]> git.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
ADD: since the client now calls legic prng, this is needed here too.
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include "mifarehost.h"
12
13 // MIFARE
14 extern int compar_int(const void * a, const void * b) {
15 // didn't work: (the result is truncated to 32 bits)
16 //return (*(uint64_t*)b - *(uint64_t*)a);
17
18 // better:
19 if (*(uint64_t*)b > *(uint64_t*)a) return 1;
20 if (*(uint64_t*)b < *(uint64_t*)a) return -1;
21 return 0;
22
23 //return (*(uint64_t*)b > *(uint64_t*)a) - (*(uint64_t*)b < *(uint64_t*)a);
24 }
25
26 // Compare 16 Bits out of cryptostate
27 int Compare16Bits(const void * a, const void * b) {
28 if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
29 if ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000)) return -1;
30 return 0;
31
32 /* return
33 ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000))
34 -
35 ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000))
36 ;
37 */
38 }
39
40 // wrapper function for multi-threaded lfsr_recovery32
41 void* nested_worker_thread(void *arg)
42 {
43 struct Crypto1State *p1;
44 StateList_t *statelist = arg;
45 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
46
47 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
48
49 statelist->len = p1 - statelist->head.slhead;
50 statelist->tail.sltail = --p1;
51 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
52 return statelist->head.slhead;
53 }
54
55 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
56 {
57 uint16_t i;
58 uint32_t uid;
59 UsbCommand resp;
60 StateList_t statelists[2];
61 struct Crypto1State *p1, *p2, *p3, *p4;
62
63 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
64 memcpy(c.d.asBytes, key, 6);
65 clearCommandBuffer();
66 SendCommand(&c);
67 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
68
69 // error during nested
70 if (resp.arg[0]) return resp.arg[0];
71
72 memcpy(&uid, resp.d.asBytes, 4);
73
74 for (i = 0; i < 2; i++) {
75 statelists[i].blockNo = resp.arg[2] & 0xff;
76 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
77 statelists[i].uid = uid;
78 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
79 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
80 }
81
82 // calc keys
83 pthread_t thread_id[2];
84
85 // create and run worker threads
86 for (i = 0; i < 2; i++)
87 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
88
89 // wait for threads to terminate:
90 for (i = 0; i < 2; i++)
91 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
92
93 // the first 16 Bits of the cryptostate already contain part of our key.
94 // Create the intersection of the two lists based on these 16 Bits and
95 // roll back the cryptostate
96 p1 = p3 = statelists[0].head.slhead;
97 p2 = p4 = statelists[1].head.slhead;
98
99 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
100 if (Compare16Bits(p1, p2) == 0) {
101
102 struct Crypto1State savestate, *savep = &savestate;
103 savestate = *p1;
104 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
105 *p3 = *p1;
106 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
107 p3++;
108 p1++;
109 }
110 savestate = *p2;
111 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
112 *p4 = *p2;
113 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
114 p4++;
115 p2++;
116 }
117 }
118 else {
119 while (Compare16Bits(p1, p2) == -1) p1++;
120 while (Compare16Bits(p1, p2) == 1) p2++;
121 }
122 }
123
124 p3->even = 0; p3->odd = 0;
125 p4->even = 0; p4->odd = 0;
126 statelists[0].len = p3 - statelists[0].head.slhead;
127 statelists[1].len = p4 - statelists[1].head.slhead;
128 statelists[0].tail.sltail=--p3;
129 statelists[1].tail.sltail=--p4;
130
131 // the statelists now contain possible keys. The key we are searching for must be in the
132 // intersection of both lists. Create the intersection:
133 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
134 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
135
136 uint64_t *p5, *p6, *p7;
137 p5 = p7 = statelists[0].head.keyhead;
138 p6 = statelists[1].head.keyhead;
139
140 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
141 if (compar_int(p5, p6) == 0) {
142 *p7++ = *p5++;
143 p6++;
144 }
145 else {
146 while (compar_int(p5, p6) == -1) p5++;
147 while (compar_int(p5, p6) == 1) p6++;
148 }
149 }
150 statelists[0].len = p7 - statelists[0].head.keyhead;
151 statelists[0].tail.keytail = --p7;
152
153 uint32_t numOfCandidates = statelists[0].len;
154 if ( numOfCandidates == 0 ) goto out;
155
156 memset(resultKey, 0, 6);
157 uint64_t key64 = 0;
158
159 // The list may still contain several key candidates. Test each of them with mfCheckKeys
160 // uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
161 uint8_t keyBlock[USB_CMD_DATA_SIZE] = {0x00};
162
163 for (i = 0; i < numOfCandidates; ++i){
164 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
165 num_to_bytes(key64, 6, keyBlock + i * 6);
166 }
167
168 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, numOfCandidates, keyBlock, &key64)) {
169 free(statelists[0].head.slhead);
170 free(statelists[1].head.slhead);
171 num_to_bytes(key64, 6, resultKey);
172
173 PrintAndLog("UID: %08x target block:%3u key type: %c -- Found key [%012"llx"]",
174 uid,
175 (uint16_t)resp.arg[2] & 0xff,
176 (resp.arg[2] >> 8) ? 'B' : 'A',
177 key64
178 );
179 return -5;
180 }
181
182 out:
183 PrintAndLog("UID: %08x target block:%3u key type: %c",
184 uid,
185 (uint16_t)resp.arg[2] & 0xff,
186 (resp.arg[2] >> 8) ? 'B' : 'A'
187 );
188
189 free(statelists[0].head.slhead);
190 free(statelists[1].head.slhead);
191 return -4;
192 }
193
194 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
195 *key = 0;
196 UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType<<8)), clear_trace, keycnt}};
197 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
198 clearCommandBuffer();
199 SendCommand(&c);
200 UsbCommand resp;
201 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) return 1;
202 if ((resp.arg[0] & 0xff) != 0x01) return 2;
203 *key = bytes_to_num(resp.d.asBytes, 6);
204 return 0;
205 }
206 // PM3 imp of J-Run mf_key_brute (part 2)
207 // ref: https://github.com/J-Run/mf_key_brute
208 int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultkey){
209
210 #define KEYS_IN_BLOCK 85
211 #define KEYBLOCK_SIZE 510
212 #define CANDIDATE_SIZE 0xFFFF * 6
213 uint8_t found = FALSE;
214 uint64_t key64 = 0;
215 uint8_t candidates[CANDIDATE_SIZE] = {0x00};
216 uint8_t keyBlock[KEYBLOCK_SIZE] = {0x00};
217
218 memset(candidates, 0, sizeof(candidates));
219 memset(keyBlock, 0, sizeof(keyBlock));
220
221 // Generate all possible keys for the first two unknown bytes.
222 for (uint16_t i = 0; i < 0xFFFF; ++i) {
223 uint32_t j = i * 6;
224 candidates[0 + j] = i >> 8;
225 candidates[1 + j] = i;
226 candidates[2 + j] = key[2];
227 candidates[3 + j] = key[3];
228 candidates[4 + j] = key[4];
229 candidates[5 + j] = key[5];
230 }
231 uint32_t counter, i;
232 for ( i = 0, counter = 1; i < CANDIDATE_SIZE; i += KEYBLOCK_SIZE, ++counter){
233
234 key64 = 0;
235
236 // copy candidatekeys to test key block
237 memcpy(keyBlock, candidates + i, KEYBLOCK_SIZE);
238
239 // check a block of generated candidate keys.
240 if (!mfCheckKeys(blockNo, keyType, TRUE, KEYS_IN_BLOCK, keyBlock, &key64)) {
241 *resultkey = key64;
242 found = TRUE;
243 break;
244 }
245
246 // progress
247 if ( counter % 20 == 0 )
248 PrintAndLog("tried : %s.. \t %u keys", sprint_hex(candidates + i, 6), counter * KEYS_IN_BLOCK );
249 }
250 return found;
251 }
252
253
254 // EMULATOR
255
256 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
257 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
258 clearCommandBuffer();
259 SendCommand(&c);
260 UsbCommand resp;
261 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
262 memcpy(data, resp.d.asBytes, blocksCount * 16);
263 return 0;
264 }
265
266 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
267 return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
268 }
269
270 int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
271 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}};
272 memcpy(c.d.asBytes, data, blocksCount * blockBtWidth);
273 clearCommandBuffer();
274 SendCommand(&c);
275 return 0;
276 }
277
278 // "MAGIC" CARD
279 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
280
281 uint8_t params = MAGIC_SINGLE;
282 uint8_t block0[16];
283 memset(block0, 0x00, sizeof(block0));
284
285 int old = mfCGetBlock(0, block0, params);
286 if (old == 0)
287 PrintAndLog("old block 0: %s", sprint_hex(block0, sizeof(block0)));
288 else
289 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
290
291 // fill in the new values
292 // UID
293 memcpy(block0, uid, 4);
294 // Mifare UID BCC
295 block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
296 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
297 if ( sak != NULL )
298 block0[5]=sak[0];
299
300 if ( atqa != NULL ) {
301 block0[6]=atqa[1];
302 block0[7]=atqa[0];
303 }
304 PrintAndLog("new block 0: %s", sprint_hex(block0,16));
305
306 if ( wipecard ) params |= MAGIC_WIPE;
307 if ( oldUID == NULL) params |= MAGIC_UID;
308
309 return mfCSetBlock(0, block0, oldUID, params);
310 }
311
312 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
313
314 uint8_t isOK = 0;
315 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}};
316 memcpy(c.d.asBytes, data, 16);
317 clearCommandBuffer();
318 SendCommand(&c);
319 UsbCommand resp;
320 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
321 isOK = resp.arg[0] & 0xff;
322 if (uid != NULL)
323 memcpy(uid, resp.d.asBytes, 4);
324 if (!isOK)
325 return 2;
326 } else {
327 PrintAndLog("Command execute timeout");
328 return 1;
329 }
330 return 0;
331 }
332
333 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
334 uint8_t isOK = 0;
335 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
336 clearCommandBuffer();
337 SendCommand(&c);
338 UsbCommand resp;
339 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
340 isOK = resp.arg[0] & 0xff;
341 memcpy(data, resp.d.asBytes, 16);
342 if (!isOK) return 2;
343 } else {
344 PrintAndLog("Command execute timeout");
345 return 1;
346 }
347 return 0;
348 }
349
350 // SNIFFER
351 // [iceman] so many global variables....
352
353 // constants
354 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
355
356 // variables
357 char logHexFileName[FILE_PATH_SIZE] = {0x00};
358 static uint8_t traceCard[4096] = {0x00};
359 static char traceFileName[FILE_PATH_SIZE] = {0x00};
360 static int traceState = TRACE_IDLE;
361 static uint8_t traceCurBlock = 0;
362 static uint8_t traceCurKey = 0;
363
364 struct Crypto1State *traceCrypto1 = NULL;
365 struct Crypto1State *revstate = NULL;
366 uint64_t key = 0;
367 uint32_t ks2 = 0;
368 uint32_t ks3 = 0;
369
370 uint32_t cuid = 0; // serial number
371 uint32_t nt =0; // tag challenge
372 uint32_t nr_enc =0; // encrypted reader challenge
373 uint32_t ar_enc =0; // encrypted reader response
374 uint32_t at_enc =0; // encrypted tag response
375
376 int isTraceCardEmpty(void) {
377 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
378 }
379
380 int isBlockEmpty(int blockN) {
381 for (int i = 0; i < 16; i++)
382 if (traceCard[blockN * 16 + i] != 0) return 0;
383
384 return 1;
385 }
386
387 int isBlockTrailer(int blockN) {
388 return ((blockN & 0x03) == 0x03);
389 }
390
391 int loadTraceCard(uint8_t *tuid, uint8_t uidlen) {
392 FILE * f;
393 char buf[64] = {0x00};
394 uint8_t buf8[64] = {0x00};
395 int i, blockNum;
396
397 if (!isTraceCardEmpty())
398 saveTraceCard();
399
400 memset(traceCard, 0x00, 4096);
401 memcpy(traceCard, tuid, uidlen);
402
403 FillFileNameByUID(traceFileName, tuid, ".eml", uidlen);
404
405 f = fopen(traceFileName, "r");
406 if (!f) return 1;
407
408 blockNum = 0;
409
410 while(!feof(f)){
411
412 memset(buf, 0, sizeof(buf));
413 if (fgets(buf, sizeof(buf), f) == NULL) {
414 PrintAndLog("No trace file found or reading error.");
415 fclose(f);
416 return 2;
417 }
418
419 if (strlen(buf) < 32){
420 if (feof(f)) break;
421 PrintAndLog("File content error. Block data must include 32 HEX symbols");
422 fclose(f);
423 return 2;
424 }
425 for (i = 0; i < 32; i += 2)
426 sscanf(&buf[i], "%02X", (unsigned int *)&buf8[i / 2]);
427
428 memcpy(traceCard + blockNum * 16, buf8, 16);
429
430 blockNum++;
431 }
432 fclose(f);
433 return 0;
434 }
435
436 int saveTraceCard(void) {
437
438 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
439
440 FILE * f;
441 f = fopen(traceFileName, "w+");
442 if ( !f ) return 1;
443
444 for (int i = 0; i < 64; i++) { // blocks
445 for (int j = 0; j < 16; j++) // bytes
446 fprintf(f, "%02X", *(traceCard + i * 16 + j));
447 fprintf(f,"\n");
448 }
449 fflush(f);
450 fclose(f);
451 return 0;
452 }
453
454 int mfTraceInit(uint8_t *tuid, uint8_t uidlen, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
455
456 if (traceCrypto1)
457 crypto1_destroy(traceCrypto1);
458
459 traceCrypto1 = NULL;
460
461 if (wantSaveToEmlFile)
462 loadTraceCard(tuid, uidlen);
463
464 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
465 traceCard[5] = sak;
466 memcpy(&traceCard[6], atqa, 2);
467 traceCurBlock = 0;
468 cuid = bytes_to_num(tuid+(uidlen-4), 4);
469 traceState = TRACE_IDLE;
470 return 0;
471 }
472
473 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
474 uint8_t bt = 0;
475 int i;
476
477 if (len != 1) {
478 for (i = 0; i < len; i++)
479 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
480 } else {
481 bt = 0;
482 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 0)) << 0;
483 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 1)) << 1;
484 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 2)) << 2;
485 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 3)) << 3;
486 data[0] = bt;
487 }
488 return;
489 }
490
491 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
492
493 if (traceState == TRACE_ERROR) return 1;
494
495 if (len > 64) {
496 traceState = TRACE_ERROR;
497 return 1;
498 }
499
500 uint8_t data[64];
501 memset(data, 0x00, sizeof(data));
502
503 memcpy(data, data_src, len);
504
505 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
506 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
507 PrintAndLog("DEC| %s", sprint_hex(data, len));
508 AddLogHex(logHexFileName, "DEC| ", data, len);
509 }
510
511 switch (traceState) {
512 case TRACE_IDLE:
513 // check packet crc16!
514 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
515 PrintAndLog("DEC| CRC ERROR!!!");
516 AddLogLine(logHexFileName, "DEC| ", "CRC ERROR!!!");
517 traceState = TRACE_ERROR; // do not decrypt the next commands
518 return 1;
519 }
520
521 // AUTHENTICATION
522 if ((len == 4) && ((data[0] == MIFARE_AUTH_KEYA) || (data[0] == MIFARE_AUTH_KEYB))) {
523 traceState = TRACE_AUTH1;
524 traceCurBlock = data[1];
525 traceCurKey = data[0] == 60 ? 1:0;
526 return 0;
527 }
528
529 // READ
530 if ((len ==4) && ((data[0] == ISO14443A_CMD_READBLOCK))) {
531 traceState = TRACE_READ_DATA;
532 traceCurBlock = data[1];
533 return 0;
534 }
535
536 // WRITE
537 if ((len ==4) && ((data[0] == ISO14443A_CMD_WRITEBLOCK))) {
538 traceState = TRACE_WRITE_OK;
539 traceCurBlock = data[1];
540 return 0;
541 }
542
543 // HALT
544 if ((len ==4) && ((data[0] == ISO14443A_CMD_HALT) && (data[1] == 0x00))) {
545 traceState = TRACE_ERROR; // do not decrypt the next commands
546 return 0;
547 }
548 return 0;
549 case TRACE_READ_DATA:
550 if (len == 18) {
551 traceState = TRACE_IDLE;
552
553 if (isBlockTrailer(traceCurBlock)) {
554 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
555 } else {
556 memcpy(traceCard + traceCurBlock * 16, data, 16);
557 }
558 if (wantSaveToEmlFile) saveTraceCard();
559 return 0;
560 } else {
561 traceState = TRACE_ERROR;
562 return 1;
563 }
564 break;
565 case TRACE_WRITE_OK:
566 if ((len == 1) && (data[0] == 0x0a)) {
567 traceState = TRACE_WRITE_DATA;
568 return 0;
569 } else {
570 traceState = TRACE_ERROR;
571 return 1;
572 }
573 break;
574 case TRACE_WRITE_DATA:
575 if (len == 18) {
576 traceState = TRACE_IDLE;
577 memcpy(traceCard + traceCurBlock * 16, data, 16);
578 if (wantSaveToEmlFile) saveTraceCard();
579 return 0;
580 } else {
581 traceState = TRACE_ERROR;
582 return 1;
583 }
584 break;
585 case TRACE_AUTH1:
586 if (len == 4) {
587 traceState = TRACE_AUTH2;
588 nt = bytes_to_num(data, 4);
589 return 0;
590 } else {
591 traceState = TRACE_ERROR;
592 return 1;
593 }
594 break;
595 case TRACE_AUTH2:
596 if (len == 8) {
597 traceState = TRACE_AUTH_OK;
598 nr_enc = bytes_to_num(data, 4);
599 ar_enc = bytes_to_num(data + 4, 4);
600 return 0;
601 } else {
602 traceState = TRACE_ERROR;
603 return 1;
604 }
605 break;
606 case TRACE_AUTH_OK:
607 if (len == 4) {
608 traceState = TRACE_IDLE;
609 at_enc = bytes_to_num(data, 4);
610
611 // decode key here)
612 ks2 = ar_enc ^ prng_successor(nt, 64);
613 ks3 = at_enc ^ prng_successor(nt, 96);
614 revstate = lfsr_recovery64(ks2, ks3);
615 lfsr_rollback_word(revstate, 0, 0);
616 lfsr_rollback_word(revstate, 0, 0);
617 lfsr_rollback_word(revstate, nr_enc, 1);
618 lfsr_rollback_word(revstate, cuid ^ nt, 0);
619 crypto1_get_lfsr(revstate, &key);
620 PrintAndLog("Found Key: [%012"llx"]", key);
621
622 //if ( tryMfk64(cuid, nt, nr_enc, ar_enc, at_enc, &key) )
623 AddLogUint64(logHexFileName, "Found Key: ", key);
624
625 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
626 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
627
628 if (traceCurKey)
629 num_to_bytes(key, 6, traceCard + blockShift + 10);
630 else
631 num_to_bytes(key, 6, traceCard + blockShift);
632
633 if (wantSaveToEmlFile)
634 saveTraceCard();
635
636 if (traceCrypto1)
637 crypto1_destroy(traceCrypto1);
638
639 // set cryptosystem state
640 traceCrypto1 = lfsr_recovery64(ks2, ks3);
641
642 return 0;
643 } else {
644 traceState = TRACE_ERROR;
645 return 1;
646 }
647 break;
648 default:
649 traceState = TRACE_ERROR;
650 return 1;
651 }
652 return 0;
653 }
654
655 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
656 PrintAndLog("\nEncrypted data: [%s]", sprint_hex(data, len) );
657 struct Crypto1State *s;
658 ks2 = ar_enc ^ prng_successor(nt, 64);
659 ks3 = at_enc ^ prng_successor(nt, 96);
660 s = lfsr_recovery64(ks2, ks3);
661 mf_crypto1_decrypt(s, data, len, FALSE);
662 PrintAndLog("Decrypted data: [%s]", sprint_hex(data, len) );
663 crypto1_destroy(s);
664 return 0;
665 }
Impressum, Datenschutz