642 memset(dest+(*n), c ^ *phase, clock);
643 *phase ^= 1;
644 }
645
646 }
647
648 // args clock, ask/man or askraw, invert, transmission separator
649 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
650 {
651 int ledcontrol = 1;
652 int n=0, i=0;
653 uint8_t clk = (arg1 >> 8) & 0xFF;
654 uint8_t encoding = arg1 & 0xFF;
655 uint8_t separator = arg2 & 1;
656 uint8_t invert = (arg2 >> 8) & 1;
657
658 if (encoding==2){ //biphase
659 uint8_t phase=0;
660 for (i=0; i<size; i++){
661 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
662 }
663 if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
664 for (i=0; i<size; i++){
665 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
666 }
667 }
668 } else { // ask/manchester || ask/raw
669 for (i=0; i<size; i++){
670 askSimBit(BitStream[i]^invert, &n, clk, encoding);
671 }
672 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
673 for (i=0; i<size; i++){
674 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
675 }
676 }
677 }
678
679 if (separator==1) Dbprintf("sorry but separator option not yet available");
680
681 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
682 //DEBUG
683 //Dbprintf("First 32:");
684 //uint8_t *dest = BigBuf_get_addr();
685 //i=0;
686 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
687 //i+=16;
688 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
689
690 if (ledcontrol)
691 LED_A_ON();
692
693 SimulateTagLowFrequency(n, 0, ledcontrol);
694
695 if (ledcontrol)
696 LED_A_OFF();
697 }
698
699 //carrier can be 2,4 or 8
700 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
701 {
702 uint8_t *dest = BigBuf_get_addr();
703 uint8_t halfWave = waveLen/2;
704 //uint8_t idx;
705 int i = 0;
706 if (phaseChg){
707 // write phase change
708 memset(dest+(*n), *curPhase^1, halfWave);
709 memset(dest+(*n) + halfWave, *curPhase, halfWave);
710 *n += waveLen;
711 *curPhase ^= 1;
712 i += waveLen;
713 }
714 //write each normal clock wave for the clock duration
715 for (; i < clk; i+=waveLen){
716 memset(dest+(*n), *curPhase, halfWave);
717 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
718 *n += waveLen;
719 }
720 }
721
722 // args clock, carrier, invert,
723 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
724 {
725 int ledcontrol=1;
726 int n=0, i=0;
727 uint8_t clk = arg1 >> 8;
728 uint8_t carrier = arg1 & 0xFF;
729 uint8_t invert = arg2 & 0xFF;
730 uint8_t curPhase = 0;
731 for (i=0; i<size; i++){
732 if (BitStream[i] == curPhase){
733 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
734 } else {
735 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
736 }
737 }
738 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
739 //Dbprintf("DEBUG: First 32:");
740 //uint8_t *dest = BigBuf_get_addr();
741 //i=0;
742 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
743 //i+=16;
744 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
745
746 if (ledcontrol)
747 LED_A_ON();
748 SimulateTagLowFrequency(n, 0, ledcontrol);
749
750 if (ledcontrol)
751 LED_A_OFF();
752 }
753
754 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
755 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
756 {
757 uint8_t *dest = BigBuf_get_addr();
758 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
759 size_t size = 0;
760 uint32_t hi2=0, hi=0, lo=0;
761 int idx=0;
762 // Configure to go in 125Khz listen mode
763 LFSetupFPGAForADC(95, true);
764
765 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
766
767 WDT_HIT();
768 if (ledcontrol) LED_A_ON();
769
770 DoAcquisition_default(-1,true);
771 // FSK demodulator
772 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
773 size = 50*128*2; //big enough to catch 2 sequences of largest format
774 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
775
776 if (idx>0 && lo>0 && (size==96 || size==192)){
777 // go over previously decoded manchester data and decode into usable tag ID
778 if (hi2 != 0){ //extra large HID tags 88/192 bits
779 Dbprintf("TAG ID: %x%08x%08x (%d)",
780 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
781 }else { //standard HID tags 44/96 bits
782 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
783 uint8_t bitlen = 0;
784 uint32_t fc = 0;
785 uint32_t cardnum = 0;
786 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
787 uint32_t lo2=0;
788 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
789 uint8_t idx3 = 1;
790 while(lo2 > 1){ //find last bit set to 1 (format len bit)
791 lo2=lo2 >> 1;
792 idx3++;
793 }
794 bitlen = idx3+19;
795 fc =0;
796 cardnum=0;
797 if(bitlen == 26){
798 cardnum = (lo>>1)&0xFFFF;
799 fc = (lo>>17)&0xFF;
800 }
801 if(bitlen == 37){
802 cardnum = (lo>>1)&0x7FFFF;
803 fc = ((hi&0xF)<<12)|(lo>>20);
804 }
805 if(bitlen == 34){
806 cardnum = (lo>>1)&0xFFFF;
807 fc= ((hi&1)<<15)|(lo>>17);
808 }
809 if(bitlen == 35){
810 cardnum = (lo>>1)&0xFFFFF;
811 fc = ((hi&1)<<11)|(lo>>21);
812 }
813 }
814 else { //if bit 38 is not set then 37 bit format is used
815 bitlen= 37;
816 fc =0;
817 cardnum=0;
818 if(bitlen==37){
819 cardnum = (lo>>1)&0x7FFFF;
820 fc = ((hi&0xF)<<12)|(lo>>20);
821 }
822 }
823 //Dbprintf("TAG ID: %x%08x (%d)",
824 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
825 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
826 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
827 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
828 }
829 if (findone){
830 if (ledcontrol) LED_A_OFF();
831 *high = hi;
832 *low = lo;
833 return;
834 }
835 // reset
836 }
837 hi2 = hi = lo = idx = 0;
838 WDT_HIT();
839 }
840 DbpString("Stopped");
841 if (ledcontrol) LED_A_OFF();
842 }
843
844 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
845 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
846 {
847 uint8_t *dest = BigBuf_get_addr();
848 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
849 size_t size;
850 int idx=0;
851 // Configure to go in 125Khz listen mode
852 LFSetupFPGAForADC(95, true);
853
854 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
855
856 WDT_HIT();
857 if (ledcontrol) LED_A_ON();
858
859 DoAcquisition_default(-1,true);
860 // FSK demodulator
861 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
862 size = 50*128*2; //big enough to catch 2 sequences of largest format
863 idx = AWIDdemodFSK(dest, &size);
864
865 if (idx>0 && size==96){
866 // Index map
867 // 0 10 20 30 40 50 60
868 // | | | | | | |
869 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
870 // -----------------------------------------------------------------------------
871 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
872 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
873 // |---26 bit---| |-----117----||-------------142-------------|
874 // b = format bit len, o = odd parity of last 3 bits
875 // f = facility code, c = card number
876 // w = wiegand parity
877 // (26 bit format shown)
878
879 //get raw ID before removing parities
880 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
881 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
882 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
883
884 size = removeParity(dest, idx+8, 4, 1, 88);
885 // ok valid card found!
886
887 // Index map
888 // 0 10 20 30 40 50 60
889 // | | | | | | |
890 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
891 // -----------------------------------------------------------------------------
892 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
893 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
894 // |26 bit| |-117--| |-----142------|
895 // b = format bit len, o = odd parity of last 3 bits
896 // f = facility code, c = card number
897 // w = wiegand parity
898 // (26 bit format shown)
899
900 uint32_t fc = 0;
901 uint32_t cardnum = 0;
902 uint32_t code1 = 0;
903 uint32_t code2 = 0;
904 uint8_t fmtLen = bytebits_to_byte(dest,8);
905 if (fmtLen==26){
906 fc = bytebits_to_byte(dest+9, 8);
907 cardnum = bytebits_to_byte(dest+17, 16);
908 code1 = bytebits_to_byte(dest+8,fmtLen);
909 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
910 } else {
911 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
912 if (fmtLen>32){
913 code1 = bytebits_to_byte(dest+8,fmtLen-32);
914 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
915 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
916 } else{
917 code1 = bytebits_to_byte(dest+8,fmtLen);
918 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
919 }
920 }
921 if (findone){
922 if (ledcontrol) LED_A_OFF();
923 return;
924 }
925 // reset
926 }
927 idx = 0;
928 WDT_HIT();
929 }
930 DbpString("Stopped");
931 if (ledcontrol) LED_A_OFF();
932 }
933
934 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
935 {
936 uint8_t *dest = BigBuf_get_addr();
937
938 size_t size=0, idx=0;
939 int clk=0, invert=0, errCnt=0, maxErr=20;
940 uint32_t hi=0;
941 uint64_t lo=0;
942 // Configure to go in 125Khz listen mode
943 LFSetupFPGAForADC(95, true);
944
945 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
946
947 WDT_HIT();
948 if (ledcontrol) LED_A_ON();
949
950 DoAcquisition_default(-1,true);
951 size = BigBuf_max_traceLen();
952 //askdemod and manchester decode
953 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
954 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
955 WDT_HIT();
956
957 if (errCnt<0) continue;
958
959 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
960 if (errCnt){
961 if (size>64){
962 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
963 hi,
964 (uint32_t)(lo>>32),
965 (uint32_t)lo,
966 (uint32_t)(lo&0xFFFF),
967 (uint32_t)((lo>>16LL) & 0xFF),
968 (uint32_t)(lo & 0xFFFFFF));
969 } else {
970 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
971 (uint32_t)(lo>>32),
972 (uint32_t)lo,
973 (uint32_t)(lo&0xFFFF),
974 (uint32_t)((lo>>16LL) & 0xFF),
975 (uint32_t)(lo & 0xFFFFFF));
976 }
977
978 if (findone){
979 if (ledcontrol) LED_A_OFF();
980 *high=lo>>32;
981 *low=lo & 0xFFFFFFFF;
982 return;
983 }
984 }
985 WDT_HIT();
986 hi = lo = size = idx = 0;
987 clk = invert = errCnt = 0;
988 }
989 DbpString("Stopped");
990 if (ledcontrol) LED_A_OFF();
991 }
992
993 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
994 {
995 uint8_t *dest = BigBuf_get_addr();
996 int idx=0;
997 uint32_t code=0, code2=0;
998 uint8_t version=0;
999 uint8_t facilitycode=0;
1000 uint16_t number=0;
1001 uint8_t crc = 0;
1002 uint16_t calccrc = 0;
1003 // Configure to go in 125Khz listen mode
1004 LFSetupFPGAForADC(95, true);
1005
1006 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1007 WDT_HIT();
1008 if (ledcontrol) LED_A_ON();
1009 DoAcquisition_default(-1,true);
1010 //fskdemod and get start index
1011 WDT_HIT();
1012 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1013 if (idx<0) continue;
1014 //valid tag found
1015
1016 //Index map
1017 //0 10 20 30 40 50 60
1018 //| | | | | | |
1019 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1020 //-----------------------------------------------------------------------------
1021 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1022 //
1023 //Checksum:
1024 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1025 //preamble F0 E0 01 03 B6 75
1026 // How to calc checksum,
1027 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1028 // F0 + E0 + 01 + 03 + B6 = 28A
1029 // 28A & FF = 8A
1030 // FF - 8A = 75
1031 // Checksum: 0x75
1032 //XSF(version)facility:codeone+codetwo
1033 //Handle the data
1034 if(findone){ //only print binary if we are doing one
1035 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1036 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1037 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1038 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1039 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1040 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1041 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1042 }
1043 code = bytebits_to_byte(dest+idx,32);
1044 code2 = bytebits_to_byte(dest+idx+32,32);
1045 version = bytebits_to_byte(dest+idx+27,8); //14,4
1046 facilitycode = bytebits_to_byte(dest+idx+18,8);
1047 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1048
1049 crc = bytebits_to_byte(dest+idx+54,8);
1050 for (uint8_t i=1; i<6; ++i)
1051 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1052 calccrc &= 0xff;
1053 calccrc = 0xff - calccrc;
1054
1055 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1056
1057 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
1058 // if we're only looking for one tag
1059 if (findone){
1060 if (ledcontrol) LED_A_OFF();
1061 //LED_A_OFF();
1062 *high=code;
1063 *low=code2;
1064 return;
1065 }
1066 code=code2=0;
1067 version=facilitycode=0;
1068 number=0;
1069 idx=0;
1070
1071 WDT_HIT();
1072 }
1073 DbpString("Stopped");
1074 if (ledcontrol) LED_A_OFF();
1075 }
1076
1077 /*------------------------------
1078 * T5555/T5557/T5567 routines
1079 *------------------------------
1080 */
1081
1082 /* T55x7 configuration register definitions */
1083 #define T55x7_POR_DELAY 0x00000001
1084 #define T55x7_ST_TERMINATOR 0x00000008
1085 #define T55x7_PWD 0x00000010
1086 #define T55x7_MAXBLOCK_SHIFT 5
1087 #define T55x7_AOR 0x00000200
1088 #define T55x7_PSKCF_RF_2 0
1089 #define T55x7_PSKCF_RF_4 0x00000400
1090 #define T55x7_PSKCF_RF_8 0x00000800
1091 #define T55x7_MODULATION_DIRECT 0
1092 #define T55x7_MODULATION_PSK1 0x00001000
1093 #define T55x7_MODULATION_PSK2 0x00002000
1094 #define T55x7_MODULATION_PSK3 0x00003000
1095 #define T55x7_MODULATION_FSK1 0x00004000
1096 #define T55x7_MODULATION_FSK2 0x00005000
1097 #define T55x7_MODULATION_FSK1a 0x00006000
1098 #define T55x7_MODULATION_FSK2a 0x00007000
1099 #define T55x7_MODULATION_MANCHESTER 0x00008000
1100 #define T55x7_MODULATION_BIPHASE 0x00010000
1101 //#define T55x7_MODULATION_BIPHASE57 0x00011000
1102 #define T55x7_BITRATE_RF_8 0
1103 #define T55x7_BITRATE_RF_16 0x00040000
1104 #define T55x7_BITRATE_RF_32 0x00080000
1105 #define T55x7_BITRATE_RF_40 0x000C0000
1106 #define T55x7_BITRATE_RF_50 0x00100000
1107 #define T55x7_BITRATE_RF_64 0x00140000
1108 #define T55x7_BITRATE_RF_100 0x00180000
1109 #define T55x7_BITRATE_RF_128 0x001C0000
1110
1111 /* T5555 (Q5) configuration register definitions */
1112 #define T5555_ST_TERMINATOR 0x00000001
1113 #define T5555_MAXBLOCK_SHIFT 0x00000001
1114 #define T5555_MODULATION_MANCHESTER 0
1115 #define T5555_MODULATION_PSK1 0x00000010
1116 #define T5555_MODULATION_PSK2 0x00000020
1117 #define T5555_MODULATION_PSK3 0x00000030
1118 #define T5555_MODULATION_FSK1 0x00000040
1119 #define T5555_MODULATION_FSK2 0x00000050
1120 #define T5555_MODULATION_BIPHASE 0x00000060
1121 #define T5555_MODULATION_DIRECT 0x00000070
1122 #define T5555_INVERT_OUTPUT 0x00000080
1123 #define T5555_PSK_RF_2 0
1124 #define T5555_PSK_RF_4 0x00000100
1125 #define T5555_PSK_RF_8 0x00000200
1126 #define T5555_USE_PWD 0x00000400
1127 #define T5555_USE_AOR 0x00000800
1128 #define T5555_BITRATE_SHIFT 12
1129 #define T5555_FAST_WRITE 0x00004000
1130 #define T5555_PAGE_SELECT 0x00008000
1131
1132 /*
1133 * Relevant times in microsecond
1134 * To compensate antenna falling times shorten the write times
1135 * and enlarge the gap ones.
1136 */
1137
1138 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1139 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1140 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1141 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1142
1143 // VALUES TAKEN FROM EM4x function: SendForward
1144 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1145 // WRITE_GAP = 128; (16*8)
1146 // WRITE_1 = 256 32*8; (32*8)
1147
1148 // These timings work for 4469/4269/4305 (with the 55*8 above)
1149 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1150
1151 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1152 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1153 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1154 // T0 = TIMER_CLOCK1 / 125000 = 192
1155 // 1 Cycle = 8 microseconds(us)
1156
1157 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1158
1159 // Write one bit to card
1160 void T55xxWriteBit(int bit)
1161 {
1162 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1163 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1164 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1165 if (!bit)
1166 SpinDelayUs(WRITE_0);
1167 else
1168 SpinDelayUs(WRITE_1);
1169 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1170 SpinDelayUs(WRITE_GAP);
1171 }
1172
1173 // Write one card block in page 0, no lock
1174 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1175 {
1176 uint32_t i = 0;
1177
1178 // Set up FPGA, 125kHz
1179 // Wait for config.. (192+8190xPOW)x8 == 67ms
1180 LFSetupFPGAForADC(0, true);
1181
1182 // Now start writting
1183 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1184 SpinDelayUs(START_GAP);
1185
1186 // Opcode
1187 T55xxWriteBit(1);
1188 T55xxWriteBit(0); //Page 0
1189 if (PwdMode == 1){
1190 // Pwd
1191 for (i = 0x80000000; i != 0; i >>= 1)
1192 T55xxWriteBit(Pwd & i);
1193 }
1194 // Lock bit
1195 T55xxWriteBit(0);
1196
1197 // Data
1198 for (i = 0x80000000; i != 0; i >>= 1)
1199 T55xxWriteBit(Data & i);
1200
1201 // Block
1202 for (i = 0x04; i != 0; i >>= 1)
1203 T55xxWriteBit(Block & i);
1204
1205 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1206 // so wait a little more)
1207 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1208 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1209 SpinDelay(20);
1210 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1211 }
1212
1213 void TurnReadLFOn(){
1214 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1215 // Give it a bit of time for the resonant antenna to settle.
1216 SpinDelayUs(300);
1217 }
1218
1219
1220 // Read one card block in page 0
1221 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1222 {
1223 uint32_t i = 0;
1224 uint8_t *dest = BigBuf_get_addr();
1225 uint16_t bufferlength = BigBuf_max_traceLen();
1226 if ( bufferlength > T55xx_SAMPLES_SIZE )
1227 bufferlength = T55xx_SAMPLES_SIZE;
1228
1229 // Clear destination buffer before sending the command
1230 memset(dest, 0x80, bufferlength);
1231
1232 // Set up FPGA, 125kHz
1233 // Wait for config.. (192+8190xPOW)x8 == 67ms
1234 //LFSetupFPGAForADC(0, true);
1235 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1236 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1237 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1238
1239 // Connect the A/D to the peak-detected low-frequency path.
1240 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1241
1242 // Now set up the SSC to get the ADC samples that are now streaming at us.
1243 FpgaSetupSsc();
1244
1245 // Give it a bit of time for the resonant antenna to settle.
1246 //SpinDelayUs(8*200); //192FC
1247 SpinDelay(50);
1248
1249 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1250 SpinDelayUs(START_GAP);
1251
1252 // Opcode
1253 T55xxWriteBit(1);
1254 T55xxWriteBit(0); //Page 0
1255 if (PwdMode == 1){
1256 // Pwd
1257 for (i = 0x80000000; i != 0; i >>= 1)
1258 T55xxWriteBit(Pwd & i);
1259 }
1260 // Lock bit
1261 T55xxWriteBit(0);
1262 // Block
1263 for (i = 0x04; i != 0; i >>= 1)
1264 T55xxWriteBit(Block & i);
1265
1266 // Turn field on to read the response
1267 TurnReadLFOn();
1268 // Now do the acquisition
1269 i = 0;
1270 for(;;) {
1271 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1272 AT91C_BASE_SSC->SSC_THR = 0x43;
1273 LED_D_ON();
1274 }
1275 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1276 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1277 i++;
1278 LED_D_OFF();
1279 if (i >= bufferlength) break;
1280 }
1281 }
1282
1283 cmd_send(CMD_ACK,0,0,0,0,0);
1284 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1285 LED_D_OFF();
1286 }
1287
1288 // Read card traceability data (page 1)
1289 void T55xxReadTrace(void){
1290
1291 uint32_t i = 0;
1292 uint8_t *dest = BigBuf_get_addr();
1293 uint16_t bufferlength = BigBuf_max_traceLen();
1294 if ( bufferlength > T55xx_SAMPLES_SIZE )
1295 bufferlength= T55xx_SAMPLES_SIZE;
1296
1297 // Clear destination buffer before sending the command
1298 memset(dest, 0x80, bufferlength);
1299
1300 LFSetupFPGAForADC(0, true);
1301 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1302 SpinDelayUs(START_GAP);
1303
1304 // Opcode
1305 T55xxWriteBit(1);
1306 T55xxWriteBit(1); //Page 1
1307
1308 // Turn field on to read the response
1309 TurnReadLFOn();
1310
1311 // Now do the acquisition
1312 for(;;) {
1313 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1314 AT91C_BASE_SSC->SSC_THR = 0x43;
1315 LED_D_ON();
1316 }
1317 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1318 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1319 i++;
1320 LED_D_OFF();
1321
1322 if (i >= bufferlength) break;
1323 }
1324 }
1325
1326 cmd_send(CMD_ACK,0,0,0,0,0);
1327 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1328 LED_D_OFF();
1329 }
1330
1331 /*-------------- Cloning routines -----------*/
1332 // Copy HID id to card and setup block 0 config
1333 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1334 {
1335 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1336 int last_block = 0;
1337
1338 if (longFMT){
1339 // Ensure no more than 84 bits supplied
1340 if (hi2>0xFFFFF) {
1341 DbpString("Tags can only have 84 bits.");
1342 return;
1343 }
1344 // Build the 6 data blocks for supplied 84bit ID
1345 last_block = 6;
1346 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1347 for (int i=0;i<4;i++) {
1348 if (hi2 & (1<<(19-i)))
1349 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1350 else
1351 data1 |= (1<<((3-i)*2)); // 0 -> 01
1352 }
1353
1354 data2 = 0;
1355 for (int i=0;i<16;i++) {
1356 if (hi2 & (1<<(15-i)))
1357 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1358 else
1359 data2 |= (1<<((15-i)*2)); // 0 -> 01
1360 }
1361
1362 data3 = 0;
1363 for (int i=0;i<16;i++) {
1364 if (hi & (1<<(31-i)))
1365 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1366 else
1367 data3 |= (1<<((15-i)*2)); // 0 -> 01
1368 }
1369
1370 data4 = 0;
1371 for (int i=0;i<16;i++) {
1372 if (hi & (1<<(15-i)))
1373 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1374 else
1375 data4 |= (1<<((15-i)*2)); // 0 -> 01
1376 }
1377
1378 data5 = 0;
1379 for (int i=0;i<16;i++) {
1380 if (lo & (1<<(31-i)))
1381 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1382 else
1383 data5 |= (1<<((15-i)*2)); // 0 -> 01
1384 }
1385
1386 data6 = 0;
1387 for (int i=0;i<16;i++) {
1388 if (lo & (1<<(15-i)))
1389 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1390 else
1391 data6 |= (1<<((15-i)*2)); // 0 -> 01
1392 }
1393 }
1394 else {
1395 // Ensure no more than 44 bits supplied
1396 if (hi>0xFFF) {
1397 DbpString("Tags can only have 44 bits.");
1398 return;
1399 }
1400
1401 // Build the 3 data blocks for supplied 44bit ID
1402 last_block = 3;
1403
1404 data1 = 0x1D000000; // load preamble
1405
1406 for (int i=0;i<12;i++) {
1407 if (hi & (1<<(11-i)))
1408 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1409 else
1410 data1 |= (1<<((11-i)*2)); // 0 -> 01
1411 }
1412
1413 data2 = 0;
1414 for (int i=0;i<16;i++) {
1415 if (lo & (1<<(31-i)))
1416 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1417 else
1418 data2 |= (1<<((15-i)*2)); // 0 -> 01
1419 }
1420
1421 data3 = 0;
1422 for (int i=0;i<16;i++) {
1423 if (lo & (1<<(15-i)))
1424 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1425 else
1426 data3 |= (1<<((15-i)*2)); // 0 -> 01
1427 }
1428 }
1429
1430 LED_D_ON();
1431 // Program the data blocks for supplied ID
1432 // and the block 0 for HID format
1433 T55xxWriteBlock(data1,1,0,0);
1434 T55xxWriteBlock(data2,2,0,0);
1435 T55xxWriteBlock(data3,3,0,0);
1436
1437 if (longFMT) { // if long format there are 6 blocks
1438 T55xxWriteBlock(data4,4,0,0);
1439 T55xxWriteBlock(data5,5,0,0);
1440 T55xxWriteBlock(data6,6,0,0);
1441 }
1442
1443 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1444 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1445 T55x7_MODULATION_FSK2a |
1446 last_block << T55x7_MAXBLOCK_SHIFT,
1447 0,0,0);
1448
1449 LED_D_OFF();
1450
1451 DbpString("DONE!");
1452 }
1453
1454 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1455 {
1456 int data1=0, data2=0; //up to six blocks for long format
1457
1458 data1 = hi; // load preamble
1459 data2 = lo;
1460
1461 LED_D_ON();
1462 // Program the data blocks for supplied ID
1463 // and the block 0 for HID format
1464 T55xxWriteBlock(data1,1,0,0);
1465 T55xxWriteBlock(data2,2,0,0);
1466
1467 //Config Block
1468 T55xxWriteBlock(0x00147040,0,0,0);
1469 LED_D_OFF();
1470
1471 DbpString("DONE!");
1472 }
1473
1474 // Define 9bit header for EM410x tags
1475 #define EM410X_HEADER 0x1FF
1476 #define EM410X_ID_LENGTH 40
1477
1478 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1479 {
1480 int i, id_bit;
1481 uint64_t id = EM410X_HEADER;
1482 uint64_t rev_id = 0; // reversed ID
1483 int c_parity[4]; // column parity
1484 int r_parity = 0; // row parity
1485 uint32_t clock = 0;
1486
1487 // Reverse ID bits given as parameter (for simpler operations)
1488 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1489 if (i < 32) {
1490 rev_id = (rev_id << 1) | (id_lo & 1);
1491 id_lo >>= 1;
1492 } else {
1493 rev_id = (rev_id << 1) | (id_hi & 1);
1494 id_hi >>= 1;
1495 }
1496 }
1497
1498 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1499 id_bit = rev_id & 1;
1500
1501 if (i % 4 == 0) {
1502 // Don't write row parity bit at start of parsing
1503 if (i)
1504 id = (id << 1) | r_parity;
1505 // Start counting parity for new row
1506 r_parity = id_bit;
1507 } else {
1508 // Count row parity
1509 r_parity ^= id_bit;
1510 }
1511
1512 // First elements in column?
1513 if (i < 4)
1514 // Fill out first elements
1515 c_parity[i] = id_bit;
1516 else
1517 // Count column parity
1518 c_parity[i % 4] ^= id_bit;
1519
1520 // Insert ID bit
1521 id = (id << 1) | id_bit;
1522 rev_id >>= 1;
1523 }
1524
1525 // Insert parity bit of last row
1526 id = (id << 1) | r_parity;
1527
1528 // Fill out column parity at the end of tag
1529 for (i = 0; i < 4; ++i)
1530 id = (id << 1) | c_parity[i];
1531
1532 // Add stop bit
1533 id <<= 1;
1534
1535 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1536 LED_D_ON();
1537
1538 // Write EM410x ID
1539 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1540 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1541
1542 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1543 if (card) {
1544 // Clock rate is stored in bits 8-15 of the card value
1545 clock = (card & 0xFF00) >> 8;
1546 Dbprintf("Clock rate: %d", clock);
1547 switch (clock)
1548 {
1549 case 32:
1550 clock = T55x7_BITRATE_RF_32;
1551 break;
1552 case 16:
1553 clock = T55x7_BITRATE_RF_16;
1554 break;
1555 case 0:
1556 // A value of 0 is assumed to be 64 for backwards-compatibility
1557 // Fall through...
1558 case 64:
1559 clock = T55x7_BITRATE_RF_64;
1560 break;
1561 default:
1562 Dbprintf("Invalid clock rate: %d", clock);
1563 return;
1564 }
1565
1566 // Writing configuration for T55x7 tag
1567 T55xxWriteBlock(clock |
1568 T55x7_MODULATION_MANCHESTER |
1569 2 << T55x7_MAXBLOCK_SHIFT,
1570 0, 0, 0);
1571 }
1572 else
1573 // Writing configuration for T5555(Q5) tag
1574 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1575 T5555_MODULATION_MANCHESTER |
1576 2 << T5555_MAXBLOCK_SHIFT,
1577 0, 0, 0);
1578
1579 LED_D_OFF();
1580 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1581 (uint32_t)(id >> 32), (uint32_t)id);
1582 }
1583
1584 // Clone Indala 64-bit tag by UID to T55x7
1585 void CopyIndala64toT55x7(int hi, int lo)
1586 {
1587
1588 //Program the 2 data blocks for supplied 64bit UID
1589 // and the block 0 for Indala64 format
1590 T55xxWriteBlock(hi,1,0,0);
1591 T55xxWriteBlock(lo,2,0,0);
1592 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1593 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1594 T55x7_MODULATION_PSK1 |
1595 2 << T55x7_MAXBLOCK_SHIFT,
1596 0, 0, 0);
1597 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1598 // T5567WriteBlock(0x603E1042,0);
1599
1600 DbpString("DONE!");
1601
1602 }
1603
1604 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1605 {
1606
1607 //Program the 7 data blocks for supplied 224bit UID
1608 // and the block 0 for Indala224 format
1609 T55xxWriteBlock(uid1,1,0,0);
1610 T55xxWriteBlock(uid2,2,0,0);
1611 T55xxWriteBlock(uid3,3,0,0);
1612 T55xxWriteBlock(uid4,4,0,0);
1613 T55xxWriteBlock(uid5,5,0,0);
1614 T55xxWriteBlock(uid6,6,0,0);
1615 T55xxWriteBlock(uid7,7,0,0);
1616 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1617 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1618 T55x7_MODULATION_PSK1 |
1619 7 << T55x7_MAXBLOCK_SHIFT,
1620 0,0,0);
1621 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1622 // T5567WriteBlock(0x603E10E2,0);
1623
1624 DbpString("DONE!");
1625
1626 }
1627
1628
1629 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1630 #define max(x,y) ( x<y ? y:x)
1631
1632 int DemodPCF7931(uint8_t **outBlocks) {
1633
1634 uint8_t bits[256] = {0x00};
1635 uint8_t blocks[8][16];
1636 uint8_t *dest = BigBuf_get_addr();
1637
1638 int GraphTraceLen = BigBuf_max_traceLen();
1639 if ( GraphTraceLen > 18000 )
1640 GraphTraceLen = 18000;
1641
1642
1643 int i, j, lastval, bitidx, half_switch;
1644 int clock = 64;
1645 int tolerance = clock / 8;
1646 int pmc, block_done;
1647 int lc, warnings = 0;
1648 int num_blocks = 0;
1649 int lmin=128, lmax=128;
1650 uint8_t dir;
1651
1652 LFSetupFPGAForADC(95, true);
1653 DoAcquisition_default(0, true);
1654
1655 lmin = 64;
1656 lmax = 192;
1657
1658 i = 2;
1659
1660 /* Find first local max/min */
1661 if(dest[1] > dest[0]) {
1662 while(i < GraphTraceLen) {
1663 if( !(dest[i] > dest[i-1]) && dest[i] > lmax)
1664 break;
1665 i++;
1666 }
1667 dir = 0;
1668 }
1669 else {
1670 while(i < GraphTraceLen) {
1671 if( !(dest[i] < dest[i-1]) && dest[i] < lmin)
1672 break;
1673 i++;
1674 }
1675 dir = 1;
1676 }
1677
1678 lastval = i++;
1679 half_switch = 0;
1680 pmc = 0;
1681 block_done = 0;
1682
1683 for (bitidx = 0; i < GraphTraceLen; i++)
1684 {
1685 if ( (dest[i-1] > dest[i] && dir == 1 && dest[i] > lmax) || (dest[i-1] < dest[i] && dir == 0 && dest[i] < lmin))
1686 {
1687 lc = i - lastval;
1688 lastval = i;
1689
1690 // Switch depending on lc length:
1691 // Tolerance is 1/8 of clock rate (arbitrary)
1692 if (abs(lc-clock/4) < tolerance) {
1693 // 16T0
1694 if((i - pmc) == lc) { /* 16T0 was previous one */
1695 /* It's a PMC ! */
1696 i += (128+127+16+32+33+16)-1;
1697 lastval = i;
1698 pmc = 0;
1699 block_done = 1;
1700 }
1701 else {
1702 pmc = i;
1703 }
1704 } else if (abs(lc-clock/2) < tolerance) {
1705 // 32TO
1706 if((i - pmc) == lc) { /* 16T0 was previous one */
1707 /* It's a PMC ! */
1708 i += (128+127+16+32+33)-1;
1709 lastval = i;
1710 pmc = 0;
1711 block_done = 1;
1712 }
1713 else if(half_switch == 1) {
1714 bits[bitidx++] = 0;
1715 half_switch = 0;
1716 }
1717 else
1718 half_switch++;
1719 } else if (abs(lc-clock) < tolerance) {
1720 // 64TO
1721 bits[bitidx++] = 1;
1722 } else {
1723 // Error
1724 warnings++;
1725 if (warnings > 10)
1726 {
1727 Dbprintf("Error: too many detection errors, aborting.");
1728 return 0;
1729 }
1730 }
1731
1732 if(block_done == 1) {
1733 if(bitidx == 128) {
1734 for(j=0; j<16; j++) {
1735 blocks[num_blocks][j] = 128*bits[j*8+7]+
1736 64*bits[j*8+6]+
1737 32*bits[j*8+5]+
1738 16*bits[j*8+4]+
1739 8*bits[j*8+3]+
1740 4*bits[j*8+2]+
1741 2*bits[j*8+1]+
1742 bits[j*8];
1743
1744 }
1745 num_blocks++;
1746 }
1747 bitidx = 0;
1748 block_done = 0;
1749 half_switch = 0;
1750 }
1751 if(i < GraphTraceLen)
1752 dir =(dest[i-1] > dest[i]) ? 0 : 1;
1753 }
1754 if(bitidx==255)
1755 bitidx=0;
1756 warnings = 0;
1757 if(num_blocks == 4) break;
1758 }
1759 memcpy(outBlocks, blocks, 16*num_blocks);
1760 return num_blocks;
1761 }
1762
1763 int IsBlock0PCF7931(uint8_t *Block) {
1764 // Assume RFU means 0 :)
1765 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1766 return 1;
1767 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1768 return 1;
1769 return 0;
1770 }
1771
1772 int IsBlock1PCF7931(uint8_t *Block) {
1773 // Assume RFU means 0 :)
1774 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1775 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1776 return 1;
1777
1778 return 0;
1779 }
1780
1781 #define ALLOC 16
1782
1783 void ReadPCF7931() {
1784 uint8_t Blocks[8][17];
1785 uint8_t tmpBlocks[4][16];
1786 int i, j, ind, ind2, n;
1787 int num_blocks = 0;
1788 int max_blocks = 8;
1789 int ident = 0;
1790 int error = 0;
1791 int tries = 0;
1792
1793 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1794
1795 do {
1796 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1797 n = DemodPCF7931((uint8_t**)tmpBlocks);
1798 if(!n)
1799 error++;
1800 if(error==10 && num_blocks == 0) {
1801 Dbprintf("Error, no tag or bad tag");
1802 return;
1803 }
1804 else if (tries==20 || error==10) {
1805 Dbprintf("Error reading the tag");
1806 Dbprintf("Here is the partial content");
1807 goto end;
1808 }
1809
1810 for(i=0; i<n; i++)
1811 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1812 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1813 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1814 if(!ident) {
1815 for(i=0; i<n; i++) {
1816 if(IsBlock0PCF7931(tmpBlocks[i])) {
1817 // Found block 0 ?
1818 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1819 // Found block 1!
1820 // \o/
1821 ident = 1;
1822 memcpy(Blocks[0], tmpBlocks[i], 16);
1823 Blocks[0][ALLOC] = 1;
1824 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1825 Blocks[1][ALLOC] = 1;
1826 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1827 // Debug print
1828 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1829 num_blocks = 2;
1830 // Handle following blocks
1831 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1832 if(j==n) j=0;
1833 if(j==i) break;
1834 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1835 Blocks[ind2][ALLOC] = 1;
1836 }
1837 break;
1838 }
1839 }
1840 }
1841 }
1842 else {
1843 for(i=0; i<n; i++) { // Look for identical block in known blocks
1844 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1845 for(j=0; j<max_blocks; j++) {
1846 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1847 // Found an identical block
1848 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1849 if(ind2 < 0)
1850 ind2 = max_blocks;
1851 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1852 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1853 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1854 Blocks[ind2][ALLOC] = 1;
1855 num_blocks++;
1856 if(num_blocks == max_blocks) goto end;
1857 }
1858 }
1859 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1860 if(ind2 > max_blocks)
1861 ind2 = 0;
1862 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1863 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1864 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1865 Blocks[ind2][ALLOC] = 1;
1866 num_blocks++;
1867 if(num_blocks == max_blocks) goto end;
1868 }
1869 }
1870 }
1871 }
1872 }
1873 }
1874 }
1875 tries++;
1876 if (BUTTON_PRESS()) return;
1877 } while (num_blocks != max_blocks);
1878 end:
1879 Dbprintf("-----------------------------------------");
1880 Dbprintf("Memory content:");
1881 Dbprintf("-----------------------------------------");
1882 for(i=0; i<max_blocks; i++) {
1883 if(Blocks[i][ALLOC]==1)
1884 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1885 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1886 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1887 else
1888 Dbprintf("<missing block %d>", i);
1889 }
1890 Dbprintf("-----------------------------------------");
1891
1892 return ;
1893 }
1894
1895
1896 //-----------------------------------
1897 // EM4469 / EM4305 routines
1898 //-----------------------------------
1899 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1900 #define FWD_CMD_WRITE 0xA
1901 #define FWD_CMD_READ 0x9
1902 #define FWD_CMD_DISABLE 0x5
1903
1904
1905 uint8_t forwardLink_data[64]; //array of forwarded bits
1906 uint8_t * forward_ptr; //ptr for forward message preparation
1907 uint8_t fwd_bit_sz; //forwardlink bit counter
1908 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1909
1910 //====================================================================
1911 // prepares command bits
1912 // see EM4469 spec
1913 //====================================================================
1914 //--------------------------------------------------------------------
1915 uint8_t Prepare_Cmd( uint8_t cmd ) {
1916 //--------------------------------------------------------------------
1917
1918 *forward_ptr++ = 0; //start bit
1919 *forward_ptr++ = 0; //second pause for 4050 code
1920
1921 *forward_ptr++ = cmd;
1922 cmd >>= 1;
1923 *forward_ptr++ = cmd;
1924 cmd >>= 1;
1925 *forward_ptr++ = cmd;
1926 cmd >>= 1;
1927 *forward_ptr++ = cmd;
1928
1929 return 6; //return number of emited bits
1930 }
1931
1932 //====================================================================
1933 // prepares address bits
1934 // see EM4469 spec
1935 //====================================================================
1936
1937 //--------------------------------------------------------------------
1938 uint8_t Prepare_Addr( uint8_t addr ) {
1939 //--------------------------------------------------------------------
1940
1941 register uint8_t line_parity;
1942
1943 uint8_t i;
1944 line_parity = 0;
1945 for(i=0;i<6;i++) {
1946 *forward_ptr++ = addr;
1947 line_parity ^= addr;
1948 addr >>= 1;
1949 }
1950
1951 *forward_ptr++ = (line_parity & 1);
1952
1953 return 7; //return number of emited bits
1954 }
1955
1956 //====================================================================
1957 // prepares data bits intreleaved with parity bits
1958 // see EM4469 spec
1959 //====================================================================
1960
1961 //--------------------------------------------------------------------
1962 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1963 //--------------------------------------------------------------------
1964
1965 register uint8_t line_parity;
1966 register uint8_t column_parity;
1967 register uint8_t i, j;
1968 register uint16_t data;
1969
1970 data = data_low;
1971 column_parity = 0;
1972
1973 for(i=0; i<4; i++) {
1974 line_parity = 0;
1975 for(j=0; j<8; j++) {
1976 line_parity ^= data;
1977 column_parity ^= (data & 1) << j;
1978 *forward_ptr++ = data;
1979 data >>= 1;
1980 }
1981 *forward_ptr++ = line_parity;
1982 if(i == 1)
1983 data = data_hi;
1984 }
1985
1986 for(j=0; j<8; j++) {
1987 *forward_ptr++ = column_parity;
1988 column_parity >>= 1;
1989 }
1990 *forward_ptr = 0;
1991
1992 return 45; //return number of emited bits
1993 }
1994
1995 //====================================================================
1996 // Forward Link send function
1997 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1998 // fwd_bit_count set with number of bits to be sent
1999 //====================================================================
2000 void SendForward(uint8_t fwd_bit_count) {
2001
2002 fwd_write_ptr = forwardLink_data;
2003 fwd_bit_sz = fwd_bit_count;
2004
2005 LED_D_ON();
2006
2007 //Field on
2008 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
2009 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2010 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2011
2012 // Give it a bit of time for the resonant antenna to settle.
2013 // And for the tag to fully power up
2014 SpinDelay(150);
2015
2016 // force 1st mod pulse (start gap must be longer for 4305)
2017 fwd_bit_sz--; //prepare next bit modulation
2018 fwd_write_ptr++;
2019 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2020 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
2021 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2022 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
2023 SpinDelayUs(16*8); //16 cycles on (8us each)
2024
2025 // now start writting
2026 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
2027 if(((*fwd_write_ptr++) & 1) == 1)
2028 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
2029 else {
2030 //These timings work for 4469/4269/4305 (with the 55*8 above)
2031 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2032 SpinDelayUs(23*8); //16-4 cycles off (8us each)
2033 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2034 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
2035 SpinDelayUs(9*8); //16 cycles on (8us each)
2036 }
2037 }
2038 }
2039
2040 void EM4xLogin(uint32_t Password) {
2041
2042 uint8_t fwd_bit_count;
2043
2044 forward_ptr = forwardLink_data;
2045 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
2046 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
2047
2048 SendForward(fwd_bit_count);
2049
2050 //Wait for command to complete
2051 SpinDelay(20);
2052
2053 }
2054
2055 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2056
2057 uint8_t *dest = BigBuf_get_addr();
2058 uint16_t bufferlength = BigBuf_max_traceLen();
2059 uint32_t i = 0;
2060
2061 // Clear destination buffer before sending the command 0x80 = average.
2062 memset(dest, 0x80, bufferlength);
2063
2064 uint8_t fwd_bit_count;
2065
2066 //If password mode do login
2067 if (PwdMode == 1) EM4xLogin(Pwd);
2068
2069 forward_ptr = forwardLink_data;
2070 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
2071 fwd_bit_count += Prepare_Addr( Address );
2072
2073 // Connect the A/D to the peak-detected low-frequency path.
2074 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2075 // Now set up the SSC to get the ADC samples that are now streaming at us.
2076 FpgaSetupSsc();
2077
2078 SendForward(fwd_bit_count);
2079
2080 // Now do the acquisition
2081 i = 0;
2082 for(;;) {
2083 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
2084 AT91C_BASE_SSC->SSC_THR = 0x43;
2085 }
2086 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
2087 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2088 ++i;
2089 if (i >= bufferlength) break;
2090 }
2091 }
2092
2093 cmd_send(CMD_ACK,0,0,0,0,0);
2094 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2095 LED_D_OFF();
2096 }
2097
2098 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2099
2100 uint8_t fwd_bit_count;
2101
2102 //If password mode do login
2103 if (PwdMode == 1) EM4xLogin(Pwd);
2104
2105 forward_ptr = forwardLink_data;
2106 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
2107 fwd_bit_count += Prepare_Addr( Address );
2108 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2109
2110 SendForward(fwd_bit_count);
2111
2112 //Wait for write to complete
2113 SpinDelay(20);
2114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2115 LED_D_OFF();
2116 }
2117 void CopyViKingtoT55x7(uint32_t block1,uint32_t block2)
2118 {
2119 LED_D_ON();
2120 T55xxWriteBlock(block1,1,0,0);
2121 T55xxWriteBlock(block2,2,0,0);
2122
2123 T55xxWriteBlock(T55x7_MODULATION_MANCHESTER | T55x7_BITRATE_RF_32 | 2 << T5555_MAXBLOCK_SHIFT,0,0,1);
2124 LED_D_OFF();
2125 DbpString("DONE!");
2126 }
2127
2128
2129 #define T0_PCF 8 //period for the pcf7931 in us
2130
2131 /* Write on a byte of a PCF7931 tag
2132 * @param address : address of the block to write
2133 @param byte : address of the byte to write
2134 @param data : data to write
2135 */
2136 void WritePCF7931(uint8_t pass1, uint8_t pass2, uint8_t pass3, uint8_t pass4, uint8_t pass5, uint8_t pass6, uint8_t pass7, uint16_t init_delay, int32_t l, int32_t p, uint8_t address, uint8_t byte, uint8_t data)
2137 {
2138
2139 uint32_t tab[1024]={0}; // data times frame
2140 uint32_t u = 0;
2141 uint8_t parity = 0;
2142 bool comp = 0;
2143
2144
2145 //BUILD OF THE DATA FRAME
2146
2147 //alimentation of the tag (time for initializing)
2148 AddPatternPCF7931(init_delay, 0, 8192/2*T0_PCF, tab);
2149
2150 //PMC
2151 Dbprintf("Initialization delay : %d us", init_delay);
2152 AddPatternPCF7931(8192/2*T0_PCF + 319*T0_PCF+70, 3*T0_PCF, 29*T0_PCF, tab);
2153
2154 Dbprintf("Offsets : %d us on the low pulses width, %d us on the low pulses positions", l, p);
2155
2156 //password indication bit
2157 AddBitPCF7931(1, tab, l, p);
2158
2159
2160 //password (on 56 bits)
2161 Dbprintf("Password (LSB first on each byte) : %02x %02x %02x %02x %02x %02x %02x", pass1,pass2,pass3,pass4,pass5,pass6,pass7);
2162 AddBytePCF7931(pass1, tab, l, p);
2163 AddBytePCF7931(pass2, tab, l, p);
2164 AddBytePCF7931(pass3, tab, l, p);
2165 AddBytePCF7931(pass4, tab, l, p);
2166 AddBytePCF7931(pass5, tab, l, p);
2167 AddBytePCF7931(pass6, tab, l, p);
2168 AddBytePCF7931(pass7, tab, l, p);
2169
2170
2171 //programming mode (0 or 1)
2172 AddBitPCF7931(0, tab, l, p);
2173
2174 //block adress on 6 bits
2175 Dbprintf("Block address : %02x", address);
2176 for (u=0; u<6; u++)
2177 {
2178 if (address&(1<<u)) { // bit 1
2179 parity++;
2180 AddBitPCF7931(1, tab, l, p);
2181 } else{ // bit 0
2182 AddBitPCF7931(0, tab, l, p);
2183 }
2184 }
2185
2186 //byte address on 4 bits
2187 Dbprintf("Byte address : %02x", byte);
2188 for (u=0; u<4; u++)
2189 {
2190 if (byte&(1<<u)) { // bit 1
2191 parity++;
2192 AddBitPCF7931(1, tab, l, p);
2193 } else{ // bit 0
2194 AddBitPCF7931(0, tab, l, p);
2195 }
2196 }
2197
2198 //data on 8 bits
2199 Dbprintf("Data : %02x", data);
2200 for (u=0; u<8; u++)
2201 {
2202 if (data&(1<<u)) { // bit 1
2203 parity++;
2204 AddBitPCF7931(1, tab, l, p);
2205 } else{ //bit 0
2206 AddBitPCF7931(0, tab, l, p);
2207 }
2208 }
2209
2210
2211 //parity bit
2212 if((parity%2)==0){
2213 AddBitPCF7931(0, tab, l, p); //even parity
2214 }else{
2215 AddBitPCF7931(1, tab, l, p);//odd parity
2216 }
2217
2218 //time access memory
2219 AddPatternPCF7931(5120+2680, 0, 0, tab);
2220
2221 //conversion of the scale time
2222 for(u=0;u<500;u++){
2223 tab[u]=(tab[u] * 3)/2;
2224 }
2225
2226
2227 //compennsation of the counter reload
2228 while (!comp){
2229 comp = 1;
2230 for(u=0;tab[u]!=0;u++){
2231 if(tab[u] > 0xFFFF){
2232 tab[u] -= 0xFFFF;
2233 comp = 0;
2234 }
2235 }
2236 }
2237
2238 SendCmdPCF7931(tab);
2239 }
2240
2241
2242
2243 /* Send a trame to a PCF7931 tags
2244 * @param tab : array of the data frame
2245 */
2246
2247 void SendCmdPCF7931(uint32_t * tab){
2248 uint16_t u=0;
2249 uint16_t tempo=0;
2250
2251 Dbprintf("SENDING DATA FRAME...");
2252
2253 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
2254
2255 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2256
2257 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU );
2258
2259 LED_A_ON();
2260
2261 // steal this pin from the SSP and use it to control the modulation
2262 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
2263 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
2264
2265 //initialization of the timer
2266 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
2267 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
2268 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
2269 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; //clock at 48/32 MHz
2270 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
2271 AT91C_BASE_TCB->TCB_BCR = 1;
2272
2273
2274 tempo = AT91C_BASE_TC0->TC_CV;
2275 for(u=0;tab[u]!= 0;u+=3){
2276
2277
2278 // modulate antenna
2279 HIGH(GPIO_SSC_DOUT);
2280 while(tempo != tab[u]){
2281 tempo = AT91C_BASE_TC0->TC_CV;
2282 }
2283
2284 // stop modulating antenna
2285 LOW(GPIO_SSC_DOUT);
2286 while(tempo != tab[u+1]){
2287 tempo = AT91C_BASE_TC0->TC_CV;
2288 }
2289
2290
2291 // modulate antenna
2292 HIGH(GPIO_SSC_DOUT);
2293 while(tempo != tab[u+2]){
2294 tempo = AT91C_BASE_TC0->TC_CV;
2295 }
2296
2297
2298 }
2299
2300 LED_A_OFF();
2301 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2302 SpinDelay(200);
2303
2304
2305 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
2306 DbpString("FINISH !");
2307 DbpString("(Could be usefull to send the same trame many times)");
2308 LED(0xFFFF, 1000);
2309 }
2310
2311
2312 /* Add a byte for building the data frame of PCF7931 tags
2313 * @param b : byte to add
2314 * @param tab : array of the data frame
2315 * @param l : offset on low pulse width
2316 * @param p : offset on low pulse positioning
2317 */
2318
2319 bool AddBytePCF7931(uint8_t byte, uint32_t * tab, int32_t l, int32_t p){
2320
2321 uint32_t u;
2322 for (u=0; u<8; u++)
2323 {
2324 if (byte&(1<<u)) { //bit à 1
2325 if(AddBitPCF7931(1, tab, l, p)==1)return 1;
2326 } else { //bit à 0
2327 if(AddBitPCF7931(0, tab, l, p)==1)return 1;
2328 }
2329 }
2330
2331 return 0;
2332 }
2333
2334 /* Add a bits for building the data frame of PCF7931 tags
2335 * @param b : bit to add
2336 * @param tab : array of the data frame
2337 * @param l : offset on low pulse width
2338 * @param p : offset on low pulse positioning
2339 */
2340 bool AddBitPCF7931(bool b, uint32_t * tab, int32_t l, int32_t p){
2341 uint8_t u = 0;
2342
2343 for(u=0;tab[u]!=0;u+=3){} //we put the cursor at the last value of the array
2344
2345
2346 if(b==1){ //add a bit 1
2347 if(u==0) tab[u] = 34*T0_PCF+p;
2348 else tab[u] = 34*T0_PCF+tab[u-1]+p;
2349
2350 tab[u+1] = 6*T0_PCF+tab[u]+l;
2351 tab[u+2] = 88*T0_PCF+tab[u+1]-l-p;
2352 return 0;
2353 }else{ //add a bit 0
2354
2355 if(u==0) tab[u] = 98*T0_PCF+p;
2356 else tab[u] = 98*T0_PCF+tab[u-1]+p;
2357
2358 tab[u+1] = 6*T0_PCF+tab[u]+l;
2359 tab[u+2] = 24*T0_PCF+tab[u+1]-l-p;
2360 return 0;
2361 }
2362
2363
2364 return 1;
2365 }
2366
2367 /* Add a custom pattern in the data frame
2368 * @param a : delay of the first high pulse
2369 * @param b : delay of the low pulse
2370 * @param c : delay of the last high pulse
2371 * @param tab : array of the data frame
2372 */
2373 bool AddPatternPCF7931(uint32_t a, uint32_t b, uint32_t c, uint32_t * tab){
2374 uint32_t u = 0;
2375 for(u=0;tab[u]!=0;u+=3){} //we put the cursor at the last value of the array
2376
2377 if(u==0) tab[u] = a;
2378 else tab[u] = a + tab[u-1];
2379
2380 tab[u+1] = b+tab[u];
2381 tab[u+2] = c+tab[u+1];
2382
2383 return 0;
2384 }
Impressum, Datenschutz