]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
chg: `analyse chksum` - now respects the mask variable,
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include "cmdlfem4x.h"
12
13 uint64_t g_em410xid = 0;
14
15 static int CmdHelp(const char *Cmd);
16
17 int CmdEMdemodASK(const char *Cmd)
18 {
19 char cmdp = param_getchar(Cmd, 0);
20 uint8_t findone = (cmdp == '1') ? 1 : 0;
21 UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}};
22 SendCommand(&c);
23 return 0;
24 }
25
26 /* Read the ID of an EM410x tag.
27 * Format:
28 * 1111 1111 1 <-- standard non-repeatable header
29 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
30 * ....
31 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
32 * 0 <-- stop bit, end of tag
33 */
34 int CmdEM410xRead(const char *Cmd)
35 {
36 uint32_t hi=0;
37 uint64_t lo=0;
38
39 if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
40 PrintAndLog("EM410x pattern found: ");
41 printEM410x(hi, lo);
42 if (hi){
43 PrintAndLog ("EM410x XL pattern found");
44 return 0;
45 }
46 g_em410xid = lo;
47 return 1;
48 }
49
50
51 int usage_lf_em410x_sim(void) {
52 PrintAndLog("Simulating EM410x tag");
53 PrintAndLog("");
54 PrintAndLog("Usage: lf em4x em410xsim [h] <uid> <clock>");
55 PrintAndLog("Options:");
56 PrintAndLog(" h - this help");
57 PrintAndLog(" uid - uid (10 HEX symbols)");
58 PrintAndLog(" clock - clock (32|64) (optional)");
59 PrintAndLog("samples:");
60 PrintAndLog(" lf em4x em410xsim 0F0368568B");
61 PrintAndLog(" lf em4x em410xsim 0F0368568B 32");
62 return 0;
63 }
64
65 // emulate an EM410X tag
66 int CmdEM410xSim(const char *Cmd)
67 {
68 int i, n, j, binary[4], parity[4];
69 uint8_t uid[5] = {0x00};
70
71 char cmdp = param_getchar(Cmd, 0);
72 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
73
74 /* clock is 64 in EM410x tags */
75 uint8_t clock = 64;
76
77 if (param_gethex(Cmd, 0, uid, 10)) {
78 PrintAndLog("UID must include 10 HEX symbols");
79 return 0;
80 }
81
82 param_getdec(Cmd, 1, &clock);
83
84 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
85 PrintAndLog("Press pm3-button to about simulation");
86
87 /* clear our graph */
88 ClearGraph(0);
89
90 /* write 9 start bits */
91 for (i = 0; i < 9; i++)
92 AppendGraph(0, clock, 1);
93
94 /* for each hex char */
95 parity[0] = parity[1] = parity[2] = parity[3] = 0;
96 for (i = 0; i < 10; i++)
97 {
98 /* read each hex char */
99 sscanf(&Cmd[i], "%1x", &n);
100 for (j = 3; j >= 0; j--, n/= 2)
101 binary[j] = n % 2;
102
103 /* append each bit */
104 AppendGraph(0, clock, binary[0]);
105 AppendGraph(0, clock, binary[1]);
106 AppendGraph(0, clock, binary[2]);
107 AppendGraph(0, clock, binary[3]);
108
109 /* append parity bit */
110 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
111
112 /* keep track of column parity */
113 parity[0] ^= binary[0];
114 parity[1] ^= binary[1];
115 parity[2] ^= binary[2];
116 parity[3] ^= binary[3];
117 }
118
119 /* parity columns */
120 AppendGraph(0, clock, parity[0]);
121 AppendGraph(0, clock, parity[1]);
122 AppendGraph(0, clock, parity[2]);
123 AppendGraph(0, clock, parity[3]);
124
125 /* stop bit */
126 AppendGraph(1, clock, 0);
127
128 CmdLFSim("0"); //240 start_gap.
129 return 0;
130 }
131
132 /* Function is equivalent of lf read + data samples + em410xread
133 * looped until an EM410x tag is detected
134 *
135 * Why is CmdSamples("16000")?
136 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
137 * rate gets lower, then grow the number of samples
138 * Changed by martin, 4000 x 4 = 16000,
139 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
140 */
141 int CmdEM410xWatch(const char *Cmd)
142 {
143 do {
144 if (ukbhit()) {
145 printf("\naborted via keyboard!\n");
146 break;
147 }
148
149 CmdLFRead("s");
150 getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
151 } while (!CmdEM410xRead(""));
152
153 return 0;
154 }
155
156 //currently only supports manchester modulations
157 // todo: helptext
158 int CmdEM410xWatchnSpoof(const char *Cmd)
159 {
160 // loops if the captured ID was in XL-format.
161 CmdEM410xWatch(Cmd);
162 PrintAndLog("# Replaying captured ID: %llu", g_em410xid);
163 CmdLFaskSim("");
164 return 0;
165 }
166
167 int CmdEM410xWrite(const char *Cmd)
168 {
169 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
170 int card = 0xFF; // invalid card value
171 uint32_t clock = 0; // invalid clock value
172
173 sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
174
175 // Check ID
176 if (id == 0xFFFFFFFFFFFFFFFF) {
177 PrintAndLog("Error! ID is required.\n");
178 return 0;
179 }
180 if (id >= 0x10000000000) {
181 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
182 return 0;
183 }
184
185 // Check Card
186 if (card == 0xFF) {
187 PrintAndLog("Error! Card type required.\n");
188 return 0;
189 }
190 if (card < 0) {
191 PrintAndLog("Error! Bad card type selected.\n");
192 return 0;
193 }
194
195 // Check Clock
196 // Default: 64
197 if (clock == 0)
198 clock = 64;
199
200 // Allowed clock rates: 16, 32, 40 and 64
201 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
202 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
203 return 0;
204 }
205
206 if (card == 1) {
207 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
208 // NOTE: We really should pass the clock in as a separate argument, but to
209 // provide for backwards-compatibility for older firmware, and to avoid
210 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
211 // the clock rate in bits 8-15 of the card value
212 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
213 } else if (card == 0) {
214 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
215 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
216 } else {
217 PrintAndLog("Error! Bad card type selected.\n");
218 return 0;
219 }
220
221 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
222 SendCommand(&c);
223 return 0;
224 }
225
226 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
227 {
228 if (rows*cols>size) return false;
229 uint8_t colP=0;
230 //assume last col is a parity and do not test
231 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
232 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
233 colP ^= BitStream[(rowNum*cols)+colNum];
234 }
235 if (colP != pType) return false;
236 }
237 return true;
238 }
239
240 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
241 {
242 if (rows*cols>size) return false;
243 uint8_t rowP=0;
244 //assume last row is a parity row and do not test
245 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
246 for (uint8_t colNum = 0; colNum < cols; colNum++) {
247 rowP ^= BitStream[(rowNum*cols)+colNum];
248 }
249 if (rowP != pType) return false;
250 }
251 return true;
252 }
253
254
255 //////////////// 4050 / 4450 commands
256 int usage_lf_em4x50_dump(void) {
257 PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. ");
258 PrintAndLog("");
259 PrintAndLog("Usage: lf em 4x50dump [h] <pwd>");
260 PrintAndLog("Options:");
261 PrintAndLog(" h - this help");
262 PrintAndLog(" pwd - password (hex) (optional)");
263 PrintAndLog("samples:");
264 PrintAndLog(" lf em 4x50dump");
265 PrintAndLog(" lf em 4x50dump 11223344");
266 return 0;
267 }
268 int usage_lf_em4x50_read(void) {
269 PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. ");
270 PrintAndLog("");
271 PrintAndLog("Usage: lf em 4x50read [h] <address> <pwd>");
272 PrintAndLog("Options:");
273 PrintAndLog(" h - this help");
274 PrintAndLog(" address - memory address to read. (0-15)");
275 PrintAndLog(" pwd - password (hex) (optional)");
276 PrintAndLog("samples:");
277 PrintAndLog(" lf em 4x50read 1");
278 PrintAndLog(" lf em 4x50read 1 11223344");
279 return 0;
280 }
281 int usage_lf_em4x50_write(void) {
282 PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. ");
283 PrintAndLog("");
284 PrintAndLog("Usage: lf em 4x50write [h] <address> <data> <pwd>");
285 PrintAndLog("Options:");
286 PrintAndLog(" h - this help");
287 PrintAndLog(" address - memory address to write to. (0-15)");
288 PrintAndLog(" data - data to write (hex)");
289 PrintAndLog(" pwd - password (hex) (optional)");
290 PrintAndLog("samples:");
291 PrintAndLog(" lf em 4x50write 1 deadc0de");
292 PrintAndLog(" lf em 4x50write 1 deadc0de 11223344");
293 return 0;
294 }
295
296 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
297 {
298 if (size<45) return 0;
299
300 uint32_t code = bytebits_to_byte(BitStream,8);
301 code = code<<8 | bytebits_to_byte(BitStream+9,8);
302 code = code<<8 | bytebits_to_byte(BitStream+18,8);
303 code = code<<8 | bytebits_to_byte(BitStream+27,8);
304
305 if (verbose || g_debugMode){
306 for (uint8_t i = 0; i<5; i++){
307 if (i == 4) PrintAndLog(""); //parity byte spacer
308 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
309 BitStream[i*9],
310 BitStream[i*9+1],
311 BitStream[i*9+2],
312 BitStream[i*9+3],
313 BitStream[i*9+4],
314 BitStream[i*9+5],
315 BitStream[i*9+6],
316 BitStream[i*9+7],
317 BitStream[i*9+8],
318 bytebits_to_byte(BitStream+i*9,8)
319 );
320 }
321 if (pTest)
322 PrintAndLog("Parity Passed");
323 else
324 PrintAndLog("Parity Failed");
325 }
326 return code;
327 }
328
329
330 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
331 * Format:
332 *
333 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
334 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
335 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
336 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
337 * CCCCCCCC <- column parity bits
338 * 0 <- stop bit
339 * LW <- Listen Window
340 *
341 * This pattern repeats for every block of data being transmitted.
342 * Transmission starts with two Listen Windows (LW - a modulated
343 * pattern of 320 cycles each (32/32/128/64/64)).
344 *
345 * Note that this data may or may not be the UID. It is whatever data
346 * is stored in the blocks defined in the control word First and Last
347 * Word Read values. UID is stored in block 32.
348 */
349 //completed by Marshmellow
350 int EM4x50Read(const char *Cmd, bool verbose) {
351 uint8_t fndClk[] = {8,16,32,40,50,64,128};
352 int clk = 0;
353 int invert = 0;
354 int tol = 0;
355 int i, j, startblock, skip, block, start, end, low, high, minClk;
356 bool complete = false;
357 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
358 uint32_t Code[6];
359 char tmp[6];
360 char tmp2[20];
361 int phaseoff;
362 high = low = 0;
363 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
364
365 // get user entry if any
366 sscanf(Cmd, "%i %i", &clk, &invert);
367
368 // save GraphBuffer - to restore it later
369 save_restoreGB(1);
370
371 // first get high and low values
372 for (i = 0; i < GraphTraceLen; i++) {
373 if (GraphBuffer[i] > high)
374 high = GraphBuffer[i];
375 else if (GraphBuffer[i] < low)
376 low = GraphBuffer[i];
377 }
378
379 i = 0;
380 j = 0;
381 minClk = 255;
382 // get to first full low to prime loop and skip incomplete first pulse
383 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
384 ++i;
385 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
386 ++i;
387 skip = i;
388
389 // populate tmpbuff buffer with pulse lengths
390 while (i < GraphTraceLen) {
391 // measure from low to low
392 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
393 ++i;
394 start= i;
395 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
396 ++i;
397 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
398 ++i;
399 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
400 break;
401 }
402 tmpbuff[j++]= i - start;
403 if (i-start < minClk && i < GraphTraceLen) {
404 minClk = i - start;
405 }
406 }
407 // set clock
408 if (!clk) {
409 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
410 tol = fndClk[clkCnt]/8;
411 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
412 clk=fndClk[clkCnt];
413 break;
414 }
415 }
416 if (!clk) {
417 PrintAndLog("ERROR: EM4x50 - didn't find a clock");
418 return 0;
419 }
420 } else tol = clk/8;
421
422 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
423 start = -1;
424 for (i= 0; i < j - 4 ; ++i) {
425 skip += tmpbuff[i];
426 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
427 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
428 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
429 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
430 {
431 start= i + 4;
432 break;
433 }
434 }
435 startblock = i + 4;
436
437 // skip over the remainder of LW
438 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
439 if (tmpbuff[i+3]>clk)
440 phaseoff = tmpbuff[i+3]-clk;
441 else
442 phaseoff = 0;
443 // now do it again to find the end
444 end = skip;
445 for (i += 3; i < j - 4 ; ++i) {
446 end += tmpbuff[i];
447 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
448 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
449 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
450 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
451 {
452 complete= true;
453 break;
454 }
455 }
456 end = i;
457 // report back
458 if (verbose || g_debugMode) {
459 if (start >= 0) {
460 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
461 } else {
462 PrintAndLog("No data found!, clock tried:%d",clk);
463 PrintAndLog("Try again with more samples.");
464 PrintAndLog(" or after a 'data askedge' command to clean up the read");
465 return 0;
466 }
467 } else if (start < 0) return 0;
468 start = skip;
469 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
470 // get rid of leading crap
471 snprintf(tmp, sizeof(tmp), "%i", skip);
472 CmdLtrim(tmp);
473 bool pTest;
474 bool AllPTest = true;
475 // now work through remaining buffer printing out data blocks
476 block = 0;
477 i = startblock;
478 while (block < 6) {
479 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
480 skip = phaseoff;
481
482 // look for LW before start of next block
483 for ( ; i < j - 4 ; ++i) {
484 skip += tmpbuff[i];
485 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
486 if (tmpbuff[i+1] >= clk-tol)
487 break;
488 }
489 if (i >= j-4) break; //next LW not found
490 skip += clk;
491 if (tmpbuff[i+1]>clk)
492 phaseoff = tmpbuff[i+1]-clk;
493 else
494 phaseoff = 0;
495 i += 2;
496 if (ASKDemod(tmp2, false, false, 1) < 1) {
497 save_restoreGB(0);
498 return 0;
499 }
500 //set DemodBufferLen to just one block
501 DemodBufferLen = skip/clk;
502 //test parities
503 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
504 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
505 AllPTest &= pTest;
506 //get output
507 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
508 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
509 //skip to start of next block
510 snprintf(tmp,sizeof(tmp),"%i",skip);
511 CmdLtrim(tmp);
512 block++;
513 if (i >= end) break; //in case chip doesn't output 6 blocks
514 }
515 //print full code:
516 if (verbose || g_debugMode || AllPTest){
517 if (!complete) {
518 PrintAndLog("*** Warning!");
519 PrintAndLog("Partial data - no end found!");
520 PrintAndLog("Try again with more samples.");
521 }
522 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
523 end = block;
524 for (block=0; block < end; block++){
525 PrintAndLog("Block %d: %08x",block,Code[block]);
526 }
527 if (AllPTest) {
528 PrintAndLog("Parities Passed");
529 } else {
530 PrintAndLog("Parities Failed");
531 PrintAndLog("Try cleaning the read samples with 'data askedge'");
532 }
533 }
534
535 //restore GraphBuffer
536 save_restoreGB(0);
537 return (int)AllPTest;
538 }
539
540 int CmdEM4x50Read(const char *Cmd) {
541 uint8_t ctmp = param_getchar(Cmd, 0);
542 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read();
543 return EM4x50Read(Cmd, true);
544 }
545
546 int CmdEM4x50Write(const char *Cmd){
547 uint8_t ctmp = param_getchar(Cmd, 0);
548 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write();
549 PrintAndLog("no implemented yet");
550 return 0;
551 }
552 int CmdEM4x50Dump(const char *Cmd){
553 uint8_t ctmp = param_getchar(Cmd, 0);
554 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump();
555 PrintAndLog("no implemented yet");
556 return 0;
557 }
558
559 #define EM_PREAMBLE_LEN 6
560 // download samples from device
561 // and copy them to Graphbuffer
562 bool downloadSamplesEM(){
563
564 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
565 uint8_t got[6000];
566 GetFromBigBuf(got, sizeof(got), 0);
567 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) {
568 PrintAndLog("command execution time out");
569 return FALSE;
570 }
571 setGraphBuf(got, sizeof(got));
572 return TRUE;
573 }
574 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex
575 bool doPreambleSearch(size_t *startIdx){
576
577 // sanity check
578 if ( DemodBufferLen < EM_PREAMBLE_LEN) {
579 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small");
580 return FALSE;
581 }
582
583 // skip first two 0 bits as they might have been missed in the demod
584 uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0};
585
586 // set size to 15 to only test first 4 positions for the preamble
587 size_t size = (15 > DemodBufferLen) ? DemodBufferLen : 15;
588 *startIdx = 0;
589 uint8_t found = 0;
590
591 // em only sends preamble once, so look for it once in the first x bits
592 for (int idx = 0; idx < size - EM_PREAMBLE_LEN; idx++){
593 if (memcmp(DemodBuffer+idx, preamble, EM_PREAMBLE_LEN) == 0){
594 //first index found
595 *startIdx = idx;
596 found = 1;
597 break;
598 }
599 }
600
601 if ( !found) {
602 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx);
603 return FALSE;
604 }
605 return TRUE;
606 }
607
608 bool detectFSK(){
609 // detect fsk clock
610 if (!GetFskClock("", FALSE, FALSE)) {
611 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed");
612 return FALSE;
613 }
614 // demod
615 int ans = FSKrawDemod("0 0", FALSE);
616 if (!ans) {
617 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed");
618 return FALSE;
619 }
620 return TRUE;
621 }
622 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
623 bool detectPSK(){
624 int ans = GetPskClock("", FALSE, FALSE);
625 if (ans <= 0) {
626 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed");
627 return FALSE;
628 }
629 //demod
630 //try psk1 -- 0 0 6 (six errors?!?)
631 ans = PSKDemod("0 0 6", FALSE);
632 if (!ans) {
633 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed");
634
635 //try psk1 inverted
636 ans = PSKDemod("0 1 6", FALSE);
637 if (!ans) {
638 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed");
639 return FALSE;
640 }
641 }
642 // either PSK1 or PSK1 inverted is ok from here.
643 // lets check PSK2 later.
644 return TRUE;
645 }
646 // try manchester - NOTE: ST only applies to T55x7 tags.
647 bool detectASK_MAN(){
648 bool stcheck = FALSE;
649 int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck);
650 if (!ans) {
651 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed");
652 return FALSE;
653 }
654 return TRUE;
655 }
656 bool detectASK_BI(){
657 int ans = ASKbiphaseDemod("0 0 1", FALSE);
658 if (!ans) {
659 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed");
660
661 ans = ASKbiphaseDemod("0 1 1", FALSE);
662 if (!ans) {
663 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed");
664 return FALSE;
665 }
666 }
667 return TRUE;
668 }
669
670 // param: idx - start index in demoded data.
671 bool setDemodBufferEM(uint32_t *word, size_t idx){
672
673 //test for even parity bits.
674 size_t size = removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 44);
675 if (!size) {
676 if (g_debugMode) PrintAndLog("DEBUG: Error -EM Parity not detected");
677 return FALSE;
678 }
679
680 //todo test last 8 bits for even parity || (xor)
681 setDemodBuf(DemodBuffer, 40, 0);
682
683 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
684
685 uint8_t lo = (uint8_t) bytebits_to_byteLSBF(DemodBuffer , 8);
686 uint8_t lo2 = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 8, 8);
687 uint8_t hi = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 16, 8);
688 uint8_t hi2 = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 24, 8);
689 uint8_t cs = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 32, 8);
690 uint8_t cs2 = lo ^ lo2 ^ hi ^ hi2;
691 if (g_debugMode) PrintAndLog("EM4x05/4x69 : %08X CS: %02X %s"
692 , *word
693 , cs
694 , (cs2==cs) ? "Passed" : "Failed"
695 );
696
697 return (cs2==cs);
698 }
699
700 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
701 // should cover 90% of known used configs
702 // the rest will need to be manually demoded for now...
703 bool demodEM4x05resp(uint32_t *word) {
704 size_t idx = 0;
705
706 if (detectASK_MAN() && doPreambleSearch( &idx ))
707 return setDemodBufferEM(word, idx);
708
709 if (detectASK_BI() && doPreambleSearch( &idx ))
710 return setDemodBufferEM(word, idx);
711
712 if (detectFSK() && doPreambleSearch( &idx ))
713 return setDemodBufferEM(word, idx);
714
715 if (detectPSK()) {
716 if (doPreambleSearch( &idx ))
717 return setDemodBufferEM(word, idx);
718
719 psk1TOpsk2(DemodBuffer, DemodBufferLen);
720 if (doPreambleSearch( &idx ))
721 return setDemodBufferEM(word, idx);
722 }
723 return FALSE;
724 }
725
726 //////////////// 4205 / 4305 commands
727 int usage_lf_em4x05_dump(void) {
728 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
729 PrintAndLog("");
730 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
731 PrintAndLog("Options:");
732 PrintAndLog(" h - this help");
733 PrintAndLog(" pwd - password (hex) (optional)");
734 PrintAndLog("samples:");
735 PrintAndLog(" lf em 4x05dump");
736 PrintAndLog(" lf em 4x05dump 11223344");
737 return 0;
738 }
739 int usage_lf_em4x05_read(void) {
740 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
741 PrintAndLog("");
742 PrintAndLog("Usage: lf em 4x05read [h] <address> <pwd>");
743 PrintAndLog("Options:");
744 PrintAndLog(" h - this help");
745 PrintAndLog(" address - memory address to read. (0-15)");
746 PrintAndLog(" pwd - password (hex) (optional)");
747 PrintAndLog("samples:");
748 PrintAndLog(" lf em 4x05read 1");
749 PrintAndLog(" lf em 4x05read 1 11223344");
750 return 0;
751 }
752 int usage_lf_em4x05_write(void) {
753 PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. ");
754 PrintAndLog("");
755 PrintAndLog("Usage: lf em 4x05write [h] <address> <data> <pwd>");
756 PrintAndLog("Options:");
757 PrintAndLog(" h - this help");
758 PrintAndLog(" address - memory address to write to. (0-15)");
759 PrintAndLog(" data - data to write (hex)");
760 PrintAndLog(" pwd - password (hex) (optional)");
761 PrintAndLog("samples:");
762 PrintAndLog(" lf em 4x05write 1 deadc0de");
763 PrintAndLog(" lf em 4x05write 1 deadc0de 11223344");
764 return 0;
765 }
766
767 int CmdEM4x05Dump(const char *Cmd) {
768 uint8_t addr = 0;
769 uint32_t pwd;
770 bool usePwd = false;
771 uint8_t ctmp = param_getchar(Cmd, 0);
772 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump();
773
774 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
775 pwd = param_get32ex(Cmd, 0, 1, 16);
776
777 if ( pwd != 1 ) {
778 usePwd = true;
779 }
780 int success = 1;
781 for (; addr < 16; addr++) {
782 if (addr == 2) {
783 if (usePwd) {
784 PrintAndLog("PWD Address %02u | %08X",addr,pwd);
785 } else {
786 PrintAndLog("PWD Address 02 | cannot read");
787 }
788 } else {
789 //success &= EM4x05Read(addr, pwd, usePwd);
790 }
791 }
792
793 return success;
794 }
795
796 int CmdEM4x05Read(const char *Cmd) {
797 int addr, pwd;
798 bool usePwd = false;
799 uint8_t ctmp = param_getchar(Cmd, 0);
800 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read();
801
802 addr = param_get8ex(Cmd, 0, -1, 10);
803 pwd = param_get32ex(Cmd, 1, -1, 16);
804
805 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
806 PrintAndLog("Address must be between 0 and 15");
807 return 1;
808 }
809 if ( pwd == -1 )
810 PrintAndLog("Reading address %d", addr);
811 else {
812 usePwd = true;
813 PrintAndLog("Reading address %d | password %08X", addr, pwd);
814 }
815
816 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
817 clearCommandBuffer();
818 SendCommand(&c);
819 UsbCommand resp;
820 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
821 PrintAndLog("Command timed out");
822 return -1;
823 }
824
825 if (!downloadSamplesEM())
826 return -1;
827
828 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
829 if (graphJustNoise(GraphBuffer, testLen)) {
830 PrintAndLog("Tag not found");
831 return -1;
832 }
833
834 //attempt demod
835 uint32_t word = 0;
836 int isOk = demodEM4x05resp(&word);
837 if (isOk)
838 PrintAndLog("Got Address %02d | %08X",addr, word);
839 else
840 PrintAndLog("Read failed");
841
842 return isOk;
843 }
844
845 int CmdEM4x05Write(const char *Cmd) {
846 uint8_t ctmp = param_getchar(Cmd, 0);
847 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write();
848
849 bool usePwd = false;
850 int addr = 16; // default to invalid address
851 int data = 0xFFFFFFFF; // default to blank data
852 int pwd = 0xFFFFFFFF; // default to blank password
853
854 addr = param_get8ex(Cmd, 0, -1, 10);
855 data = param_get32ex(Cmd, 1, -1, 16);
856 pwd = param_get32ex(Cmd, 2, -1, 16);
857
858 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
859 PrintAndLog("Address must be between 0 and 15");
860 return 1;
861 }
862 if ( pwd == -1 )
863 PrintAndLog("Writing address %d data %08X", addr, data);
864 else {
865 usePwd = true;
866 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
867 }
868
869 uint16_t flag = (addr << 8 ) | usePwd;
870
871 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
872 clearCommandBuffer();
873 SendCommand(&c);
874 UsbCommand resp;
875 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
876 PrintAndLog("Error occurred, device did not respond during write operation.");
877 return -1;
878 }
879
880 if (!downloadSamplesEM())
881 return -1;
882
883 //todo: check response for 00001010 then write data for write confirmation!
884
885 //attempt demod:
886 //need 0 bits demoded (after preamble) to verify write cmd
887 uint32_t dummy = 0;
888 int isOk = demodEM4x05resp(&dummy);
889 if (isOk)
890 PrintAndLog("Write Verified");
891
892 return isOk;
893 }
894
895 static command_t CommandTable[] = {
896 {"help", CmdHelp, 1, "This help"},
897 {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
898 {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
899 {"410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
900 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
901 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
902 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
903 {"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"},
904 {"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"},
905 {"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"},
906 {"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"},
907 {"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"},
908 {"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"},
909 {NULL, NULL, 0, NULL}
910 };
911
912 int CmdLFEM4X(const char *Cmd) {
913 clearCommandBuffer();
914 CmdsParse(CommandTable, Cmd);
915 return 0;
916 }
917
918 int CmdHelp(const char *Cmd) {
919 CmdsHelp(CommandTable);
920 return 0;
921 }
Impressum, Datenschutz