]> git.zerfleddert.de Git - proxmark3-svn/blob - client/nonce2key/nonce2key.c
textual changes.
[proxmark3-svn] / client / nonce2key / nonce2key.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011
3 // Roel - Dec 2009
4 // Unknown author
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // MIFARE Darkside hack
11 //-----------------------------------------------------------------------------
12 #include "nonce2key.h"
13
14 int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
15 struct Crypto1State *state;
16 uint32_t i, pos, rr = 0, nr_diff;
17 byte_t bt, ks3x[8], par[8][8];
18
19 // Reset the last three significant bits of the reader nonce
20 nr &= 0xffffff1f;
21
22 PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08"llx")\n", uid, nt, par_info, ks_info, nr);
23
24 for ( pos = 0; pos < 8; pos++ ) {
25 ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
26 bt = (par_info >> (pos*8)) & 0xff;
27
28 for ( i = 0; i < 8; i++) {
29 par[7-pos][i] = (bt >> i) & 0x01;
30 }
31 }
32
33 printf("+----+--------+---+-----+---------------+\n");
34 printf("|diff|{nr} |ks3|ks3^5|parity |\n");
35 printf("+----+--------+---+-----+---------------+\n");
36 for ( i = 0; i < 8; i++) {
37 nr_diff = nr | i << 5;
38 printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5);
39
40 for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]);
41 printf("%01x|\n", par[i][7]);
42 }
43 printf("+----+--------+---+-----+---------------+\n");
44
45 clock_t t1 = clock();
46
47 state = lfsr_common_prefix(nr, rr, ks3x, par);
48 lfsr_rollback_word(state, uid^nt, 0);
49 crypto1_get_lfsr(state, key);
50 crypto1_destroy(state);
51
52 t1 = clock() - t1;
53 if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1);
54 return 0;
55 }
56
57 // call when PAR == 0, special attack?
58 int nonce2key_ex(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) {
59 struct Crypto1State *state;
60 uint32_t i, pos, key_count;
61 byte_t ks3x[8];
62
63 uint64_t key_recovered;
64 int64_t *state_s;
65 static uint32_t last_uid;
66 static int64_t *last_keylist;
67
68 if (last_uid != uid && last_keylist != NULL) {
69 free(last_keylist);
70 last_keylist = NULL;
71 }
72 last_uid = uid;
73
74 // Reset the last three significant bits of the reader nonce
75 nr &= 0xffffff1f;
76
77 PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08"llx")\n", uid, nt, ks_info, nr);
78
79 for (pos=0; pos<8; pos++) {
80 ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
81 }
82
83 PrintAndLog("parity is all zero,try special attack! just wait for few more seconds");
84
85 clock_t t1 = clock();
86
87 state = lfsr_common_prefix_ex(nr, ks3x);
88 state_s = (int64_t*)state;
89
90 //char filename[50] ;
91 //sprintf(filename, "nt_%08x_%d.txt", nt, nr);
92 //printf("name %s\n", filename);
93 //FILE* fp = fopen(filename,"w");
94 for (i = 0; (state) && ((state + i)->odd != -1); i++) {
95 lfsr_rollback_word(state+i, uid^nt, 0);
96 crypto1_get_lfsr(state + i, &key_recovered);
97 *(state_s + i) = key_recovered;
98 //fprintf(fp, "%012llx\n",key_recovered);
99 }
100 //fclose(fp);
101
102 if(!state)
103 return 1;
104
105 qsort(state_s, i, sizeof(*state_s), compar_int);
106 *(state_s + i) = -1;
107
108 //Create the intersection:
109 if ( last_keylist != NULL) {
110 int64_t *p1, *p2, *p3;
111 p1 = p3 = last_keylist;
112 p2 = state_s;
113 while ( *p1 != -1 && *p2 != -1 ) {
114 if (compar_int(p1, p2) == 0) {
115 printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1);
116 *p3++ = *p1++;
117 p2++;
118 }
119 else {
120 while (compar_int(p1, p2) == -1) ++p1;
121 while (compar_int(p1, p2) == 1) ++p2;
122 }
123 }
124 key_count = p3 - last_keylist;;
125 } else {
126 key_count = 0;
127 }
128
129 printf("key_count:%d\n", key_count);
130
131 // The list may still contain several key candidates. Test each of them with mfCheckKeys
132 uint8_t keyBlock[6];
133 uint64_t key64;
134 for (i = 0; i < key_count; i++) {
135 key64 = *(last_keylist + i);
136 num_to_bytes(key64, 6, keyBlock);
137 key64 = 0;
138 if (!mfCheckKeys(0, 0, TRUE, 1, keyBlock, &key64)) { //block 0,A,
139 *key = key64;
140 free(last_keylist);
141 last_keylist = NULL;
142 free(state);
143 return 0;
144 }
145 }
146
147 t1 = clock() - t1;
148 if ( t1 > 0 ) PrintAndLog("Time in nonce2key_special: %.0f ticks \n", (float)t1);
149
150 free(last_keylist);
151 last_keylist = state_s;
152 return 1;
153 }
154
155 // 32 bit recover key from 2 nonces
156 bool tryMfk32(nonces_t data, uint64_t *outputkey) {
157 struct Crypto1State *s,*t;
158 uint64_t outkey = 0;
159 uint64_t key=0; // recovered key
160 uint32_t uid = data.cuid;
161 uint32_t nt = data.nonce; // first tag challenge (nonce)
162 uint32_t nr0_enc = data.nr; // first encrypted reader challenge
163 uint32_t ar0_enc = data.ar; // first encrypted reader response
164 uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
165 uint32_t ar1_enc = data.ar2; // second encrypted reader response
166 clock_t t1 = clock();
167 bool isSuccess = FALSE;
168 uint8_t counter = 0;
169
170
171 s = lfsr_recovery32(ar0_enc ^ prng_successor(nt, 64), 0);
172
173 for(t = s; t->odd | t->even; ++t) {
174 lfsr_rollback_word(t, 0, 0);
175 lfsr_rollback_word(t, nr0_enc, 1);
176 lfsr_rollback_word(t, uid ^ nt, 0);
177 crypto1_get_lfsr(t, &key);
178 crypto1_word(t, uid ^ nt, 0);
179 crypto1_word(t, nr1_enc, 1);
180 if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) {
181 //PrintAndLog("Found Key: [%012"llx"]", key);
182 outkey = key;
183 ++counter;
184 if (counter==20) break;
185 }
186 }
187 isSuccess = (counter > 0);
188 t1 = clock() - t1;
189 if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter);
190 *outputkey = ( isSuccess ) ? outkey : 0;
191 crypto1_destroy(s);
192 return isSuccess;
193 }
194
195 bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) {
196 struct Crypto1State *s, *t;
197 uint64_t outkey = 0;
198 uint64_t key = 0; // recovered key
199 uint32_t uid = data.cuid;
200 uint32_t nt0 = data.nonce; // first tag challenge (nonce)
201 uint32_t nr0_enc = data.nr; // first encrypted reader challenge
202 uint32_t ar0_enc = data.ar; // first encrypted reader response
203 //uint32_t uid1 = le32toh(data+16);
204 uint32_t nt1 = data.nonce2; // second tag challenge (nonce)
205 uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
206 uint32_t ar1_enc = data.ar2; // second encrypted reader response
207 bool isSuccess = FALSE;
208 int counter = 0;
209
210 //PrintAndLog("Enter mfkey32_moebius");
211 clock_t t1 = clock();
212
213 s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0);
214
215 for(t = s; t->odd | t->even; ++t) {
216 lfsr_rollback_word(t, 0, 0);
217 lfsr_rollback_word(t, nr0_enc, 1);
218 lfsr_rollback_word(t, uid ^ nt0, 0);
219 crypto1_get_lfsr(t, &key);
220
221 crypto1_word(t, uid ^ nt1, 0);
222 crypto1_word(t, nr1_enc, 1);
223 if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) {
224 //PrintAndLog("Found Key: [%012"llx"]",key);
225 outkey=key;
226 ++counter;
227 if (counter==20) break;
228 }
229 }
230 isSuccess = (counter > 0);
231 t1 = clock() - t1;
232 if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter);
233 *outputkey = ( isSuccess ) ? outkey : 0;
234 crypto1_destroy(s);
235 return isSuccess;
236 }
237
238 int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
239 uint32_t uid = le32toh(data);
240 uint32_t nt = le32toh(data+4); // tag challenge
241 uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge
242 uint32_t ar_enc = le32toh(data+12); // encrypted reader response
243 uint32_t at_enc = le32toh(data+16); // encrypted tag response
244 return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
245 }
246
247 int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
248 uint64_t key = 0; // recovered key
249 uint32_t ks2; // keystream used to encrypt reader response
250 uint32_t ks3; // keystream used to encrypt tag response
251 struct Crypto1State *revstate;
252
253 PrintAndLog("Enter mfkey64");
254 clock_t t1 = clock();
255
256 // Extract the keystream from the messages
257 ks2 = ar_enc ^ prng_successor(nt, 64);
258 ks3 = at_enc ^ prng_successor(nt, 96);
259 revstate = lfsr_recovery64(ks2, ks3);
260 lfsr_rollback_word(revstate, 0, 0);
261 lfsr_rollback_word(revstate, 0, 0);
262 lfsr_rollback_word(revstate, nr_enc, 1);
263 lfsr_rollback_word(revstate, uid ^ nt, 0);
264 crypto1_get_lfsr(revstate, &key);
265 PrintAndLog("Found Key: [%012"llx"]", key);
266 crypto1_destroy(revstate);
267 *outputkey = key;
268
269 t1 = clock() - t1;
270 if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1);
271 return 0;
272 }
Impressum, Datenschutz