]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
Merge branch 'master' of https://github.com/Proxmark/proxmark3
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "cmd.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22 #include "BigBuf.h"
23 static uint32_t iso14a_timeout;
24 int rsamples = 0;
25 uint8_t trigger = 0;
26 // the block number for the ISO14443-4 PCB
27 static uint8_t iso14_pcb_blocknum = 0;
28
29 //
30 // ISO14443 timing:
31 //
32 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33 #define REQUEST_GUARD_TIME (7000/16 + 1)
34 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36 // bool LastCommandWasRequest = FALSE;
37
38 //
39 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
40 //
41 // When the PM acts as reader and is receiving tag data, it takes
42 // 3 ticks delay in the AD converter
43 // 16 ticks until the modulation detector completes and sets curbit
44 // 8 ticks until bit_to_arm is assigned from curbit
45 // 8*16 ticks for the transfer from FPGA to ARM
46 // 4*16 ticks until we measure the time
47 // - 8*16 ticks because we measure the time of the previous transfer
48 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
49
50 // When the PM acts as a reader and is sending, it takes
51 // 4*16 ticks until we can write data to the sending hold register
52 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
53 // 8 ticks until the first transfer starts
54 // 8 ticks later the FPGA samples the data
55 // 1 tick to assign mod_sig_coil
56 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
57
58 // When the PM acts as tag and is receiving it takes
59 // 2 ticks delay in the RF part (for the first falling edge),
60 // 3 ticks for the A/D conversion,
61 // 8 ticks on average until the start of the SSC transfer,
62 // 8 ticks until the SSC samples the first data
63 // 7*16 ticks to complete the transfer from FPGA to ARM
64 // 8 ticks until the next ssp_clk rising edge
65 // 4*16 ticks until we measure the time
66 // - 8*16 ticks because we measure the time of the previous transfer
67 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
68
69 // The FPGA will report its internal sending delay in
70 uint16_t FpgaSendQueueDelay;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
74
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks until the first transfer starts
79 // 8 ticks later the FPGA samples the data
80 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81 // + 1 tick to assign mod_sig_coil
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
83
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
91
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
100
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime;
104 static uint32_t LastTimeProxToAirStart;
105 static uint32_t LastProxToAirDuration;
106
107
108
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
117 #define SEC_D 0xf0
118 #define SEC_E 0x0f
119 #define SEC_F 0x00
120 #define SEC_X 0x0c
121 #define SEC_Y 0x00
122 #define SEC_Z 0xc0
123
124 const uint8_t OddByteParity[256] = {
125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
141 };
142
143
144 void iso14a_set_trigger(bool enable) {
145 trigger = enable;
146 }
147
148
149 void iso14a_set_timeout(uint32_t timeout) {
150 iso14a_timeout = timeout;
151 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
152 }
153
154
155 void iso14a_set_ATS_timeout(uint8_t *ats) {
156
157 uint8_t tb1;
158 uint8_t fwi;
159 uint32_t fwt;
160
161 if (ats[0] > 1) { // there is a format byte T0
162 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
164 tb1 = ats[3];
165 } else {
166 tb1 = ats[2];
167 }
168 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
170
171 iso14a_set_timeout(fwt/(8*16));
172 }
173 }
174 }
175
176
177 //-----------------------------------------------------------------------------
178 // Generate the parity value for a byte sequence
179 //
180 //-----------------------------------------------------------------------------
181 byte_t oddparity (const byte_t bt)
182 {
183 return OddByteParity[bt];
184 }
185
186 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
187 {
188 uint16_t paritybit_cnt = 0;
189 uint16_t paritybyte_cnt = 0;
190 uint8_t parityBits = 0;
191
192 for (uint16_t i = 0; i < iLen; i++) {
193 // Generate the parity bits
194 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
195 if (paritybit_cnt == 7) {
196 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
197 parityBits = 0; // and advance to next Parity Byte
198 paritybyte_cnt++;
199 paritybit_cnt = 0;
200 } else {
201 paritybit_cnt++;
202 }
203 }
204
205 // save remaining parity bits
206 par[paritybyte_cnt] = parityBits;
207
208 }
209
210 void AppendCrc14443a(uint8_t* data, int len)
211 {
212 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
213 }
214
215 void AppendCrc14443b(uint8_t* data, int len)
216 {
217 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
218 }
219
220
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
224 // Basics:
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
237 static tUart Uart;
238
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept the following:
241 // 0001 - a 3 tick wide pause
242 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243 // 0111 - a 2 tick wide pause shifted left
244 // 1001 - a 2 tick wide pause shifted right
245 const bool Mod_Miller_LUT[] = {
246 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
247 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
248 };
249 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
251
252 void UartReset()
253 {
254 Uart.state = STATE_UNSYNCD;
255 Uart.bitCount = 0;
256 Uart.len = 0; // number of decoded data bytes
257 Uart.parityLen = 0; // number of decoded parity bytes
258 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
259 Uart.parityBits = 0; // holds 8 parity bits
260 Uart.startTime = 0;
261 Uart.endTime = 0;
262
263 Uart.byteCntMax = 0;
264 Uart.posCnt = 0;
265 Uart.syncBit = 9999;
266 }
267
268 void UartInit(uint8_t *data, uint8_t *parity)
269 {
270 Uart.output = data;
271 Uart.parity = parity;
272 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
273 UartReset();
274 }
275
276 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
278 {
279
280 Uart.fourBits = (Uart.fourBits << 8) | bit;
281
282 if (Uart.state == STATE_UNSYNCD) { // not yet synced
283
284 Uart.syncBit = 9999; // not set
285
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
289
290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
294 //
295 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
297
298 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
299 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
300 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
301 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
302 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
303 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
304 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
305 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
306
307 if (Uart.syncBit != 9999) { // found a sync bit
308 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
309 Uart.startTime -= Uart.syncBit;
310 Uart.endTime = Uart.startTime;
311 Uart.state = STATE_START_OF_COMMUNICATION;
312 }
313
314 } else {
315
316 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
317 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
318 UartReset();
319 } else { // Modulation in first half = Sequence Z = logic "0"
320 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
321 UartReset();
322 } else {
323 Uart.bitCount++;
324 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
325 Uart.state = STATE_MILLER_Z;
326 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
327 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
328 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
329 Uart.parityBits <<= 1; // make room for the parity bit
330 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
331 Uart.bitCount = 0;
332 Uart.shiftReg = 0;
333 if((Uart.len&0x0007) == 0) { // every 8 data bytes
334 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
335 Uart.parityBits = 0;
336 }
337 }
338 }
339 }
340 } else {
341 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
342 Uart.bitCount++;
343 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
344 Uart.state = STATE_MILLER_X;
345 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
346 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
347 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
348 Uart.parityBits <<= 1; // make room for the new parity bit
349 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
350 Uart.bitCount = 0;
351 Uart.shiftReg = 0;
352 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
353 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
354 Uart.parityBits = 0;
355 }
356 }
357 } else { // no modulation in both halves - Sequence Y
358 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
359 Uart.state = STATE_UNSYNCD;
360 Uart.bitCount--; // last "0" was part of EOC sequence
361 Uart.shiftReg <<= 1; // drop it
362 if(Uart.bitCount > 0) { // if we decoded some bits
363 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
364 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
365 Uart.parityBits <<= 1; // add a (void) parity bit
366 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
367 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
368 return TRUE;
369 } else if (Uart.len & 0x0007) { // there are some parity bits to store
370 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
371 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
372 }
373 if (Uart.len) {
374 return TRUE; // we are finished with decoding the raw data sequence
375 } else {
376 UartReset(); // Nothing received - start over
377 }
378 }
379 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
380 UartReset();
381 } else { // a logic "0"
382 Uart.bitCount++;
383 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
384 Uart.state = STATE_MILLER_Y;
385 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
386 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
387 Uart.parityBits <<= 1; // make room for the parity bit
388 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
389 Uart.bitCount = 0;
390 Uart.shiftReg = 0;
391 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
392 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
393 Uart.parityBits = 0;
394 }
395 }
396 }
397 }
398 }
399
400 }
401
402 return FALSE; // not finished yet, need more data
403 }
404
405
406
407 //=============================================================================
408 // ISO 14443 Type A - Manchester decoder
409 //=============================================================================
410 // Basics:
411 // This decoder is used when the PM3 acts as a reader.
412 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415 // The Manchester decoder needs to identify the following sequences:
416 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418 // 8 ticks unmodulated: Sequence F = end of communication
419 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
420 // Note 1: the bitstream may start at any time. We therefore need to sync.
421 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
422 static tDemod Demod;
423
424 // Lookup-Table to decide if 4 raw bits are a modulation.
425 // We accept three or four "1" in any position
426 const bool Mod_Manchester_LUT[] = {
427 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
428 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
429 };
430
431 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
433
434
435 void DemodReset()
436 {
437 Demod.state = DEMOD_UNSYNCD;
438 Demod.len = 0; // number of decoded data bytes
439 Demod.parityLen = 0;
440 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
441 Demod.parityBits = 0; //
442 Demod.collisionPos = 0; // Position of collision bit
443 Demod.twoBits = 0xffff; // buffer for 2 Bits
444 Demod.highCnt = 0;
445 Demod.startTime = 0;
446 Demod.endTime = 0;
447
448 //
449 Demod.bitCount = 0;
450 Demod.syncBit = 0xFFFF;
451 Demod.samples = 0;
452 }
453
454 void DemodInit(uint8_t *data, uint8_t *parity)
455 {
456 Demod.output = data;
457 Demod.parity = parity;
458 DemodReset();
459 }
460
461 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
463 {
464
465 Demod.twoBits = (Demod.twoBits << 8) | bit;
466
467 if (Demod.state == DEMOD_UNSYNCD) {
468
469 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
470 if (Demod.twoBits == 0x0000) {
471 Demod.highCnt++;
472 } else {
473 Demod.highCnt = 0;
474 }
475 } else {
476 Demod.syncBit = 0xFFFF; // not set
477 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
478 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
479 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
480 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
481 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
482 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
483 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
484 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
485 if (Demod.syncBit != 0xFFFF) {
486 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
487 Demod.startTime -= Demod.syncBit;
488 Demod.bitCount = offset; // number of decoded data bits
489 Demod.state = DEMOD_MANCHESTER_DATA;
490 }
491 }
492
493 } else {
494
495 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
497 if (!Demod.collisionPos) {
498 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
499 }
500 } // modulation in first half only - Sequence D = 1
501 Demod.bitCount++;
502 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
504 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
505 Demod.parityBits <<= 1; // make room for the parity bit
506 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
507 Demod.bitCount = 0;
508 Demod.shiftReg = 0;
509 if((Demod.len&0x0007) == 0) { // every 8 data bytes
510 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
511 Demod.parityBits = 0;
512 }
513 }
514 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
517 Demod.bitCount++;
518 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
519 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
520 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
521 Demod.parityBits <<= 1; // make room for the new parity bit
522 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
523 Demod.bitCount = 0;
524 Demod.shiftReg = 0;
525 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
526 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
527 Demod.parityBits = 0;
528 }
529 }
530 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
531 } else { // no modulation in both halves - End of communication
532 if(Demod.bitCount > 0) { // there are some remaining data bits
533 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
534 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
535 Demod.parityBits <<= 1; // add a (void) parity bit
536 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
537 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
538 return TRUE;
539 } else if (Demod.len & 0x0007) { // there are some parity bits to store
540 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
541 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
542 }
543 if (Demod.len) {
544 return TRUE; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
546 DemodReset();
547 }
548 }
549 }
550 }
551 return FALSE; // not finished yet, need more data
552 }
553
554 //=============================================================================
555 // Finally, a `sniffer' for ISO 14443 Type A
556 // Both sides of communication!
557 //=============================================================================
558
559 //-----------------------------------------------------------------------------
560 // Record the sequence of commands sent by the reader to the tag, with
561 // triggering so that we start recording at the point that the tag is moved
562 // near the reader.
563 //-----------------------------------------------------------------------------
564 void RAMFUNC SniffIso14443a(uint8_t param) {
565 // param:
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
568
569 LEDsoff();
570
571 // We won't start recording the frames that we acquire until we trigger;
572 // a good trigger condition to get started is probably when we see a
573 // response from the tag.
574 // triggered == FALSE -- to wait first for card
575 bool triggered = !(param & 0x03);
576
577 // Allocate memory from BigBuf for some buffers
578 // free all previous allocations first
579 BigBuf_free();
580
581 // The command (reader -> tag) that we're receiving.
582 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
583 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
584
585 // The response (tag -> reader) that we're receiving.
586 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
587 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
588
589 // The DMA buffer, used to stream samples from the FPGA
590 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
591
592 // init trace buffer
593 clear_trace();
594 set_tracing(TRUE);
595
596 uint8_t *data = dmaBuf;
597 uint8_t previous_data = 0;
598 int maxDataLen = 0;
599 int dataLen = 0;
600 bool TagIsActive = FALSE;
601 bool ReaderIsActive = FALSE;
602
603 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
604
605 // Set up the demodulator for tag -> reader responses.
606 DemodInit(receivedResponse, receivedResponsePar);
607
608 // Set up the demodulator for the reader -> tag commands
609 UartInit(receivedCmd, receivedCmdPar);
610
611 // Setup and start DMA.
612 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
613
614 // And now we loop, receiving samples.
615 for(uint32_t rsamples = 0; TRUE; ) {
616
617 if(BUTTON_PRESS()) {
618 DbpString("cancelled by button");
619 break;
620 }
621
622 LED_A_ON();
623 WDT_HIT();
624
625 int register readBufDataP = data - dmaBuf;
626 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
627 if (readBufDataP <= dmaBufDataP){
628 dataLen = dmaBufDataP - readBufDataP;
629 } else {
630 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
631 }
632 // test for length of buffer
633 if(dataLen > maxDataLen) {
634 maxDataLen = dataLen;
635 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
636 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
637 break;
638 }
639 }
640 if(dataLen < 1) continue;
641
642 // primary buffer was stopped( <-- we lost data!
643 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
644 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
645 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
646 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
647 }
648 // secondary buffer sets as primary, secondary buffer was stopped
649 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
650 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
651 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
652 }
653
654 LED_A_OFF();
655
656 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
657
658 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
659 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
660 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
661 LED_C_ON();
662
663 // check - if there is a short 7bit request from reader
664 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
665
666 if(triggered) {
667 if (!LogTrace(receivedCmd,
668 Uart.len,
669 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
670 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
671 Uart.parity,
672 TRUE)) break;
673 }
674 /* And ready to receive another command. */
675 UartReset();
676 //UartInit(receivedCmd, receivedCmdPar);
677 /* And also reset the demod code, which might have been */
678 /* false-triggered by the commands from the reader. */
679 DemodReset();
680 LED_B_OFF();
681 }
682 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
683 }
684
685 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
686 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
687 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
688 LED_B_ON();
689
690 if (!LogTrace(receivedResponse,
691 Demod.len,
692 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
693 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
694 Demod.parity,
695 FALSE)) break;
696
697 if ((!triggered) && (param & 0x01)) triggered = TRUE;
698
699 // And ready to receive another response.
700 DemodReset();
701 // And reset the Miller decoder including itS (now outdated) input buffer
702 UartInit(receivedCmd, receivedCmdPar);
703
704 LED_C_OFF();
705 }
706 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
707 }
708 }
709
710 previous_data = *data;
711 rsamples++;
712 data++;
713 if(data == dmaBuf + DMA_BUFFER_SIZE) {
714 data = dmaBuf;
715 }
716 } // main cycle
717
718 DbpString("COMMAND FINISHED");
719
720 FpgaDisableSscDma();
721 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
722 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
723 LEDsoff();
724 }
725
726 //-----------------------------------------------------------------------------
727 // Prepare tag messages
728 //-----------------------------------------------------------------------------
729 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
730 {
731 ToSendReset();
732
733 // Correction bit, might be removed when not needed
734 ToSendStuffBit(0);
735 ToSendStuffBit(0);
736 ToSendStuffBit(0);
737 ToSendStuffBit(0);
738 ToSendStuffBit(1); // 1
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
741 ToSendStuffBit(0);
742
743 // Send startbit
744 ToSend[++ToSendMax] = SEC_D;
745 LastProxToAirDuration = 8 * ToSendMax - 4;
746
747 for(uint16_t i = 0; i < len; i++) {
748 uint8_t b = cmd[i];
749
750 // Data bits
751 for(uint16_t j = 0; j < 8; j++) {
752 if(b & 1) {
753 ToSend[++ToSendMax] = SEC_D;
754 } else {
755 ToSend[++ToSendMax] = SEC_E;
756 }
757 b >>= 1;
758 }
759
760 // Get the parity bit
761 if (parity[i>>3] & (0x80>>(i&0x0007))) {
762 ToSend[++ToSendMax] = SEC_D;
763 LastProxToAirDuration = 8 * ToSendMax - 4;
764 } else {
765 ToSend[++ToSendMax] = SEC_E;
766 LastProxToAirDuration = 8 * ToSendMax;
767 }
768 }
769
770 // Send stopbit
771 ToSend[++ToSendMax] = SEC_F;
772
773 // Convert from last byte pos to length
774 ToSendMax++;
775 }
776
777 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
778 {
779 uint8_t par[MAX_PARITY_SIZE];
780
781 GetParity(cmd, len, par);
782 CodeIso14443aAsTagPar(cmd, len, par);
783 }
784
785
786 static void Code4bitAnswerAsTag(uint8_t cmd)
787 {
788 int i;
789
790 ToSendReset();
791
792 // Correction bit, might be removed when not needed
793 ToSendStuffBit(0);
794 ToSendStuffBit(0);
795 ToSendStuffBit(0);
796 ToSendStuffBit(0);
797 ToSendStuffBit(1); // 1
798 ToSendStuffBit(0);
799 ToSendStuffBit(0);
800 ToSendStuffBit(0);
801
802 // Send startbit
803 ToSend[++ToSendMax] = SEC_D;
804
805 uint8_t b = cmd;
806 for(i = 0; i < 4; i++) {
807 if(b & 1) {
808 ToSend[++ToSendMax] = SEC_D;
809 LastProxToAirDuration = 8 * ToSendMax - 4;
810 } else {
811 ToSend[++ToSendMax] = SEC_E;
812 LastProxToAirDuration = 8 * ToSendMax;
813 }
814 b >>= 1;
815 }
816
817 // Send stopbit
818 ToSend[++ToSendMax] = SEC_F;
819
820 // Convert from last byte pos to length
821 ToSendMax++;
822 }
823
824 //-----------------------------------------------------------------------------
825 // Wait for commands from reader
826 // Stop when button is pressed
827 // Or return TRUE when command is captured
828 //-----------------------------------------------------------------------------
829 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
830 {
831 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
832 // only, since we are receiving, not transmitting).
833 // Signal field is off with the appropriate LED
834 LED_D_OFF();
835 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
836
837 // Now run a `software UART' on the stream of incoming samples.
838 UartInit(received, parity);
839
840 // clear RXRDY:
841 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
842
843 for(;;) {
844 WDT_HIT();
845
846 if(BUTTON_PRESS()) return FALSE;
847
848 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
849 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
850 if(MillerDecoding(b, 0)) {
851 *len = Uart.len;
852 return TRUE;
853 }
854 }
855 }
856 }
857
858 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
859 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
860 int EmSend4bit(uint8_t resp);
861 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
862 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
863 int EmSendCmd(uint8_t *resp, uint16_t respLen);
864 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
865 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
866 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
867
868 static uint8_t* free_buffer_pointer;
869
870 typedef struct {
871 uint8_t* response;
872 size_t response_n;
873 uint8_t* modulation;
874 size_t modulation_n;
875 uint32_t ProxToAirDuration;
876 } tag_response_info_t;
877
878 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
879 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
880 // This will need the following byte array for a modulation sequence
881 // 144 data bits (18 * 8)
882 // 18 parity bits
883 // 2 Start and stop
884 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
885 // 1 just for the case
886 // ----------- +
887 // 166 bytes, since every bit that needs to be send costs us a byte
888 //
889
890
891 // Prepare the tag modulation bits from the message
892 CodeIso14443aAsTag(response_info->response,response_info->response_n);
893
894 // Make sure we do not exceed the free buffer space
895 if (ToSendMax > max_buffer_size) {
896 Dbprintf("Out of memory, when modulating bits for tag answer:");
897 Dbhexdump(response_info->response_n,response_info->response,false);
898 return false;
899 }
900
901 // Copy the byte array, used for this modulation to the buffer position
902 memcpy(response_info->modulation,ToSend,ToSendMax);
903
904 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
905 response_info->modulation_n = ToSendMax;
906 response_info->ProxToAirDuration = LastProxToAirDuration;
907
908 return true;
909 }
910
911
912 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
913 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
914 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
915 // -> need 273 bytes buffer
916 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
917 // 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
918 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
919
920 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
921 // Retrieve and store the current buffer index
922 response_info->modulation = free_buffer_pointer;
923
924 // Determine the maximum size we can use from our buffer
925 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
926
927 // Forward the prepare tag modulation function to the inner function
928 if (prepare_tag_modulation(response_info, max_buffer_size)) {
929 // Update the free buffer offset
930 free_buffer_pointer += ToSendMax;
931 return true;
932 } else {
933 return false;
934 }
935 }
936
937 //-----------------------------------------------------------------------------
938 // Main loop of simulated tag: receive commands from reader, decide what
939 // response to send, and send it.
940 //-----------------------------------------------------------------------------
941 void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data)
942 {
943
944 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
945 // This can be used in a reader-only attack.
946 // (it can also be retrieved via 'hf 14a list', but hey...
947 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
948 uint8_t ar_nr_collected = 0;
949
950 uint8_t sak;
951
952 // PACK response to PWD AUTH for EV1/NTAG
953 uint8_t response8[4];
954
955 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
956 uint8_t response1[2];
957
958 switch (tagType) {
959 case 1: { // MIFARE Classic
960 // Says: I am Mifare 1k - original line
961 response1[0] = 0x04;
962 response1[1] = 0x00;
963 sak = 0x08;
964 } break;
965 case 2: { // MIFARE Ultralight
966 // Says: I am a stupid memory tag, no crypto
967 response1[0] = 0x44;
968 response1[1] = 0x00;
969 sak = 0x00;
970 } break;
971 case 3: { // MIFARE DESFire
972 // Says: I am a DESFire tag, ph33r me
973 response1[0] = 0x04;
974 response1[1] = 0x03;
975 sak = 0x20;
976 } break;
977 case 4: { // ISO/IEC 14443-4
978 // Says: I am a javacard (JCOP)
979 response1[0] = 0x04;
980 response1[1] = 0x00;
981 sak = 0x28;
982 } break;
983 case 5: { // MIFARE TNP3XXX
984 // Says: I am a toy
985 response1[0] = 0x01;
986 response1[1] = 0x0f;
987 sak = 0x01;
988 } break;
989 case 6: { // MIFARE Mini
990 // Says: I am a Mifare Mini, 320b
991 response1[0] = 0x44;
992 response1[1] = 0x00;
993 sak = 0x09;
994 } break;
995 case 7: { // NTAG?
996 // Says: I am a NTAG,
997 response1[0] = 0x44;
998 response1[1] = 0x00;
999 sak = 0x00;
1000 // PACK
1001 response8[0] = 0x80;
1002 response8[1] = 0x80;
1003 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
1004 } break;
1005 default: {
1006 Dbprintf("Error: unkown tagtype (%d)",tagType);
1007 return;
1008 } break;
1009 }
1010
1011 // The second response contains the (mandatory) first 24 bits of the UID
1012 uint8_t response2[5] = {0x00};
1013
1014 // Check if the uid uses the (optional) part
1015 uint8_t response2a[5] = {0x00};
1016
1017 if (flags & FLAG_7B_UID_IN_DATA) {
1018 response2[0] = 0x88;
1019 response2[1] = data[0];
1020 response2[2] = data[1];
1021 response2[3] = data[2];
1022
1023 response2a[0] = data[3];
1024 response2a[1] = data[4];
1025 response2a[2] = data[5];
1026 response2a[3] = data[6]; //??
1027 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1028
1029 // Configure the ATQA and SAK accordingly
1030 response1[0] |= 0x40;
1031 sak |= 0x04;
1032 } else {
1033 memcpy(response2, data, 4);
1034 //num_to_bytes(uid_1st,4,response2);
1035 // Configure the ATQA and SAK accordingly
1036 response1[0] &= 0xBF;
1037 sak &= 0xFB;
1038 }
1039
1040 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1041 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1042
1043 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1044 uint8_t response3[3] = {0x00};
1045 response3[0] = sak;
1046 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1047
1048 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1049 uint8_t response3a[3] = {0x00};
1050 response3a[0] = sak & 0xFB;
1051 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1052
1053 uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
1054 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1055 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1056 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1057 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1058 // TC(1) = 0x02: CID supported, NAD not supported
1059 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1060
1061 // Prepare GET_VERSION (different for EV-1 / NTAG)
1062 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1063 uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1064
1065 // Prepare CHK_TEARING
1066 uint8_t response9[] = {0xBD,0x90,0x3f};
1067
1068 #define TAG_RESPONSE_COUNT 10
1069 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1070 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1071 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1072 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1073 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1074 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1075 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1076 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1077 { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
1078 { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
1079 { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
1080 };
1081
1082 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1083 // Such a response is less time critical, so we can prepare them on the fly
1084 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1085 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1086 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1087 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1088 tag_response_info_t dynamic_response_info = {
1089 .response = dynamic_response_buffer,
1090 .response_n = 0,
1091 .modulation = dynamic_modulation_buffer,
1092 .modulation_n = 0
1093 };
1094
1095 BigBuf_free_keep_EM();
1096
1097 // allocate buffers:
1098 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1099 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1100 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1101
1102 // clear trace
1103 clear_trace();
1104 set_tracing(TRUE);
1105
1106 // Prepare the responses of the anticollision phase
1107 // there will be not enough time to do this at the moment the reader sends it REQA
1108 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1109 prepare_allocated_tag_modulation(&responses[i]);
1110 }
1111
1112 int len = 0;
1113
1114 // To control where we are in the protocol
1115 int order = 0;
1116 int lastorder;
1117
1118 // Just to allow some checks
1119 int happened = 0;
1120 int happened2 = 0;
1121 int cmdsRecvd = 0;
1122
1123 // We need to listen to the high-frequency, peak-detected path.
1124 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1125
1126 cmdsRecvd = 0;
1127 tag_response_info_t* p_response;
1128
1129 LED_A_ON();
1130 for(;;) {
1131 // Clean receive command buffer
1132
1133 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1134 DbpString("Button press");
1135 break;
1136 }
1137
1138 p_response = NULL;
1139
1140 // Okay, look at the command now.
1141 lastorder = order;
1142 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1143 p_response = &responses[0]; order = 1;
1144 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1145 p_response = &responses[0]; order = 6;
1146 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1147 p_response = &responses[1]; order = 2;
1148 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1149 p_response = &responses[2]; order = 20;
1150 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1151 p_response = &responses[3]; order = 3;
1152 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1153 p_response = &responses[4]; order = 30;
1154 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1155 uint8_t block = receivedCmd[1];
1156 if ( tagType == 7 ) {
1157 uint8_t start = 4 * block;
1158
1159 if ( block < 4 ) {
1160 //NTAG 215
1161 uint8_t blockdata[50] = {
1162 data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
1163 data[3],data[4],data[5],data[6],
1164 data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
1165 0xe1,0x10,0x12,0x00,
1166 0x03,0x00,0xfe,0x00,
1167 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1168 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1169 0x00,0x00,0x00,0x00,
1170 0x00,0x00};
1171 AppendCrc14443a(blockdata+start, 16);
1172 EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
1173 } else {
1174 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1175 emlGetMemBt( emdata, start, 16);
1176 AppendCrc14443a(emdata, 16);
1177 EmSendCmdEx(emdata, sizeof(emdata), false);
1178 }
1179 p_response = NULL;
1180
1181 } else {
1182 EmSendCmdEx(data+(4*block),16,false);
1183 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1184 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1185 p_response = NULL;
1186 }
1187 } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
1188
1189 uint8_t emdata[MAX_FRAME_SIZE];
1190 int start = receivedCmd[1] * 4;
1191 int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
1192 emlGetMemBt( emdata, start, len);
1193 AppendCrc14443a(emdata, len);
1194 EmSendCmdEx(emdata, len+2, false);
1195 p_response = NULL;
1196
1197 } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
1198 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1199 uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1200 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1201 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1202 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1203 0x00,0x00};
1204 AppendCrc14443a(data, sizeof(data)-2);
1205 EmSendCmdEx(data,sizeof(data),false);
1206 p_response = NULL;
1207 } else if(receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
1208 uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
1209 EmSendCmdEx(data,sizeof(data),false);
1210 p_response = NULL;
1211 } else if(receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
1212 // number of counter
1213 //uint8_t counter = receivedCmd[1];
1214 //uint32_t val = bytes_to_num(receivedCmd+2,4);
1215
1216 // send ACK
1217 uint8_t ack[] = {0x0a};
1218 EmSendCmdEx(ack,sizeof(ack),false);
1219 p_response = NULL;
1220
1221 } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1222 p_response = &responses[9];
1223 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1224
1225 if (tracing) {
1226 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1227 }
1228 p_response = NULL;
1229 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1230
1231 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1232 p_response = &responses[7];
1233 } else {
1234 p_response = &responses[5]; order = 7;
1235 }
1236 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1237 if (tagType == 1 || tagType == 2) { // RATS not supported
1238 EmSend4bit(CARD_NACK_NA);
1239 p_response = NULL;
1240 } else {
1241 p_response = &responses[6]; order = 70;
1242 }
1243 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1244 if (tracing) {
1245 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1246 }
1247 uint32_t nonce = bytes_to_num(response5,4);
1248 uint32_t nr = bytes_to_num(receivedCmd,4);
1249 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1250 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1251
1252 if(flags & FLAG_NR_AR_ATTACK )
1253 {
1254 if(ar_nr_collected < 2){
1255 // Avoid duplicates... probably not necessary, nr should vary.
1256 //if(ar_nr_responses[3] != nr){
1257 ar_nr_responses[ar_nr_collected*5] = 0;
1258 ar_nr_responses[ar_nr_collected*5+1] = 0;
1259 ar_nr_responses[ar_nr_collected*5+2] = nonce;
1260 ar_nr_responses[ar_nr_collected*5+3] = nr;
1261 ar_nr_responses[ar_nr_collected*5+4] = ar;
1262 ar_nr_collected++;
1263 //}
1264 }
1265
1266 if(ar_nr_collected > 1 ) {
1267
1268 if (MF_DBGLEVEL >= 2) {
1269 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1270 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1271 ar_nr_responses[0], // UID1
1272 ar_nr_responses[1], // UID2
1273 ar_nr_responses[2], // NT
1274 ar_nr_responses[3], // AR1
1275 ar_nr_responses[4], // NR1
1276 ar_nr_responses[8], // AR2
1277 ar_nr_responses[9] // NR2
1278 );
1279 }
1280 uint8_t len = ar_nr_collected*5*4;
1281 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
1282 ar_nr_collected = 0;
1283 memset(ar_nr_responses, 0x00, len);
1284 }
1285 }
1286 } else if (receivedCmd[0] == 0x1a ) // ULC authentication
1287 {
1288
1289 }
1290 else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
1291 {
1292 if ( tagType == 7 ) {
1293 p_response = &responses[8]; // PACK response
1294 uint32_t pwd = bytes_to_num(receivedCmd+1,4);
1295 Dbprintf("Auth attempt: %08x", pwd);
1296 }
1297 }
1298 else {
1299 // Check for ISO 14443A-4 compliant commands, look at left nibble
1300 switch (receivedCmd[0]) {
1301
1302 case 0x0B:
1303 case 0x0A: { // IBlock (command)
1304 dynamic_response_info.response[0] = receivedCmd[0];
1305 dynamic_response_info.response[1] = 0x00;
1306 dynamic_response_info.response[2] = 0x90;
1307 dynamic_response_info.response[3] = 0x00;
1308 dynamic_response_info.response_n = 4;
1309 } break;
1310
1311 case 0x1A:
1312 case 0x1B: { // Chaining command
1313 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1314 dynamic_response_info.response_n = 2;
1315 } break;
1316
1317 case 0xaa:
1318 case 0xbb: {
1319 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1320 dynamic_response_info.response_n = 2;
1321 } break;
1322
1323 case 0xBA: { //
1324 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1325 dynamic_response_info.response_n = 2;
1326 } break;
1327
1328 case 0xCA:
1329 case 0xC2: { // Readers sends deselect command
1330 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1331 dynamic_response_info.response_n = 2;
1332 } break;
1333
1334 default: {
1335 // Never seen this command before
1336 if (tracing) {
1337 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1338 }
1339 Dbprintf("Received unknown command (len=%d):",len);
1340 Dbhexdump(len,receivedCmd,false);
1341 // Do not respond
1342 dynamic_response_info.response_n = 0;
1343 } break;
1344 }
1345
1346 if (dynamic_response_info.response_n > 0) {
1347 // Copy the CID from the reader query
1348 dynamic_response_info.response[1] = receivedCmd[1];
1349
1350 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1351 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1352 dynamic_response_info.response_n += 2;
1353
1354 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1355 Dbprintf("Error preparing tag response");
1356 if (tracing) {
1357 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1358 }
1359 break;
1360 }
1361 p_response = &dynamic_response_info;
1362 }
1363 }
1364
1365 // Count number of wakeups received after a halt
1366 if(order == 6 && lastorder == 5) { happened++; }
1367
1368 // Count number of other messages after a halt
1369 if(order != 6 && lastorder == 5) { happened2++; }
1370
1371 if(cmdsRecvd > 999) {
1372 DbpString("1000 commands later...");
1373 break;
1374 }
1375 cmdsRecvd++;
1376
1377 if (p_response != NULL) {
1378 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1379 // do the tracing for the previous reader request and this tag answer:
1380 uint8_t par[MAX_PARITY_SIZE];
1381 GetParity(p_response->response, p_response->response_n, par);
1382
1383 EmLogTrace(Uart.output,
1384 Uart.len,
1385 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1386 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1387 Uart.parity,
1388 p_response->response,
1389 p_response->response_n,
1390 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1391 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1392 par);
1393 }
1394
1395 if (!tracing) {
1396 Dbprintf("Trace Full. Simulation stopped.");
1397 break;
1398 }
1399 }
1400
1401 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1402 BigBuf_free_keep_EM();
1403 LED_A_OFF();
1404
1405 Dbprintf("-[ Wake ups after halt [%d]", happened);
1406 Dbprintf("-[ Messages after halt [%d]", happened2);
1407 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
1408 }
1409
1410
1411 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1412 // of bits specified in the delay parameter.
1413 void PrepareDelayedTransfer(uint16_t delay)
1414 {
1415 uint8_t bitmask = 0;
1416 uint8_t bits_to_shift = 0;
1417 uint8_t bits_shifted = 0;
1418
1419 delay &= 0x07;
1420 if (delay) {
1421 for (uint16_t i = 0; i < delay; i++) {
1422 bitmask |= (0x01 << i);
1423 }
1424 ToSend[ToSendMax++] = 0x00;
1425 for (uint16_t i = 0; i < ToSendMax; i++) {
1426 bits_to_shift = ToSend[i] & bitmask;
1427 ToSend[i] = ToSend[i] >> delay;
1428 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1429 bits_shifted = bits_to_shift;
1430 }
1431 }
1432 }
1433
1434
1435 //-------------------------------------------------------------------------------------
1436 // Transmit the command (to the tag) that was placed in ToSend[].
1437 // Parameter timing:
1438 // if NULL: transfer at next possible time, taking into account
1439 // request guard time and frame delay time
1440 // if == 0: transfer immediately and return time of transfer
1441 // if != 0: delay transfer until time specified
1442 //-------------------------------------------------------------------------------------
1443 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1444 {
1445
1446 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1447
1448 uint32_t ThisTransferTime = 0;
1449
1450 if (timing) {
1451 if(*timing == 0) { // Measure time
1452 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1453 } else {
1454 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1455 }
1456 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1457 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1458 LastTimeProxToAirStart = *timing;
1459 } else {
1460 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1461 while(GetCountSspClk() < ThisTransferTime);
1462 LastTimeProxToAirStart = ThisTransferTime;
1463 }
1464
1465 // clear TXRDY
1466 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1467
1468 uint16_t c = 0;
1469 for(;;) {
1470 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1471 AT91C_BASE_SSC->SSC_THR = cmd[c];
1472 c++;
1473 if(c >= len) {
1474 break;
1475 }
1476 }
1477 }
1478
1479 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1480 }
1481
1482
1483 //-----------------------------------------------------------------------------
1484 // Prepare reader command (in bits, support short frames) to send to FPGA
1485 //-----------------------------------------------------------------------------
1486 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1487 {
1488 int i, j;
1489 int last;
1490 uint8_t b;
1491
1492 ToSendReset();
1493
1494 // Start of Communication (Seq. Z)
1495 ToSend[++ToSendMax] = SEC_Z;
1496 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1497 last = 0;
1498
1499 size_t bytecount = nbytes(bits);
1500 // Generate send structure for the data bits
1501 for (i = 0; i < bytecount; i++) {
1502 // Get the current byte to send
1503 b = cmd[i];
1504 size_t bitsleft = MIN((bits-(i*8)),8);
1505
1506 for (j = 0; j < bitsleft; j++) {
1507 if (b & 1) {
1508 // Sequence X
1509 ToSend[++ToSendMax] = SEC_X;
1510 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1511 last = 1;
1512 } else {
1513 if (last == 0) {
1514 // Sequence Z
1515 ToSend[++ToSendMax] = SEC_Z;
1516 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1517 } else {
1518 // Sequence Y
1519 ToSend[++ToSendMax] = SEC_Y;
1520 last = 0;
1521 }
1522 }
1523 b >>= 1;
1524 }
1525
1526 // Only transmit parity bit if we transmitted a complete byte
1527 if (j == 8 && parity != NULL) {
1528 // Get the parity bit
1529 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1530 // Sequence X
1531 ToSend[++ToSendMax] = SEC_X;
1532 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1533 last = 1;
1534 } else {
1535 if (last == 0) {
1536 // Sequence Z
1537 ToSend[++ToSendMax] = SEC_Z;
1538 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1539 } else {
1540 // Sequence Y
1541 ToSend[++ToSendMax] = SEC_Y;
1542 last = 0;
1543 }
1544 }
1545 }
1546 }
1547
1548 // End of Communication: Logic 0 followed by Sequence Y
1549 if (last == 0) {
1550 // Sequence Z
1551 ToSend[++ToSendMax] = SEC_Z;
1552 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1553 } else {
1554 // Sequence Y
1555 ToSend[++ToSendMax] = SEC_Y;
1556 last = 0;
1557 }
1558 ToSend[++ToSendMax] = SEC_Y;
1559
1560 // Convert to length of command:
1561 ToSendMax++;
1562 }
1563
1564 //-----------------------------------------------------------------------------
1565 // Prepare reader command to send to FPGA
1566 //-----------------------------------------------------------------------------
1567 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1568 {
1569 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1570 }
1571
1572
1573 //-----------------------------------------------------------------------------
1574 // Wait for commands from reader
1575 // Stop when button is pressed (return 1) or field was gone (return 2)
1576 // Or return 0 when command is captured
1577 //-----------------------------------------------------------------------------
1578 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1579 {
1580 *len = 0;
1581
1582 uint32_t timer = 0, vtime = 0;
1583 int analogCnt = 0;
1584 int analogAVG = 0;
1585
1586 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1587 // only, since we are receiving, not transmitting).
1588 // Signal field is off with the appropriate LED
1589 LED_D_OFF();
1590 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1591
1592 // Set ADC to read field strength
1593 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1594 AT91C_BASE_ADC->ADC_MR =
1595 ADC_MODE_PRESCALE(63) |
1596 ADC_MODE_STARTUP_TIME(1) |
1597 ADC_MODE_SAMPLE_HOLD_TIME(15);
1598 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1599 // start ADC
1600 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1601
1602 // Now run a 'software UART' on the stream of incoming samples.
1603 UartInit(received, parity);
1604
1605 // Clear RXRDY:
1606 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1607
1608 for(;;) {
1609 WDT_HIT();
1610
1611 if (BUTTON_PRESS()) return 1;
1612
1613 // test if the field exists
1614 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1615 analogCnt++;
1616 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1617 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1618 if (analogCnt >= 32) {
1619 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1620 vtime = GetTickCount();
1621 if (!timer) timer = vtime;
1622 // 50ms no field --> card to idle state
1623 if (vtime - timer > 50) return 2;
1624 } else
1625 if (timer) timer = 0;
1626 analogCnt = 0;
1627 analogAVG = 0;
1628 }
1629 }
1630
1631 // receive and test the miller decoding
1632 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1633 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1634 if(MillerDecoding(b, 0)) {
1635 *len = Uart.len;
1636 return 0;
1637 }
1638 }
1639
1640 }
1641 }
1642
1643
1644 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1645 {
1646 uint8_t b;
1647 uint16_t i = 0;
1648 uint32_t ThisTransferTime;
1649
1650 // Modulate Manchester
1651 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1652
1653 // include correction bit if necessary
1654 if (Uart.parityBits & 0x01) {
1655 correctionNeeded = TRUE;
1656 }
1657 if(correctionNeeded) {
1658 // 1236, so correction bit needed
1659 i = 0;
1660 } else {
1661 i = 1;
1662 }
1663
1664 // clear receiving shift register and holding register
1665 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1666 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1667 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1668 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1669
1670 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1671 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1672 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1673 if (AT91C_BASE_SSC->SSC_RHR) break;
1674 }
1675
1676 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1677
1678 // Clear TXRDY:
1679 AT91C_BASE_SSC->SSC_THR = SEC_F;
1680
1681 // send cycle
1682 for(; i < respLen; ) {
1683 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1684 AT91C_BASE_SSC->SSC_THR = resp[i++];
1685 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1686 }
1687
1688 if(BUTTON_PRESS()) {
1689 break;
1690 }
1691 }
1692
1693 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1694 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1695 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1696 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1697 AT91C_BASE_SSC->SSC_THR = SEC_F;
1698 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1699 i++;
1700 }
1701 }
1702
1703 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1704
1705 return 0;
1706 }
1707
1708 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1709 Code4bitAnswerAsTag(resp);
1710 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1711 // do the tracing for the previous reader request and this tag answer:
1712 uint8_t par[1];
1713 GetParity(&resp, 1, par);
1714 EmLogTrace(Uart.output,
1715 Uart.len,
1716 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1717 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1718 Uart.parity,
1719 &resp,
1720 1,
1721 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1722 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1723 par);
1724 return res;
1725 }
1726
1727 int EmSend4bit(uint8_t resp){
1728 return EmSend4bitEx(resp, false);
1729 }
1730
1731 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1732 CodeIso14443aAsTagPar(resp, respLen, par);
1733 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1734 // do the tracing for the previous reader request and this tag answer:
1735 EmLogTrace(Uart.output,
1736 Uart.len,
1737 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1738 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1739 Uart.parity,
1740 resp,
1741 respLen,
1742 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1743 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1744 par);
1745 return res;
1746 }
1747
1748 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1749 uint8_t par[MAX_PARITY_SIZE];
1750 GetParity(resp, respLen, par);
1751 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1752 }
1753
1754 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1755 uint8_t par[MAX_PARITY_SIZE];
1756 GetParity(resp, respLen, par);
1757 return EmSendCmdExPar(resp, respLen, false, par);
1758 }
1759
1760 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1761 return EmSendCmdExPar(resp, respLen, false, par);
1762 }
1763
1764 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1765 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1766 {
1767 if (tracing) {
1768 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1769 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1770 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1771 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1772 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1773 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1774 reader_EndTime = tag_StartTime - exact_fdt;
1775 reader_StartTime = reader_EndTime - reader_modlen;
1776 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1777 return FALSE;
1778 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1779 } else {
1780 return TRUE;
1781 }
1782 }
1783
1784 //-----------------------------------------------------------------------------
1785 // Wait a certain time for tag response
1786 // If a response is captured return TRUE
1787 // If it takes too long return FALSE
1788 //-----------------------------------------------------------------------------
1789 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1790 {
1791 uint32_t c = 0x00;
1792
1793 // Set FPGA mode to "reader listen mode", no modulation (listen
1794 // only, since we are receiving, not transmitting).
1795 // Signal field is on with the appropriate LED
1796 LED_D_ON();
1797 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1798
1799 // Now get the answer from the card
1800 DemodInit(receivedResponse, receivedResponsePar);
1801
1802 // clear RXRDY:
1803 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1804
1805 for(;;) {
1806 WDT_HIT();
1807
1808 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1809 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1810 if(ManchesterDecoding(b, offset, 0)) {
1811 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1812 return TRUE;
1813 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1814 return FALSE;
1815 }
1816 }
1817 }
1818 }
1819
1820
1821 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1822 {
1823 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1824
1825 // Send command to tag
1826 TransmitFor14443a(ToSend, ToSendMax, timing);
1827 if(trigger)
1828 LED_A_ON();
1829
1830 // Log reader command in trace buffer
1831 if (tracing) {
1832 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1833 }
1834 }
1835
1836
1837 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1838 {
1839 ReaderTransmitBitsPar(frame, len*8, par, timing);
1840 }
1841
1842
1843 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1844 {
1845 // Generate parity and redirect
1846 uint8_t par[MAX_PARITY_SIZE];
1847 GetParity(frame, len/8, par);
1848 ReaderTransmitBitsPar(frame, len, par, timing);
1849 }
1850
1851
1852 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1853 {
1854 // Generate parity and redirect
1855 uint8_t par[MAX_PARITY_SIZE];
1856 GetParity(frame, len, par);
1857 ReaderTransmitBitsPar(frame, len*8, par, timing);
1858 }
1859
1860 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1861 {
1862 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1863 if (tracing) {
1864 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1865 }
1866 return Demod.len;
1867 }
1868
1869 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1870 {
1871 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1872 if (tracing) {
1873 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1874 }
1875 return Demod.len;
1876 }
1877
1878 /* performs iso14443a anticollision procedure
1879 * fills the uid pointer unless NULL
1880 * fills resp_data unless NULL */
1881 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1882 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1883 uint8_t sel_all[] = { 0x93,0x20 };
1884 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1885 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1886 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1887 uint8_t resp_par[MAX_PARITY_SIZE];
1888 byte_t uid_resp[4];
1889 size_t uid_resp_len;
1890
1891 uint8_t sak = 0x04; // cascade uid
1892 int cascade_level = 0;
1893 int len;
1894
1895 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1896 ReaderTransmitBitsPar(wupa,7,0, NULL);
1897
1898 // Receive the ATQA
1899 if(!ReaderReceive(resp, resp_par)) return 0;
1900
1901 if(p_hi14a_card) {
1902 memcpy(p_hi14a_card->atqa, resp, 2);
1903 p_hi14a_card->uidlen = 0;
1904 memset(p_hi14a_card->uid,0,10);
1905 }
1906
1907 // clear uid
1908 if (uid_ptr) {
1909 memset(uid_ptr,0,10);
1910 }
1911
1912 // check for proprietary anticollision:
1913 if ((resp[0] & 0x1F) == 0) {
1914 return 3;
1915 }
1916
1917 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1918 // which case we need to make a cascade 2 request and select - this is a long UID
1919 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1920 for(; sak & 0x04; cascade_level++) {
1921 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1922 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1923
1924 // SELECT_ALL
1925 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1926 if (!ReaderReceive(resp, resp_par)) return 0;
1927
1928 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1929 memset(uid_resp, 0, 4);
1930 uint16_t uid_resp_bits = 0;
1931 uint16_t collision_answer_offset = 0;
1932 // anti-collision-loop:
1933 while (Demod.collisionPos) {
1934 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1935 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1936 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1937 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1938 }
1939 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1940 uid_resp_bits++;
1941 // construct anticollosion command:
1942 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1943 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1944 sel_uid[2+i] = uid_resp[i];
1945 }
1946 collision_answer_offset = uid_resp_bits%8;
1947 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1948 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1949 }
1950 // finally, add the last bits and BCC of the UID
1951 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1952 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1953 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1954 }
1955
1956 } else { // no collision, use the response to SELECT_ALL as current uid
1957 memcpy(uid_resp, resp, 4);
1958 }
1959 uid_resp_len = 4;
1960
1961 // calculate crypto UID. Always use last 4 Bytes.
1962 if(cuid_ptr) {
1963 *cuid_ptr = bytes_to_num(uid_resp, 4);
1964 }
1965
1966 // Construct SELECT UID command
1967 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1968 memcpy(sel_uid+2, uid_resp, 4); // the UID
1969 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1970 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1971 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1972
1973 // Receive the SAK
1974 if (!ReaderReceive(resp, resp_par)) return 0;
1975 sak = resp[0];
1976
1977 // Test if more parts of the uid are coming
1978 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1979 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1980 // http://www.nxp.com/documents/application_note/AN10927.pdf
1981 uid_resp[0] = uid_resp[1];
1982 uid_resp[1] = uid_resp[2];
1983 uid_resp[2] = uid_resp[3];
1984
1985 uid_resp_len = 3;
1986 }
1987
1988 if(uid_ptr) {
1989 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1990 }
1991
1992 if(p_hi14a_card) {
1993 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1994 p_hi14a_card->uidlen += uid_resp_len;
1995 }
1996 }
1997
1998 if(p_hi14a_card) {
1999 p_hi14a_card->sak = sak;
2000 p_hi14a_card->ats_len = 0;
2001 }
2002
2003 // non iso14443a compliant tag
2004 if( (sak & 0x20) == 0) return 2;
2005
2006 // Request for answer to select
2007 AppendCrc14443a(rats, 2);
2008 ReaderTransmit(rats, sizeof(rats), NULL);
2009
2010 if (!(len = ReaderReceive(resp, resp_par))) return 0;
2011
2012
2013 if(p_hi14a_card) {
2014 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
2015 p_hi14a_card->ats_len = len;
2016 }
2017
2018 // reset the PCB block number
2019 iso14_pcb_blocknum = 0;
2020
2021 // set default timeout based on ATS
2022 iso14a_set_ATS_timeout(resp);
2023
2024 return 1;
2025 }
2026
2027 void iso14443a_setup(uint8_t fpga_minor_mode) {
2028 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
2029 // Set up the synchronous serial port
2030 FpgaSetupSsc();
2031 // connect Demodulated Signal to ADC:
2032 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2033
2034 // Signal field is on with the appropriate LED
2035 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
2036 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
2037 LED_D_ON();
2038 } else {
2039 LED_D_OFF();
2040 }
2041 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
2042
2043 // Start the timer
2044 StartCountSspClk();
2045
2046 DemodReset();
2047 UartReset();
2048 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
2049 iso14a_set_timeout(10*106); // 10ms default
2050 }
2051
2052 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
2053 uint8_t parity[MAX_PARITY_SIZE];
2054 uint8_t real_cmd[cmd_len+4];
2055 real_cmd[0] = 0x0a; //I-Block
2056 // put block number into the PCB
2057 real_cmd[0] |= iso14_pcb_blocknum;
2058 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2059 memcpy(real_cmd+2, cmd, cmd_len);
2060 AppendCrc14443a(real_cmd,cmd_len+2);
2061
2062 ReaderTransmit(real_cmd, cmd_len+4, NULL);
2063 size_t len = ReaderReceive(data, parity);
2064 uint8_t *data_bytes = (uint8_t *) data;
2065 if (!len)
2066 return 0; //DATA LINK ERROR
2067 // if we received an I- or R(ACK)-Block with a block number equal to the
2068 // current block number, toggle the current block number
2069 else if (len >= 4 // PCB+CID+CRC = 4 bytes
2070 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2071 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2072 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
2073 {
2074 iso14_pcb_blocknum ^= 1;
2075 }
2076
2077 return len;
2078 }
2079
2080 //-----------------------------------------------------------------------------
2081 // Read an ISO 14443a tag. Send out commands and store answers.
2082 //
2083 //-----------------------------------------------------------------------------
2084 void ReaderIso14443a(UsbCommand *c)
2085 {
2086 iso14a_command_t param = c->arg[0];
2087 uint8_t *cmd = c->d.asBytes;
2088 size_t len = c->arg[1] & 0xffff;
2089 size_t lenbits = c->arg[1] >> 16;
2090 uint32_t timeout = c->arg[2];
2091 uint32_t arg0 = 0;
2092 byte_t buf[USB_CMD_DATA_SIZE];
2093 uint8_t par[MAX_PARITY_SIZE];
2094
2095 if(param & ISO14A_CONNECT) {
2096 clear_trace();
2097 }
2098
2099 set_tracing(TRUE);
2100
2101 if(param & ISO14A_REQUEST_TRIGGER) {
2102 iso14a_set_trigger(TRUE);
2103 }
2104
2105 if(param & ISO14A_CONNECT) {
2106 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
2107 if(!(param & ISO14A_NO_SELECT)) {
2108 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2109 arg0 = iso14443a_select_card(NULL,card,NULL);
2110 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2111 }
2112 }
2113
2114 if(param & ISO14A_SET_TIMEOUT) {
2115 iso14a_set_timeout(timeout);
2116 }
2117
2118 if(param & ISO14A_APDU) {
2119 arg0 = iso14_apdu(cmd, len, buf);
2120 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2121 }
2122
2123 if(param & ISO14A_RAW) {
2124 if(param & ISO14A_APPEND_CRC) {
2125 if(param & ISO14A_TOPAZMODE) {
2126 AppendCrc14443b(cmd,len);
2127 } else {
2128 AppendCrc14443a(cmd,len);
2129 }
2130 len += 2;
2131 if (lenbits) lenbits += 16;
2132 }
2133 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2134 if(param & ISO14A_TOPAZMODE) {
2135 int bits_to_send = lenbits;
2136 uint16_t i = 0;
2137 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2138 bits_to_send -= 7;
2139 while (bits_to_send > 0) {
2140 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2141 bits_to_send -= 8;
2142 }
2143 } else {
2144 GetParity(cmd, lenbits/8, par);
2145 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2146 }
2147 } else { // want to send complete bytes only
2148 if(param & ISO14A_TOPAZMODE) {
2149 uint16_t i = 0;
2150 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2151 while (i < len) {
2152 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2153 }
2154 } else {
2155 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2156 }
2157 }
2158 arg0 = ReaderReceive(buf, par);
2159 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2160 }
2161
2162 if(param & ISO14A_REQUEST_TRIGGER) {
2163 iso14a_set_trigger(FALSE);
2164 }
2165
2166 if(param & ISO14A_NO_DISCONNECT) {
2167 return;
2168 }
2169
2170 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2171 LEDsoff();
2172 }
2173
2174
2175 // Determine the distance between two nonces.
2176 // Assume that the difference is small, but we don't know which is first.
2177 // Therefore try in alternating directions.
2178 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2179
2180 if (nt1 == nt2) return 0;
2181
2182 uint16_t i;
2183 uint32_t nttmp1 = nt1;
2184 uint32_t nttmp2 = nt2;
2185
2186 for (i = 1; i < 32768; i++) {
2187 nttmp1 = prng_successor(nttmp1, 1);
2188 if (nttmp1 == nt2) return i;
2189 nttmp2 = prng_successor(nttmp2, 1);
2190 if (nttmp2 == nt1) return -i;
2191 }
2192
2193 return(-99999); // either nt1 or nt2 are invalid nonces
2194 }
2195
2196
2197 //-----------------------------------------------------------------------------
2198 // Recover several bits of the cypher stream. This implements (first stages of)
2199 // the algorithm described in "The Dark Side of Security by Obscurity and
2200 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2201 // (article by Nicolas T. Courtois, 2009)
2202 //-----------------------------------------------------------------------------
2203 void ReaderMifare(bool first_try) {
2204 // free eventually allocated BigBuf memory. We want all for tracing.
2205 BigBuf_free();
2206
2207 clear_trace();
2208 set_tracing(TRUE);
2209
2210 // Mifare AUTH
2211 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2212 uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
2213 static uint8_t mf_nr_ar3 = 0;
2214
2215 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 };
2216 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 };
2217
2218 byte_t nt_diff = 0;
2219 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2220 static byte_t par_low = 0;
2221 bool led_on = TRUE;
2222 uint8_t uid[10] = {0x00};
2223 //uint32_t cuid = 0x00;
2224
2225 uint32_t nt = 0;
2226 uint32_t previous_nt = 0;
2227 static uint32_t nt_attacked = 0;
2228 byte_t par_list[8] = {0x00};
2229 byte_t ks_list[8] = {0x00};
2230
2231 static uint32_t sync_time = 0;
2232 static uint32_t sync_cycles = 0;
2233 int catch_up_cycles = 0;
2234 int last_catch_up = 0;
2235 uint16_t consecutive_resyncs = 0;
2236 int isOK = 0;
2237
2238 int numWrongDistance = 0;
2239
2240 if (first_try) {
2241 mf_nr_ar3 = 0;
2242 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2243 sync_time = GetCountSspClk() & 0xfffffff8;
2244 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2245 nt_attacked = 0;
2246 nt = 0;
2247 par[0] = 0;
2248 }
2249 else {
2250 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2251 mf_nr_ar3++;
2252 mf_nr_ar[3] = mf_nr_ar3;
2253 par[0] = par_low;
2254 }
2255
2256 LED_A_ON();
2257 LED_B_OFF();
2258 LED_C_OFF();
2259 LED_C_ON();
2260
2261 for(uint16_t i = 0; TRUE; i++) {
2262
2263 WDT_HIT();
2264
2265 // Test if the action was cancelled
2266 if(BUTTON_PRESS()) break;
2267
2268 if (numWrongDistance > 1000) {
2269 isOK = 0;
2270 break;
2271 }
2272
2273 //if(!iso14443a_select_card(uid, NULL, &cuid)) {
2274 if(!iso14443a_select_card(uid, NULL, NULL)) {
2275 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2276 continue;
2277 }
2278
2279 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2280 catch_up_cycles = 0;
2281
2282 // if we missed the sync time already, advance to the next nonce repeat
2283 while(GetCountSspClk() > sync_time) {
2284 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2285 }
2286
2287 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2288 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2289
2290 // Receive the (4 Byte) "random" nonce
2291 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2292 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2293 continue;
2294 }
2295
2296 previous_nt = nt;
2297 nt = bytes_to_num(receivedAnswer, 4);
2298
2299 // Transmit reader nonce with fake par
2300 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2301
2302 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2303 int nt_distance = dist_nt(previous_nt, nt);
2304 if (nt_distance == 0) {
2305 nt_attacked = nt;
2306 }
2307 else {
2308
2309 // invalid nonce received, try again
2310 if (nt_distance == -99999) {
2311 numWrongDistance++;
2312 if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
2313 continue;
2314 }
2315
2316 sync_cycles = (sync_cycles - nt_distance);
2317 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2318 continue;
2319 }
2320 }
2321
2322 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2323 catch_up_cycles = -dist_nt(nt_attacked, nt);
2324 if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one.
2325 catch_up_cycles = 0;
2326 continue;
2327 }
2328 if (catch_up_cycles == last_catch_up) {
2329 consecutive_resyncs++;
2330 }
2331 else {
2332 last_catch_up = catch_up_cycles;
2333 consecutive_resyncs = 0;
2334 }
2335 if (consecutive_resyncs < 3) {
2336 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2337 }
2338 else {
2339 sync_cycles = sync_cycles + catch_up_cycles;
2340 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2341 }
2342 continue;
2343 }
2344
2345 consecutive_resyncs = 0;
2346
2347 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2348 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
2349 {
2350 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2351
2352 if (nt_diff == 0)
2353 {
2354 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2355 }
2356
2357 led_on = !led_on;
2358 if(led_on) LED_B_ON(); else LED_B_OFF();
2359
2360 par_list[nt_diff] = SwapBits(par[0], 8);
2361 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2362
2363 // Test if the information is complete
2364 if (nt_diff == 0x07) {
2365 isOK = 1;
2366 break;
2367 }
2368
2369 nt_diff = (nt_diff + 1) & 0x07;
2370 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2371 par[0] = par_low;
2372 } else {
2373 if (nt_diff == 0 && first_try)
2374 {
2375 par[0]++;
2376 } else {
2377 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2378 }
2379 }
2380 }
2381
2382 mf_nr_ar[3] &= 0x1F;
2383
2384 byte_t buf[28] = {0x00};
2385
2386 memcpy(buf + 0, uid, 4);
2387 num_to_bytes(nt, 4, buf + 4);
2388 memcpy(buf + 8, par_list, 8);
2389 memcpy(buf + 16, ks_list, 8);
2390 memcpy(buf + 24, mf_nr_ar, 4);
2391
2392 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2393
2394 set_tracing(FALSE);
2395 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2396 LEDsoff();
2397 }
2398
2399
2400 /*
2401 *MIFARE 1K simulate.
2402 *
2403 *@param flags :
2404 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2405 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2406 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2407 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2408 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2409 */
2410 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2411 {
2412 int cardSTATE = MFEMUL_NOFIELD;
2413 int _7BUID = 0;
2414 int vHf = 0; // in mV
2415 int res;
2416 uint32_t selTimer = 0;
2417 uint32_t authTimer = 0;
2418 uint16_t len = 0;
2419 uint8_t cardWRBL = 0;
2420 uint8_t cardAUTHSC = 0;
2421 uint8_t cardAUTHKEY = 0xff; // no authentication
2422 // uint32_t cardRr = 0;
2423 uint32_t cuid = 0;
2424 //uint32_t rn_enc = 0;
2425 uint32_t ans = 0;
2426 uint32_t cardINTREG = 0;
2427 uint8_t cardINTBLOCK = 0;
2428 struct Crypto1State mpcs = {0, 0};
2429 struct Crypto1State *pcs;
2430 pcs = &mpcs;
2431 uint32_t numReads = 0;//Counts numer of times reader read a block
2432 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2433 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2434 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2435 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2436
2437 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2438 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2439 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2440 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2441 uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2442 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2443
2444 uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
2445 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2446
2447 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2448 // This can be used in a reader-only attack.
2449 // (it can also be retrieved via 'hf 14a list', but hey...
2450 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
2451 uint8_t ar_nr_collected = 0;
2452
2453 // free eventually allocated BigBuf memory but keep Emulator Memory
2454 BigBuf_free_keep_EM();
2455
2456 // clear trace
2457 clear_trace();
2458 set_tracing(TRUE);
2459
2460 // Authenticate response - nonce
2461 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2462
2463 //-- Determine the UID
2464 // Can be set from emulator memory, incoming data
2465 // and can be 7 or 4 bytes long
2466 if (flags & FLAG_4B_UID_IN_DATA)
2467 {
2468 // 4B uid comes from data-portion of packet
2469 memcpy(rUIDBCC1,datain,4);
2470 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2471
2472 } else if (flags & FLAG_7B_UID_IN_DATA) {
2473 // 7B uid comes from data-portion of packet
2474 memcpy(&rUIDBCC1[1],datain,3);
2475 memcpy(rUIDBCC2, datain+3, 4);
2476 _7BUID = true;
2477 } else {
2478 // get UID from emul memory
2479 emlGetMemBt(receivedCmd, 7, 1);
2480 _7BUID = !(receivedCmd[0] == 0x00);
2481 if (!_7BUID) { // ---------- 4BUID
2482 emlGetMemBt(rUIDBCC1, 0, 4);
2483 } else { // ---------- 7BUID
2484 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2485 emlGetMemBt(rUIDBCC2, 3, 4);
2486 }
2487 }
2488
2489 // save uid.
2490 ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
2491 if ( _7BUID )
2492 ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
2493
2494 /*
2495 * Regardless of what method was used to set the UID, set fifth byte and modify
2496 * the ATQA for 4 or 7-byte UID
2497 */
2498 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2499 if (_7BUID) {
2500 rATQA[0] = 0x44;
2501 rUIDBCC1[0] = 0x88;
2502 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2503 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2504 }
2505
2506 // We need to listen to the high-frequency, peak-detected path.
2507 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2508
2509
2510 if (MF_DBGLEVEL >= 1) {
2511 if (!_7BUID) {
2512 Dbprintf("4B UID: %02x%02x%02x%02x",
2513 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2514 } else {
2515 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2516 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2517 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2518 }
2519 }
2520
2521 bool finished = FALSE;
2522 while (!BUTTON_PRESS() && !finished) {
2523 WDT_HIT();
2524
2525 // find reader field
2526 if (cardSTATE == MFEMUL_NOFIELD) {
2527 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2528 if (vHf > MF_MINFIELDV) {
2529 cardSTATE_TO_IDLE();
2530 LED_A_ON();
2531 }
2532 }
2533 if(cardSTATE == MFEMUL_NOFIELD) continue;
2534
2535 //Now, get data
2536 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2537 if (res == 2) { //Field is off!
2538 cardSTATE = MFEMUL_NOFIELD;
2539 LEDsoff();
2540 continue;
2541 } else if (res == 1) {
2542 break; //return value 1 means button press
2543 }
2544
2545 // REQ or WUP request in ANY state and WUP in HALTED state
2546 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2547 selTimer = GetTickCount();
2548 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2549 cardSTATE = MFEMUL_SELECT1;
2550
2551 // init crypto block
2552 LED_B_OFF();
2553 LED_C_OFF();
2554 crypto1_destroy(pcs);
2555 cardAUTHKEY = 0xff;
2556 continue;
2557 }
2558
2559 switch (cardSTATE) {
2560 case MFEMUL_NOFIELD:
2561 case MFEMUL_HALTED:
2562 case MFEMUL_IDLE:{
2563 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2564 break;
2565 }
2566 case MFEMUL_SELECT1:{
2567 // select all
2568 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2569 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2570 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2571 break;
2572 }
2573
2574 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2575 {
2576 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2577 }
2578 // select card
2579 if (len == 9 &&
2580 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2581 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2582 cuid = bytes_to_num(rUIDBCC1, 4);
2583 if (!_7BUID) {
2584 cardSTATE = MFEMUL_WORK;
2585 LED_B_ON();
2586 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2587 break;
2588 } else {
2589 cardSTATE = MFEMUL_SELECT2;
2590 }
2591 }
2592 break;
2593 }
2594 case MFEMUL_AUTH1:{
2595 if( len != 8)
2596 {
2597 cardSTATE_TO_IDLE();
2598 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2599 break;
2600 }
2601
2602 uint32_t ar = bytes_to_num(receivedCmd, 4);
2603 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2604
2605 //Collect AR/NR
2606 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2607 if(ar_nr_collected < 2){
2608 if(ar_nr_responses[2] != ar)
2609 {// Avoid duplicates... probably not necessary, ar should vary.
2610 //ar_nr_responses[ar_nr_collected*5] = 0;
2611 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2612 ar_nr_responses[ar_nr_collected*5+2] = nonce;
2613 ar_nr_responses[ar_nr_collected*5+3] = nr;
2614 ar_nr_responses[ar_nr_collected*5+4] = ar;
2615 ar_nr_collected++;
2616 }
2617 // Interactive mode flag, means we need to send ACK
2618 if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
2619 {
2620 finished = true;
2621 }
2622 }
2623
2624 // --- crypto
2625 //crypto1_word(pcs, ar , 1);
2626 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2627
2628 //test if auth OK
2629 //if (cardRr != prng_successor(nonce, 64)){
2630
2631 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2632 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2633 // cardRr, prng_successor(nonce, 64));
2634 // Shouldn't we respond anything here?
2635 // Right now, we don't nack or anything, which causes the
2636 // reader to do a WUPA after a while. /Martin
2637 // -- which is the correct response. /piwi
2638 //cardSTATE_TO_IDLE();
2639 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2640 //break;
2641 //}
2642
2643 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2644
2645 num_to_bytes(ans, 4, rAUTH_AT);
2646 // --- crypto
2647 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2648 LED_C_ON();
2649 cardSTATE = MFEMUL_WORK;
2650 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2651 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2652 GetTickCount() - authTimer);
2653 break;
2654 }
2655 case MFEMUL_SELECT2:{
2656 if (!len) {
2657 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2658 break;
2659 }
2660 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2661 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2662 break;
2663 }
2664
2665 // select 2 card
2666 if (len == 9 &&
2667 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2668 EmSendCmd(rSAK, sizeof(rSAK));
2669 cuid = bytes_to_num(rUIDBCC2, 4);
2670 cardSTATE = MFEMUL_WORK;
2671 LED_B_ON();
2672 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2673 break;
2674 }
2675
2676 // i guess there is a command). go into the work state.
2677 if (len != 4) {
2678 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2679 break;
2680 }
2681 cardSTATE = MFEMUL_WORK;
2682 //goto lbWORK;
2683 //intentional fall-through to the next case-stmt
2684 }
2685
2686 case MFEMUL_WORK:{
2687 if (len == 0) {
2688 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2689 break;
2690 }
2691
2692 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2693
2694 if(encrypted_data) {
2695 // decrypt seqence
2696 mf_crypto1_decrypt(pcs, receivedCmd, len);
2697 }
2698
2699 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2700 authTimer = GetTickCount();
2701 cardAUTHSC = receivedCmd[1] / 4; // received block num
2702 cardAUTHKEY = receivedCmd[0] - 0x60;
2703 crypto1_destroy(pcs);//Added by martin
2704 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2705
2706 if (!encrypted_data) { // first authentication
2707 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2708
2709 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2710 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2711 } else { // nested authentication
2712 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2713 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2714 num_to_bytes(ans, 4, rAUTH_AT);
2715 }
2716
2717 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2718 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2719 cardSTATE = MFEMUL_AUTH1;
2720 break;
2721 }
2722
2723 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2724 // BUT... ACK --> NACK
2725 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2726 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2727 break;
2728 }
2729
2730 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2731 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2732 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2733 break;
2734 }
2735
2736 if(len != 4) {
2737 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2738 break;
2739 }
2740
2741 if(receivedCmd[0] == 0x30 // read block
2742 || receivedCmd[0] == 0xA0 // write block
2743 || receivedCmd[0] == 0xC0 // inc
2744 || receivedCmd[0] == 0xC1 // dec
2745 || receivedCmd[0] == 0xC2 // restore
2746 || receivedCmd[0] == 0xB0) { // transfer
2747 if (receivedCmd[1] >= 16 * 4) {
2748 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2749 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2750 break;
2751 }
2752
2753 if (receivedCmd[1] / 4 != cardAUTHSC) {
2754 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2755 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2756 break;
2757 }
2758 }
2759 // read block
2760 if (receivedCmd[0] == 0x30) {
2761 if (MF_DBGLEVEL >= 4) {
2762 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2763 }
2764 emlGetMem(response, receivedCmd[1], 1);
2765 AppendCrc14443a(response, 16);
2766 mf_crypto1_encrypt(pcs, response, 18, response_par);
2767 EmSendCmdPar(response, 18, response_par);
2768 numReads++;
2769 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
2770 Dbprintf("%d reads done, exiting", numReads);
2771 finished = true;
2772 }
2773 break;
2774 }
2775 // write block
2776 if (receivedCmd[0] == 0xA0) {
2777 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2778 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2779 cardSTATE = MFEMUL_WRITEBL2;
2780 cardWRBL = receivedCmd[1];
2781 break;
2782 }
2783 // increment, decrement, restore
2784 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2785 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2786 if (emlCheckValBl(receivedCmd[1])) {
2787 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2788 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2789 break;
2790 }
2791 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2792 if (receivedCmd[0] == 0xC1)
2793 cardSTATE = MFEMUL_INTREG_INC;
2794 if (receivedCmd[0] == 0xC0)
2795 cardSTATE = MFEMUL_INTREG_DEC;
2796 if (receivedCmd[0] == 0xC2)
2797 cardSTATE = MFEMUL_INTREG_REST;
2798 cardWRBL = receivedCmd[1];
2799 break;
2800 }
2801 // transfer
2802 if (receivedCmd[0] == 0xB0) {
2803 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2804 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2805 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2806 else
2807 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2808 break;
2809 }
2810 // halt
2811 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2812 LED_B_OFF();
2813 LED_C_OFF();
2814 cardSTATE = MFEMUL_HALTED;
2815 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2816 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2817 break;
2818 }
2819 // RATS
2820 if (receivedCmd[0] == 0xe0) {//RATS
2821 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2822 break;
2823 }
2824 // command not allowed
2825 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2826 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2827 break;
2828 }
2829 case MFEMUL_WRITEBL2:{
2830 if (len == 18){
2831 mf_crypto1_decrypt(pcs, receivedCmd, len);
2832 emlSetMem(receivedCmd, cardWRBL, 1);
2833 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2834 cardSTATE = MFEMUL_WORK;
2835 } else {
2836 cardSTATE_TO_IDLE();
2837 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2838 }
2839 break;
2840 }
2841
2842 case MFEMUL_INTREG_INC:{
2843 mf_crypto1_decrypt(pcs, receivedCmd, len);
2844 memcpy(&ans, receivedCmd, 4);
2845 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2846 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2847 cardSTATE_TO_IDLE();
2848 break;
2849 }
2850 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2851 cardINTREG = cardINTREG + ans;
2852 cardSTATE = MFEMUL_WORK;
2853 break;
2854 }
2855 case MFEMUL_INTREG_DEC:{
2856 mf_crypto1_decrypt(pcs, receivedCmd, len);
2857 memcpy(&ans, receivedCmd, 4);
2858 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2859 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2860 cardSTATE_TO_IDLE();
2861 break;
2862 }
2863 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2864 cardINTREG = cardINTREG - ans;
2865 cardSTATE = MFEMUL_WORK;
2866 break;
2867 }
2868 case MFEMUL_INTREG_REST:{
2869 mf_crypto1_decrypt(pcs, receivedCmd, len);
2870 memcpy(&ans, receivedCmd, 4);
2871 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2872 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2873 cardSTATE_TO_IDLE();
2874 break;
2875 }
2876 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2877 cardSTATE = MFEMUL_WORK;
2878 break;
2879 }
2880 }
2881 }
2882
2883 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2884 LEDsoff();
2885
2886 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2887 {
2888 //May just aswell send the collected ar_nr in the response aswell
2889 uint8_t len = ar_nr_collected*5*4;
2890 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
2891 }
2892
2893 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
2894 {
2895 if(ar_nr_collected > 1 ) {
2896 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2897 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
2898 ar_nr_responses[0], // UID1
2899 ar_nr_responses[1], // UID2
2900 ar_nr_responses[2], // NT
2901 ar_nr_responses[3], // AR1
2902 ar_nr_responses[4], // NR1
2903 ar_nr_responses[8], // AR2
2904 ar_nr_responses[9] // NR2
2905 );
2906 } else {
2907 Dbprintf("Failed to obtain two AR/NR pairs!");
2908 if(ar_nr_collected > 0 ) {
2909 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2910 ar_nr_responses[0], // UID1
2911 ar_nr_responses[1], // UID2
2912 ar_nr_responses[2], // NT
2913 ar_nr_responses[3], // AR1
2914 ar_nr_responses[4] // NR1
2915 );
2916 }
2917 }
2918 }
2919 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
2920 }
2921
2922
2923 //-----------------------------------------------------------------------------
2924 // MIFARE sniffer.
2925 //
2926 //-----------------------------------------------------------------------------
2927 void RAMFUNC SniffMifare(uint8_t param) {
2928 // param:
2929 // bit 0 - trigger from first card answer
2930 // bit 1 - trigger from first reader 7-bit request
2931
2932 // free eventually allocated BigBuf memory
2933 BigBuf_free();
2934
2935 // C(red) A(yellow) B(green)
2936 LEDsoff();
2937 // init trace buffer
2938 clear_trace();
2939 set_tracing(TRUE);
2940
2941 // The command (reader -> tag) that we're receiving.
2942 // The length of a received command will in most cases be no more than 18 bytes.
2943 // So 32 should be enough!
2944 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2945 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
2946 // The response (tag -> reader) that we're receiving.
2947 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2948 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
2949
2950 // allocate the DMA buffer, used to stream samples from the FPGA
2951 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
2952 uint8_t *data = dmaBuf;
2953 uint8_t previous_data = 0;
2954 int maxDataLen = 0;
2955 int dataLen = 0;
2956 bool ReaderIsActive = FALSE;
2957 bool TagIsActive = FALSE;
2958
2959 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2960
2961 // Set up the demodulator for tag -> reader responses.
2962 DemodInit(receivedResponse, receivedResponsePar);
2963
2964 // Set up the demodulator for the reader -> tag commands
2965 UartInit(receivedCmd, receivedCmdPar);
2966
2967 // Setup for the DMA.
2968 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2969
2970 LED_D_OFF();
2971
2972 // init sniffer
2973 MfSniffInit();
2974
2975 // And now we loop, receiving samples.
2976 for(uint32_t sniffCounter = 0; TRUE; ) {
2977
2978 if(BUTTON_PRESS()) {
2979 DbpString("cancelled by button");
2980 break;
2981 }
2982
2983 LED_A_ON();
2984 WDT_HIT();
2985
2986 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2987 // check if a transaction is completed (timeout after 2000ms).
2988 // if yes, stop the DMA transfer and send what we have so far to the client
2989 if (MfSniffSend(2000)) {
2990 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2991 sniffCounter = 0;
2992 data = dmaBuf;
2993 maxDataLen = 0;
2994 ReaderIsActive = FALSE;
2995 TagIsActive = FALSE;
2996 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2997 }
2998 }
2999
3000 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
3001 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
3002 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
3003 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
3004 } else {
3005 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
3006 }
3007 // test for length of buffer
3008 if(dataLen > maxDataLen) { // we are more behind than ever...
3009 maxDataLen = dataLen;
3010 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
3011 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
3012 break;
3013 }
3014 }
3015 if(dataLen < 1) continue;
3016
3017 // primary buffer was stopped ( <-- we lost data!
3018 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3019 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3020 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
3021 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
3022 }
3023 // secondary buffer sets as primary, secondary buffer was stopped
3024 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3025 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
3026 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3027 }
3028
3029 LED_A_OFF();
3030
3031 if (sniffCounter & 0x01) {
3032
3033 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
3034 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3035 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3036 LED_C_INV();
3037 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
3038
3039 /* And ready to receive another command. */
3040 //UartInit(receivedCmd, receivedCmdPar);
3041 UartReset();
3042
3043 /* And also reset the demod code */
3044 DemodReset();
3045 }
3046 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3047 }
3048
3049 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
3050 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3051 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3052 LED_C_INV();
3053
3054 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
3055
3056 // And ready to receive another response.
3057 DemodReset();
3058
3059 // And reset the Miller decoder including its (now outdated) input buffer
3060 UartInit(receivedCmd, receivedCmdPar);
3061 }
3062 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3063 }
3064 }
3065
3066 previous_data = *data;
3067 sniffCounter++;
3068 data++;
3069 if(data == dmaBuf + DMA_BUFFER_SIZE) {
3070 data = dmaBuf;
3071 }
3072
3073 } // main cycle
3074
3075 DbpString("COMMAND FINISHED");
3076
3077 FpgaDisableSscDma();
3078 MfSniffEnd();
3079
3080 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
3081 LEDsoff();
3082 }
Impressum, Datenschutz