1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // LEGIC RF simulation code
9 //-----------------------------------------------------------------------------
13 static struct legic_frame
{
24 static crc_t legic_crc
;
25 static int legic_read_count
;
26 static uint32_t legic_prng_bc
;
27 static uint32_t legic_prng_iv
;
29 static int legic_phase_drift
;
30 static int legic_frame_drift
;
31 static int legic_reqresp_drift
;
39 static void setup_timer(void) {
40 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
41 // this it won't be terribly accurate but should be good enough.
43 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
44 timer = AT91C_BASE_TC1;
45 timer->TC_CCR = AT91C_TC_CLKDIS;
46 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
47 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
50 // Set up Timer 2 to use for measuring time between frames in
51 // tag simulation mode. Runs 4x faster as Timer 1
53 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
54 prng_timer = AT91C_BASE_TC2;
55 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
56 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
57 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
61 // At TIMER_CLOCK3 (MCK/32)
62 //#define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */
63 //#define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */
64 //#define RWD_TIME_PAUSE 30 /* 20us */
66 #define RWD_TIME_1 80 /* READER_TIME_PAUSE off, 80us on = 100us */
67 #define RWD_TIME_0 40 /* READER_TIME_PAUSE off, 40us on = 60us */
68 #define RWD_TIME_PAUSE 20 /* 20us */
70 #define TAG_BIT_PERIOD 100 // 100us for every bit
72 #define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */
75 //#define TAG_TIME_WAIT 490 /* 490 time from READER frame end to TAG frame start, experimentally determined */
76 #define TAG_TIME_WAIT 258 // 330us from READER frame end to TAG frame start, experimentally determined
77 #define RDW_TIME_WAIT 258 //
80 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
81 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
83 #define OFFSET_LOG 1024
85 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
88 //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
89 # define SHORT_COIL() LOW(GPIO_SSC_DOUT);
92 //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
93 # define OPEN_COIL() HIGH(GPIO_SSC_DOUT);
96 uint32_t stop_send_frame_us
= 0;
98 // ~ 258us + 100us*delay
99 #define WAIT(delay) SpinDelayUs(delay);
100 #define WAIT_100 WAIT(100)
102 #define COIL_PULSE(delay) \
104 SpinDelayUs(RWD_TIME_PAUSE); \
108 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
109 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
110 #define LEGIC_CARD_MEMSIZE 1024
111 static uint8_t* cardmem
;
113 // Starts Clock and waits until its reset
114 static void Reset(AT91PS_TC clock
){
115 clock
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
116 while(clock
->TC_CV
> 1) ;
119 // Starts Clock and waits until its reset
120 static void ResetClock(void){
124 // Prng works when waiting in 99.1us cycles.
125 // and while sending/receiving in bit frames (100, 60)
126 static void CalibratePrng( uint32_t time
){
127 // Calculate Cycles based on timer 100us
128 uint32_t i
= (time
- stop_send_frame_us
) / 100 ;
130 // substract cycles of finished frames
131 int k
= i
- legic_prng_count()+1;
133 // substract current frame length, rewind to beginning
135 legic_prng_forward(k
);
138 /* Generate Keystream */
139 static uint32_t get_key_stream(int skip
, int count
)
144 // Use int to enlarge timer tc to 32bit
145 legic_prng_bc
+= prng_timer
->TC_CV
;
147 // reset the prng timer.
150 /* If skip == -1, forward prng time based */
152 i
= (legic_prng_bc
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */
153 i
-= legic_prng_count(); /* substract cycles of finished frames */
154 i
-= count
; /* substract current frame length, rewind to beginning */
155 legic_prng_forward(i
);
157 legic_prng_forward(skip
);
160 i
= (count
== 6) ? -1 : legic_read_count
;
162 /* Write Time Data into LOG */
163 // uint8_t *BigBuf = BigBuf_get_addr();
164 // BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
165 // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff;
166 // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
167 // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
168 // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
169 // BigBuf[OFFSET_LOG+384+i] = count;
171 /* Generate KeyStream */
172 for(i
=0; i
<count
; i
++) {
173 key
|= legic_prng_get_bit() << i
;
174 legic_prng_forward(1);
179 /* Send a frame in tag mode, the FPGA must have been set up by
182 static void frame_send_tag(uint16_t response
, uint8_t bits
, uint8_t crypt
) {
183 /* Bitbang the response */
185 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
186 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
188 /* Use time to crypt frame */
190 legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */
191 response
^= legic_prng_get_bits(bits
);
194 /* Wait for the frame start */
195 WAIT( TAG_TIME_WAIT
)
198 for(int i
= 0; i
< bits
; i
++) {
213 /* Send a frame in reader mode, the FPGA must have been set up by
216 static void frame_sendAsReader(uint32_t data
, uint8_t bits
){
218 uint32_t starttime
= GetCountUS();
219 uint32_t send
= data
;
220 uint8_t prng1
= legic_prng_count() ;
222 uint16_t lfsr
= legic_prng_get_bits(bits
);
224 // xor the lsfr onto data.
227 for (; mask
< BITMASK(bits
); mask
<<= 1) {
229 COIL_PULSE(RWD_TIME_1
)
231 COIL_PULSE(RWD_TIME_0
)
235 // One final pause to mark the end of the frame
239 stop_send_frame_us
= GetCountUS();
240 uint8_t cmdbytes
[] = {
248 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, stop_send_frame_us
, NULL
, TRUE
);
251 /* Receive a frame from the card in reader emulation mode, the FPGA and
252 * timer must have been set up by LegicRfReader and frame_sendAsReader.
254 * The LEGIC RF protocol from card to reader does not include explicit
255 * frame start/stop information or length information. The reader must
256 * know beforehand how many bits it wants to receive. (Notably: a card
257 * sending a stream of 0-bits is indistinguishable from no card present.)
259 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
260 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
261 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
262 * for edges. Count the edges in each bit interval. If they are approximately
263 * 0 this was a 0-bit, if they are approximately equal to the number of edges
264 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
265 * timer that's still running from frame_sendAsReader in order to get a synchronization
266 * with the frame that we just sent.
268 * FIXME: Because we're relying on the hysteresis to just do the right thing
269 * the range is severely reduced (and you'll probably also need a good antenna).
270 * So this should be fixed some time in the future for a proper receiver.
272 static void frame_receiveAsReader(struct legic_frame
* const f
, uint8_t bits
, uint8_t crypt
) {
274 uint32_t starttime
= GetCountUS();
277 uint32_t the_bit
= 1;
278 uint32_t next_bit_at
;
279 uint32_t data
;/* Use a bitmask to save on shifts */
281 int old_level
= 0, edges
= 0, level
= 0;
283 if(bits
> 32) bits
= 32;
285 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
286 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
288 // calibrate the prng.
289 // the time between end-of-send and here, div 100us
290 CalibratePrng( starttime
);
292 // precompute the cipher
293 uint8_t prng1
= legic_prng_count() ;
295 data
= legic_prng_get_bits(bits
);
297 uint16_t lsfr
= data
;
299 // FIXED time between sending frame and now listening frame.
301 //uint32_t iced = GetCountUS() - starttime;
302 //uint32_t icetime = TAG_TIME_WAIT - iced;
303 // if (icetime > TAG_TIME_WAIT)
304 // icetime = TAG_TIME_WAIT;
307 next_bit_at
= GetCountUS();
308 next_bit_at
+= TAG_BIT_PERIOD
;
310 for( i
= 0; i
< bits
; i
++) {
312 while ( GetCountUS() < next_bit_at
) {
314 level
= AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
;
316 if (level
!= old_level
)
320 next_bit_at
+= TAG_BIT_PERIOD
;
322 // We expect 42 edges == ONE
323 if(edges
> 20 && edges
< 60) {
334 uint8_t cmdbytes
[] = {
342 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GetCountUS(), NULL
, FALSE
);
345 static void frame_append_bit(struct legic_frame
* const f
, int bit
) {
346 // Overflow, won't happen
347 if (f
->bits
>= 31) return;
349 f
->data
|= (bit
<< f
->bits
);
353 static void frame_clean(struct legic_frame
* const f
) {
358 // Setup pm3 as a Legic Reader
359 static uint32_t perform_setup_phase_rwd(uint8_t iv
) {
361 // Switch on carrier and let the tag charge for 1ms
371 frame_sendAsReader(iv
, 7);
373 // Now both tag and reader has same IV. Prng can start.
376 frame_clean(¤t_frame
);
378 frame_receiveAsReader(¤t_frame
, 6, 1);
380 // fixed delay before sending ack.
381 WAIT(TAG_BIT_PERIOD
);
383 // Send obsfuscated acknowledgment frame.
384 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
385 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
386 switch ( current_frame
.data
) {
388 frame_sendAsReader(0x19, 6);
392 frame_sendAsReader(0x39, 6);
397 return current_frame
.data
;
399 // End of Setup Phase.
402 static void LegicCommonInit(void) {
403 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
404 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
406 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
);
408 /* Bitbang the transmitter */
410 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
411 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
413 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
414 cardmem
= BigBuf_malloc(LEGIC_CARD_MEMSIZE
);
415 memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
);
420 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
425 /* Switch off carrier, make sure tag is reset */
426 static void switch_off_tag_rwd(void) {
432 // calculate crc4 for a legic READ command
433 // 5,8,10 address size.
434 static int LegicCRC(uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) {
435 crc_clear(&legic_crc
);
436 uint32_t temp
= (value
<< cmd_sz
) | (byte_index
<< 1) | LEGIC_READ
;
437 crc_update(&legic_crc
, temp
, cmd_sz
+ 8 );
438 // crc_update(&legic_crc, LEGIC_READ, 1);
439 // crc_update(&legic_crc, byte_index, cmd_sz-1);
440 // crc_update(&legic_crc, value, 8);
441 return crc_finish(&legic_crc
);
444 int legic_read_byte(int byte_index
, int cmd_sz
) {
447 uint8_t byte
= 0, crc
= 0;
448 uint32_t cmd
= (byte_index
<< 1) | LEGIC_READ
;
450 legic_prng_forward(3);
453 frame_sendAsReader(cmd
, cmd_sz
);
455 frame_clean(¤t_frame
);
457 frame_receiveAsReader(¤t_frame
, 12, 1);
459 byte
= current_frame
.data
& 0xff;
460 calcCrc
= LegicCRC(byte_index
, byte
, cmd_sz
);
461 crc
= (current_frame
.data
>> 8);
463 if( calcCrc
!= crc
) {
464 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc
, crc
);
472 * - assemble a write_cmd_frame with crc and send it
473 * - wait until the tag sends back an ACK ('1' bit unencrypted)
474 * - forward the prng based on the timing
476 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
477 int legic_write_byte(int byte
, int addr
, int addr_sz
) {
479 //do not write UID, CRC at offset 0-4.
480 if(addr
<= 0x04) return 0;
483 crc_clear(&legic_crc
);
484 crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */
485 crc_update(&legic_crc
, addr
, addr_sz
);
486 crc_update(&legic_crc
, byte
, 8);
487 uint32_t crc
= crc_finish(&legic_crc
);
489 // send write command
490 uint32_t cmd
= ((crc
<<(addr_sz
+1+8)) //CRC
491 |(byte
<<(addr_sz
+1)) //Data
492 |(addr
<<1) //Address
493 |(0x00 <<0)); //CMD = W
494 uint32_t cmd_sz
= addr_sz
+1+8+4; //crc+data+cmd
496 legic_prng_forward(2); /* we wait anyways */
498 while(timer
->TC_CV
< 387) ; /* ~ 258us */
500 frame_sendAsReader(cmd
, cmd_sz
);
502 // wllm-rbnt doesnt have these
503 // AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
504 // AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
507 int t
, old_level
= 0, edges
= 0;
510 while(timer
->TC_CV
< 387) ; /* ~ 258us */
512 for( t
= 0; t
< 80; t
++) {
514 next_bit_at
+= TAG_BIT_PERIOD
;
515 while(timer
->TC_CV
< next_bit_at
) {
516 int level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
517 if(level
!= old_level
) {
522 if(edges
> 20 && edges
< 60) { /* expected are 42 edges */
523 int t
= timer
->TC_CV
;
524 int c
= t
/ TAG_BIT_PERIOD
;
527 legic_prng_forward(c
);
536 int LegicRfReader(int offset
, int bytes
, int iv
) {
538 int byte_index
= 0, cmd_sz
= 0, card_sz
= 0;
540 if ( MF_DBGLEVEL
>= 2) Dbprintf("setting up legic card, IV = %x", iv
);
544 uint32_t tag_type
= perform_setup_phase_rwd(iv
);
546 //we lose to mutch time with dprintf
547 switch_off_tag_rwd();
551 if ( MF_DBGLEVEL
>= 2) DbpString("MIM22 card found, reading card ...");
556 if ( MF_DBGLEVEL
>= 2) DbpString("MIM256 card found, reading card ...");
561 if ( MF_DBGLEVEL
>= 2) DbpString("MIM1024 card found, reading card ...");
566 if ( MF_DBGLEVEL
>= 1) Dbprintf("Unknown card format: %x",tag_type
);
572 if(bytes
+offset
>= card_sz
)
573 bytes
= card_sz
- offset
;
575 // Start setup and read bytes.
576 perform_setup_phase_rwd(iv
);
579 while (byte_index
< bytes
) {
580 int r
= legic_read_byte(byte_index
+offset
, cmd_sz
);
582 if (r
== -1 || BUTTON_PRESS()) {
583 switch_off_tag_rwd();
585 if ( MF_DBGLEVEL
>= 2) DbpString("operation aborted");
586 cmd_send(CMD_ACK
,0,0,0,0,0);
589 cardmem
[byte_index
] = r
;
594 switch_off_tag_rwd();
596 uint8_t len
= (bytes
& 0x3FF);
597 cmd_send(CMD_ACK
,1,len
,0,0,0);
601 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
605 perform_setup_phase_rwd(iv);
606 //legic_prng_forward(2);
607 while(byte_index < bytes) {
610 //check if the DCF should be changed
611 if ( (offset == 0x05) && (bytes == 0x02) ) {
612 //write DCF in reverse order (addr 0x06 before 0x05)
613 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
614 //legic_prng_forward(1);
617 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
619 //legic_prng_forward(1);
622 r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
624 if((r != 0) || BUTTON_PRESS()) {
625 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
626 switch_off_tag_rwd();
634 if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
638 DbpString("write successful");
642 void LegicRfWriter(int offset
, int bytes
, int iv
) {
644 int byte_index
= 0, addr_sz
= 0;
648 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
650 uint32_t tag_type
= perform_setup_phase_rwd(iv
);
652 switch_off_tag_rwd();
656 if(offset
+bytes
> 22) {
657 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset
+bytes
);
661 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+bytes
);
664 if(offset
+bytes
> 0x100) {
665 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset
+bytes
);
669 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+bytes
);
672 if(offset
+bytes
> 0x400) {
673 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset
+bytes
);
677 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset
+bytes
);
680 Dbprintf("No or unknown card found, aborting");
685 perform_setup_phase_rwd(iv
);
686 while(byte_index
< bytes
) {
689 //check if the DCF should be changed
690 if ( ((byte_index
+offset
) == 0x05) && (bytes
>= 0x02) ) {
691 //write DCF in reverse order (addr 0x06 before 0x05)
692 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
694 // write second byte on success...
697 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
701 r
= legic_write_byte(cardmem
[byte_index
+offset
], byte_index
+offset
, addr_sz
);
704 if((r
!= 0) || BUTTON_PRESS()) {
705 Dbprintf("operation aborted @ 0x%03.3x", byte_index
);
706 switch_off_tag_rwd();
715 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
718 void LegicRfRawWriter(int address
, int byte
, int iv
) {
720 int byte_index
= 0, addr_sz
= 0;
724 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
726 uint32_t tag_type
= perform_setup_phase_rwd(iv
);
728 switch_off_tag_rwd();
733 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
);
737 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
740 if(address
> 0x100) {
741 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
);
745 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
748 if(address
> 0x400) {
749 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
);
753 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
);
756 Dbprintf("No or unknown card found, aborting");
760 Dbprintf("integer value: %d address: %d addr_sz: %d", byte
, address
, addr_sz
);
763 perform_setup_phase_rwd(iv
);
764 //legic_prng_forward(2);
766 int r
= legic_write_byte(byte
, address
, addr_sz
);
768 if((r
!= 0) || BUTTON_PRESS()) {
769 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
);
770 switch_off_tag_rwd();
776 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
779 /* Handle (whether to respond) a frame in tag mode
780 * Only called when simulating a tag.
782 static void frame_handle_tag(struct legic_frame
const * const f
)
784 uint8_t *BigBuf
= BigBuf_get_addr();
786 /* First Part of Handshake (IV) */
794 legic_prng_init(f
->data
);
795 frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
796 legic_state
= STATE_IV
;
797 legic_read_count
= 0;
799 legic_prng_iv
= f
->data
;
804 //while(timer->TC_CV < 280);
810 if(legic_state
== STATE_IV
) {
811 int local_key
= get_key_stream(3, 6);
812 int xored
= 0x39 ^ local_key
;
813 if((f
->bits
== 6) && (f
->data
== xored
)) {
814 legic_state
= STATE_CON
;
819 //while(timer->TC_CV < 200);
824 legic_state
= STATE_DISCON
;
826 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
);
833 if(legic_state
== STATE_CON
) {
834 int key
= get_key_stream(2, 11); //legic_phase_drift, 11);
835 int addr
= f
->data
^ key
; addr
= addr
>> 1;
836 int data
= BigBuf
[addr
];
837 int hash
= LegicCRC(addr
, data
, 11) << 8;
838 BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
;
841 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
842 legic_prng_forward(legic_reqresp_drift
);
844 frame_send_tag(hash
| data
, 12, 1);
849 legic_prng_forward(2);
850 //while(timer->TC_CV < 180);
859 int key
= get_key_stream(-1, 23); //legic_frame_drift, 23);
860 int addr
= f
->data
^ key
; addr
= addr
>> 1; addr
= addr
& 0x3ff;
861 int data
= f
->data
^ key
; data
= data
>> 11; data
= data
& 0xff;
864 legic_state
= STATE_DISCON
;
866 Dbprintf("write - addr: %x, data: %x", addr
, data
);
870 if(legic_state
!= STATE_DISCON
) {
871 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
);
873 Dbprintf("IV: %03.3x", legic_prng_iv
);
874 for(i
= 0; i
<legic_read_count
; i
++) {
875 Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]);
878 for(i
= -1; i
<legic_read_count
; i
++) {
880 t
= BigBuf
[OFFSET_LOG
+256+i
*4];
881 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8;
882 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16;
883 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24;
885 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
886 BigBuf
[OFFSET_LOG
+128+i
],
887 BigBuf
[OFFSET_LOG
+384+i
],
891 legic_state
= STATE_DISCON
;
892 legic_read_count
= 0;
898 /* Read bit by bit untill full frame is received
899 * Call to process frame end answer
901 static void emit(int bit
) {
905 frame_append_bit(¤t_frame
, 1);
908 frame_append_bit(¤t_frame
, 0);
911 if(current_frame
.bits
<= 4) {
912 frame_clean(¤t_frame
);
914 frame_handle_tag(¤t_frame
);
915 frame_clean(¤t_frame
);
922 void LegicRfSimulate(int phase
, int frame
, int reqresp
)
924 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
925 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
926 * envelope waveform on DIN and should send our response on DOUT.
928 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
929 * measure the time between two rising edges on DIN, and no encoding on the
930 * subcarrier from card to reader, so we'll just shift out our verbatim data
931 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
932 * seems to be 300us-ish.
935 legic_phase_drift
= phase
;
936 legic_frame_drift
= frame
;
937 legic_reqresp_drift
= reqresp
;
939 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
940 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
942 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K
);
944 /* Bitbang the receiver */
945 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
946 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
949 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
953 legic_state
= STATE_DISCON
;
956 DbpString("Starting Legic emulator, press button to end");
958 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
959 int level
= !!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
960 int time
= timer
->TC_CV
;
962 if(level
!= old_level
) {
964 timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
966 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) {
971 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) {
986 if(time
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) {
992 if(time
>= (20*RWD_TIME_1
) && (timer
->TC_SR
& AT91C_TC_CLKSTA
)) {
993 timer
->TC_CCR
= AT91C_TC_CLKDIS
;
999 if ( MF_DBGLEVEL
>= 1) DbpString("Stopped");
1003 //-----------------------------------------------------------------------------
1004 //-----------------------------------------------------------------------------
1007 //-----------------------------------------------------------------------------
1008 // Code up a string of octets at layer 2 (including CRC, we don't generate
1009 // that here) so that they can be transmitted to the reader. Doesn't transmit
1010 // them yet, just leaves them ready to send in ToSend[].
1011 //-----------------------------------------------------------------------------
1012 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
1018 // // Transmit a burst of ones, as the initial thing that lets the
1019 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
1020 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
1021 // // so I will too.
1022 // for(i = 0; i < 20; i++) {
1023 // ToSendStuffBit(1);
1024 // ToSendStuffBit(1);
1025 // ToSendStuffBit(1);
1026 // ToSendStuffBit(1);
1030 // for(i = 0; i < 10; i++) {
1031 // ToSendStuffBit(0);
1032 // ToSendStuffBit(0);
1033 // ToSendStuffBit(0);
1034 // ToSendStuffBit(0);
1036 // for(i = 0; i < 2; i++) {
1037 // ToSendStuffBit(1);
1038 // ToSendStuffBit(1);
1039 // ToSendStuffBit(1);
1040 // ToSendStuffBit(1);
1043 // for(i = 0; i < len; i++) {
1045 // uint8_t b = cmd[i];
1048 // ToSendStuffBit(0);
1049 // ToSendStuffBit(0);
1050 // ToSendStuffBit(0);
1051 // ToSendStuffBit(0);
1054 // for(j = 0; j < 8; j++) {
1056 // ToSendStuffBit(1);
1057 // ToSendStuffBit(1);
1058 // ToSendStuffBit(1);
1059 // ToSendStuffBit(1);
1061 // ToSendStuffBit(0);
1062 // ToSendStuffBit(0);
1063 // ToSendStuffBit(0);
1064 // ToSendStuffBit(0);
1070 // ToSendStuffBit(1);
1071 // ToSendStuffBit(1);
1072 // ToSendStuffBit(1);
1073 // ToSendStuffBit(1);
1077 // for(i = 0; i < 10; i++) {
1078 // ToSendStuffBit(0);
1079 // ToSendStuffBit(0);
1080 // ToSendStuffBit(0);
1081 // ToSendStuffBit(0);
1083 // for(i = 0; i < 2; i++) {
1084 // ToSendStuffBit(1);
1085 // ToSendStuffBit(1);
1086 // ToSendStuffBit(1);
1087 // ToSendStuffBit(1);
1090 // // Convert from last byte pos to length
1094 //-----------------------------------------------------------------------------
1095 // The software UART that receives commands from the reader, and its state
1097 //-----------------------------------------------------------------------------
1101 STATE_GOT_FALLING_EDGE_OF_SOF
,
1102 STATE_AWAITING_START_BIT
,
1103 STATE_RECEIVING_DATA
1113 /* Receive & handle a bit coming from the reader.
1115 * This function is called 4 times per bit (every 2 subcarrier cycles).
1116 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1119 * LED A -> ON once we have received the SOF and are expecting the rest.
1120 * LED A -> OFF once we have received EOF or are in error state or unsynced
1122 * Returns: true if we received a EOF
1123 * false if we are still waiting for some more
1125 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1127 // switch(Uart.state) {
1128 // case STATE_UNSYNCD:
1130 // // we went low, so this could be the beginning of an SOF
1131 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1137 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1139 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1141 // if(Uart.bitCnt > 9) {
1142 // // we've seen enough consecutive
1143 // // zeros that it's a valid SOF
1145 // Uart.byteCnt = 0;
1146 // Uart.state = STATE_AWAITING_START_BIT;
1147 // LED_A_ON(); // Indicate we got a valid SOF
1149 // // didn't stay down long enough
1150 // // before going high, error
1151 // Uart.state = STATE_UNSYNCD;
1154 // // do nothing, keep waiting
1158 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1159 // if(Uart.bitCnt > 12) {
1160 // // Give up if we see too many zeros without
1163 // Uart.state = STATE_UNSYNCD;
1167 // case STATE_AWAITING_START_BIT:
1170 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1171 // // stayed high for too long between
1172 // // characters, error
1173 // Uart.state = STATE_UNSYNCD;
1176 // // falling edge, this starts the data byte
1179 // Uart.shiftReg = 0;
1180 // Uart.state = STATE_RECEIVING_DATA;
1184 // case STATE_RECEIVING_DATA:
1186 // if(Uart.posCnt == 2) {
1187 // // time to sample a bit
1188 // Uart.shiftReg >>= 1;
1190 // Uart.shiftReg |= 0x200;
1194 // if(Uart.posCnt >= 4) {
1197 // if(Uart.bitCnt == 10) {
1198 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1200 // // this is a data byte, with correct
1201 // // start and stop bits
1202 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1205 // if(Uart.byteCnt >= Uart.byteCntMax) {
1206 // // Buffer overflowed, give up
1208 // Uart.state = STATE_UNSYNCD;
1210 // // so get the next byte now
1212 // Uart.state = STATE_AWAITING_START_BIT;
1214 // } else if (Uart.shiftReg == 0x000) {
1215 // // this is an EOF byte
1216 // LED_A_OFF(); // Finished receiving
1217 // Uart.state = STATE_UNSYNCD;
1218 // if (Uart.byteCnt != 0) {
1222 // // this is an error
1224 // Uart.state = STATE_UNSYNCD;
1231 // Uart.state = STATE_UNSYNCD;
1239 static void UartReset() {
1240 Uart
.byteCntMax
= 3;
1241 Uart
.state
= STATE_UNSYNCD
;
1245 memset(Uart
.output
, 0x00, 3);
1248 // static void UartInit(uint8_t *data) {
1249 // Uart.output = data;
1253 //=============================================================================
1254 // An LEGIC reader. We take layer two commands, code them
1255 // appropriately, and then send them to the tag. We then listen for the
1256 // tag's response, which we leave in the buffer to be demodulated on the
1258 //=============================================================================
1263 DEMOD_PHASE_REF_TRAINING
,
1264 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
1265 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
1266 DEMOD_AWAITING_START_BIT
,
1267 DEMOD_RECEIVING_DATA
1280 * Handles reception of a bit from the tag
1282 * This function is called 2 times per bit (every 4 subcarrier cycles).
1283 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1286 * LED C -> ON once we have received the SOF and are expecting the rest.
1287 * LED C -> OFF once we have received EOF or are unsynced
1289 * Returns: true if we received a EOF
1290 * false if we are still waiting for some more
1294 #ifndef SUBCARRIER_DETECT_THRESHOLD
1295 # define SUBCARRIER_DETECT_THRESHOLD 8
1298 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1299 #ifndef CHECK_FOR_SUBCARRIER
1300 # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); }
1303 // The soft decision on the bit uses an estimate of just the
1304 // quadrant of the reference angle, not the exact angle.
1305 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1306 #define MAKE_SOFT_DECISION() { \
1307 if(Demod.sumI > 0) \
1312 if(Demod.sumQ > 0) \
1319 static RAMFUNC
int HandleLegicSamplesDemod(int ci
, int cq
)
1324 int halfci
= (ai
>> 1);
1325 int halfcq
= (aq
>> 1);
1327 switch(Demod
.state
) {
1330 CHECK_FOR_SUBCARRIER()
1332 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
1333 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
1340 case DEMOD_PHASE_REF_TRAINING
:
1341 if(Demod
.posCount
< 8) {
1343 CHECK_FOR_SUBCARRIER()
1345 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
1346 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1347 // note: synchronization time > 80 1/fs
1353 Demod
.state
= DEMOD_UNSYNCD
;
1356 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
1360 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
1362 MAKE_SOFT_DECISION()
1364 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1365 // logic '0' detected
1368 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
1370 // start of SOF sequence
1373 // maximum length of TR1 = 200 1/fs
1374 if(Demod
.posCount
> 25*2) Demod
.state
= DEMOD_UNSYNCD
;
1379 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
1382 MAKE_SOFT_DECISION()
1385 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1386 if(Demod
.posCount
< 10*2) {
1387 Demod
.state
= DEMOD_UNSYNCD
;
1389 LED_C_ON(); // Got SOF
1390 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1395 // low phase of SOF too long (> 12 etu)
1396 if(Demod
.posCount
> 13*2) {
1397 Demod
.state
= DEMOD_UNSYNCD
;
1403 case DEMOD_AWAITING_START_BIT
:
1406 MAKE_SOFT_DECISION()
1409 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1410 if(Demod
.posCount
> 3*2) {
1411 Demod
.state
= DEMOD_UNSYNCD
;
1415 // start bit detected
1417 Demod
.posCount
= 1; // this was the first half
1420 Demod
.state
= DEMOD_RECEIVING_DATA
;
1424 case DEMOD_RECEIVING_DATA
:
1426 MAKE_SOFT_DECISION()
1428 if(Demod
.posCount
== 0) {
1429 // first half of bit
1433 // second half of bit
1435 Demod
.shiftReg
>>= 1;
1437 if(Demod
.thisBit
> 0)
1438 Demod
.shiftReg
|= 0x200;
1442 if(Demod
.bitCount
== 10) {
1444 uint16_t s
= Demod
.shiftReg
;
1446 if((s
& 0x200) && !(s
& 0x001)) {
1447 // stop bit == '1', start bit == '0'
1448 uint8_t b
= (s
>> 1);
1449 Demod
.output
[Demod
.len
] = b
;
1451 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1453 Demod
.state
= DEMOD_UNSYNCD
;
1457 // This is EOF (start, stop and all data bits == '0'
1467 Demod
.state
= DEMOD_UNSYNCD
;
1474 // Clear out the state of the "UART" that receives from the tag.
1475 static void DemodReset() {
1477 Demod
.state
= DEMOD_UNSYNCD
;
1484 memset(Demod
.output
, 0x00, 3);
1487 static void DemodInit(uint8_t *data
) {
1488 Demod
.output
= data
;
1493 * Demodulate the samples we received from the tag, also log to tracebuffer
1494 * quiet: set to 'TRUE' to disable debug output
1496 #define LEGIC_DMA_BUFFER_SIZE 256
1497 static void GetSamplesForLegicDemod(int n
, bool quiet
)
1500 bool gotFrame
= FALSE
;
1501 int lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1502 int ci
, cq
, samples
= 0;
1506 // And put the FPGA in the appropriate mode
1507 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_QUARTER_FREQ
);
1509 // The response (tag -> reader) that we're receiving.
1510 // Set up the demodulator for tag -> reader responses.
1511 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1513 // The DMA buffer, used to stream samples from the FPGA
1514 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE
);
1515 int8_t *upTo
= dmaBuf
;
1517 // Setup and start DMA.
1518 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, LEGIC_DMA_BUFFER_SIZE
) ){
1519 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1523 // Signal field is ON with the appropriate LED:
1526 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
1527 if(behindBy
> max
) max
= behindBy
;
1529 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (LEGIC_DMA_BUFFER_SIZE
-1)) > 2) {
1533 if(upTo
>= dmaBuf
+ LEGIC_DMA_BUFFER_SIZE
) {
1535 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
1536 AT91C_BASE_PDC_SSC
->PDC_RNCR
= LEGIC_DMA_BUFFER_SIZE
;
1539 if(lastRxCounter
<= 0)
1540 lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1544 gotFrame
= HandleLegicSamplesDemod(ci
, cq
);
1549 if(samples
> n
|| gotFrame
)
1553 FpgaDisableSscDma();
1555 if (!quiet
&& Demod
.len
== 0) {
1556 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1567 if (Demod
.len
> 0) {
1568 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00};
1569 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
1572 //-----------------------------------------------------------------------------
1573 // Transmit the command (to the tag) that was placed in ToSend[].
1574 //-----------------------------------------------------------------------------
1575 static void TransmitForLegic(void)
1581 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))
1582 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1584 // Signal field is ON with the appropriate Red LED
1587 // Signal we are transmitting with the Green LED
1589 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1591 for(c
= 0; c
< 10;) {
1592 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1593 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1596 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1597 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1605 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1606 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
1607 legic_prng_forward(1); // forward the lfsr
1609 if(c
>= ToSendMax
) {
1613 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1614 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1623 //-----------------------------------------------------------------------------
1624 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1625 // so that it is ready to transmit to the tag using TransmitForLegic().
1626 //-----------------------------------------------------------------------------
1627 static void CodeLegicBitsAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1635 for(i
= 0; i
< 7; i
++)
1639 for(i
= 0; i
< cmdlen
; i
++) {
1645 for(j
= 0; j
< bits
; j
++) {
1655 // Convert from last character reference to length
1660 Convenience function to encode, transmit and trace Legic comms
1662 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1664 CodeLegicBitsAsReader(cmd
, cmdlen
, bits
);
1667 uint8_t parity
[1] = {0x00};
1668 LogTrace(cmd
, cmdlen
, 0, 0, parity
, TRUE
);
1672 int ice_legic_select_card()
1674 //int cmd_size=0, card_size=0;
1675 uint8_t wakeup
[] = { 0x7F };
1676 uint8_t getid
[] = {0x19};
1678 //legic_prng_init(SESSION_IV);
1680 // first, wake up the tag, 7bits
1681 CodeAndTransmitLegicAsReader(wakeup
, sizeof(wakeup
), 7);
1683 GetSamplesForLegicDemod(1000, TRUE
);
1685 // frame_clean(¤t_frame);
1686 //frame_receiveAsReader(¤t_frame, 6, 1);
1688 legic_prng_forward(1); /* we wait anyways */
1690 //while(timer->TC_CV < 387) ; /* ~ 258us */
1691 //frame_sendAsReader(0x19, 6);
1692 CodeAndTransmitLegicAsReader(getid
, sizeof(getid
), 8);
1693 GetSamplesForLegicDemod(1000, TRUE
);
1695 //if (Demod.len < 14) return 2;
1696 Dbprintf("CARD TYPE: %02x LEN: %d", Demod
.output
[0], Demod
.len
);
1698 switch(Demod
.output
[0]) {
1700 DbpString("MIM 256 card found");
1705 DbpString("MIM 1024 card found");
1707 // card_size = 1024;
1714 // bytes = card_size;
1716 // if(bytes + offset >= card_size)
1717 // bytes = card_size - offset;
1719 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1724 // Set up LEGIC communication
1725 void ice_legic_setup() {
1728 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1729 BigBuf_free(); BigBuf_Clear_ext(false);
1735 // Set up the synchronous serial port
1738 // connect Demodulated Signal to ADC:
1739 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1741 // Signal field is on with the appropriate LED
1743 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1746 //StartCountSspClk();
1749 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);