1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
15 //un_comment to allow debug print calls when used not on device
16 void dummy(char *fmt
, ...){}
20 #include "cmdparser.h"
22 #define prnt PrintAndLog
24 uint8_t g_debugMode
=0;
28 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
30 static const uint8_t THRESHOLD
= 123;
31 //test samples are not just noise
32 uint8_t justNoise1
= 1;
33 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
34 justNoise1
= BitStream
[idx
] < THRESHOLD
;
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
45 // get high and low thresholds
46 for (size_t i
=0; i
< size
; i
++){
47 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
48 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
50 if (*high
< 123) return -1; // just noise
51 *high
= ((*high
-128)*fuzzHi
+ 12800)/100;
52 *low
= ((*low
-128)*fuzzLo
+ 12800)/100;
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
62 for (uint8_t i
= 0; i
< bitLen
; i
++){
63 ans
^= ((bits
>> i
) & 1);
65 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
66 return (ans
== pType
);
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
72 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
74 uint32_t parityWd
= 0;
75 size_t j
= 0, bitCnt
= 0;
76 for (int word
= 0; word
< (bLen
); word
+=pLen
){
77 for (int bit
=0; bit
< pLen
; bit
++){
78 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
79 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
81 j
--; // overwrite parity with next data
82 // if parity fails then return 0
84 case 3: if (BitStream
[j
]==1) return 0; break; //should be 0 spacer bit
85 case 2: if (BitStream
[j
]==0) return 0; break; //should be 1 spacer bit
86 default: //test parity
87 if (parityTest(parityWd
, pLen
, pType
) == 0) return 0; break;
92 // if we got here then all the parities passed
93 //return ID start index and size
98 // takes a array of binary values, length of bits per parity (includes parity bit),
99 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
100 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
101 size_t addParity(uint8_t *BitSource
, uint8_t *dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
103 uint32_t parityWd
= 0;
104 size_t j
= 0, bitCnt
= 0;
105 for (int word
= 0; word
< sourceLen
; word
+=pLen
-1) {
106 for (int bit
=0; bit
< pLen
-1; bit
++){
107 parityWd
= (parityWd
<< 1) | BitSource
[word
+bit
];
108 dest
[j
++] = (BitSource
[word
+bit
]);
111 // if parity fails then return 0
113 case 3: dest
[j
++]=0; break; // marker bit which should be a 0
114 case 2: dest
[j
++]=1; break; // marker bit which should be a 1
116 dest
[j
++] = parityTest(parityWd
, pLen
-1, pType
) ^ 1;
122 // if we got here then all the parities passed
123 //return ID start index and size
127 uint32_t bytebits_to_byte(uint8_t *src
, size_t numbits
)
130 for(int i
= 0 ; i
< numbits
; i
++) {
131 num
= (num
<< 1) | (*src
);
137 //least significant bit first
138 uint32_t bytebits_to_byteLSBF(uint8_t *src
, size_t numbits
)
141 for(int i
= 0 ; i
< numbits
; i
++) {
142 num
= (num
<< 1) | *(src
+ (numbits
-(i
+1)));
148 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
149 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
152 for (int idx
=0; idx
< *size
- pLen
; idx
++){
153 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0){
160 *size
= idx
- *startIdx
;
169 //takes 1s and 0s and searches for EM410x format - output EM ID
170 uint8_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
, uint32_t *hi
, uint64_t *lo
)
172 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
173 // otherwise could be a void with no arguments
176 if (BitStream
[1]>1) return 0; //allow only 1s and 0s
178 // 111111111 bit pattern represent start of frame
179 // include 0 in front to help get start pos
180 uint8_t preamble
[] = {0,1,1,1,1,1,1,1,1,1};
182 uint32_t parityBits
= 0;
186 errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, startIdx
);
187 if (errChk
== 0 || *size
< 64) return 0;
188 if (*size
> 64) FmtLen
= 22;
189 *startIdx
+= 1; //get rid of 0 from preamble
191 for (i
=0; i
<FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
192 parityBits
= bytebits_to_byte(BitStream
+(i
*5)+idx
,5);
193 //check even parity - quit if failed
194 if (parityTest(parityBits
, 5, 0) == 0) return 0;
195 //set uint64 with ID from BitStream
196 for (uint8_t ii
=0; ii
<4; ii
++){
197 *hi
= (*hi
<< 1) | (*lo
>> 63);
198 *lo
= (*lo
<< 1) | (BitStream
[(i
*5)+ii
+idx
]);
201 if (errChk
!= 0) return 1;
202 //skip last 5 bit parity test for simplicity.
208 //demodulates strong heavily clipped samples
209 int cleanAskRawDemod(uint8_t *BinStream
, size_t *size
, int clk
, int invert
, int high
, int low
)
211 size_t bitCnt
=0, smplCnt
=0, errCnt
=0;
212 uint8_t waveHigh
= 0;
213 for (size_t i
=0; i
< *size
; i
++){
214 if (BinStream
[i
] >= high
&& waveHigh
){
216 } else if (BinStream
[i
] <= low
&& !waveHigh
){
218 } else { //transition
219 if ((BinStream
[i
] >= high
&& !waveHigh
) || (BinStream
[i
] <= low
&& waveHigh
)){
220 if (smplCnt
> clk
-(clk
/4)-1) { //full clock
221 if (smplCnt
> clk
+ (clk
/4)+1) { //too many samples
223 if (g_debugMode
==2) prnt("DEBUG ASK: Modulation Error at: %u", i
);
224 BinStream
[bitCnt
++]=7;
225 } else if (waveHigh
) {
226 BinStream
[bitCnt
++] = invert
;
227 BinStream
[bitCnt
++] = invert
;
228 } else if (!waveHigh
) {
229 BinStream
[bitCnt
++] = invert
^ 1;
230 BinStream
[bitCnt
++] = invert
^ 1;
234 } else if (smplCnt
> (clk
/2) - (clk
/4)-1) {
236 BinStream
[bitCnt
++] = invert
;
237 } else if (!waveHigh
) {
238 BinStream
[bitCnt
++] = invert
^ 1;
242 } else if (!bitCnt
) {
244 waveHigh
= (BinStream
[i
] >= high
);
248 //transition bit oops
250 } else { //haven't hit new high or new low yet
260 void askAmp(uint8_t *BitStream
, size_t size
)
262 for(size_t i
= 1; i
<size
; i
++){
263 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
265 else if(BitStream
[i
]-BitStream
[i
-1]<=-20) //large jump down
272 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
273 int askdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
275 if (*size
==0) return -1;
276 int start
= DetectASKClock(BinStream
, *size
, clk
, maxErr
); //clock default
277 if (*clk
==0 || start
< 0) return -3;
278 if (*invert
!= 1) *invert
= 0;
279 if (amp
==1) askAmp(BinStream
, *size
);
280 if (g_debugMode
==2) prnt("DEBUG ASK: clk %d, beststart %d", *clk
, start
);
282 uint8_t initLoopMax
= 255;
283 if (initLoopMax
> *size
) initLoopMax
= *size
;
284 // Detect high and lows
285 //25% clip in case highs and lows aren't clipped [marshmellow]
287 if (getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75) < 1)
288 return -2; //just noise
291 // if clean clipped waves detected run alternate demod
292 if (DetectCleanAskWave(BinStream
, *size
, high
, low
)) {
293 if (g_debugMode
==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
294 errCnt
= cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
);
295 if (askType
) //askman
296 return manrawdecode(BinStream
, size
, 0);
300 if (g_debugMode
==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
302 int lastBit
; //set first clock check - can go negative
303 size_t i
, bitnum
= 0; //output counter
305 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
306 if (*clk
<= 32) tol
= 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
307 size_t MaxBits
= 3072; //max bits to collect
308 lastBit
= start
- *clk
;
310 for (i
= start
; i
< *size
; ++i
) {
311 if (i
-lastBit
>= *clk
-tol
){
312 if (BinStream
[i
] >= high
) {
313 BinStream
[bitnum
++] = *invert
;
314 } else if (BinStream
[i
] <= low
) {
315 BinStream
[bitnum
++] = *invert
^ 1;
316 } else if (i
-lastBit
>= *clk
+tol
) {
318 if (g_debugMode
==2) prnt("DEBUG ASK: Modulation Error at: %u", i
);
319 BinStream
[bitnum
++]=7;
322 } else { //in tolerance - looking for peak
327 } else if (i
-lastBit
>= (*clk
/2-tol
) && !midBit
&& !askType
){
328 if (BinStream
[i
] >= high
) {
329 BinStream
[bitnum
++] = *invert
;
330 } else if (BinStream
[i
] <= low
) {
331 BinStream
[bitnum
++] = *invert
^ 1;
332 } else if (i
-lastBit
>= *clk
/2+tol
) {
333 BinStream
[bitnum
] = BinStream
[bitnum
-1];
335 } else { //in tolerance - looking for peak
340 if (bitnum
>= MaxBits
) break;
347 //take 10 and 01 and manchester decode
348 //run through 2 times and take least errCnt
349 int manrawdecode(uint8_t * BitStream
, size_t *size
, uint8_t invert
)
351 uint16_t bitnum
=0, MaxBits
= 512, errCnt
= 0;
353 uint16_t bestErr
= 1000, bestRun
= 0;
354 if (*size
< 16) return -1;
355 //find correct start position [alignment]
356 for (ii
=0;ii
<2;++ii
){
357 for (i
=ii
; i
<*size
-3; i
+=2)
358 if (BitStream
[i
]==BitStream
[i
+1])
368 for (i
=bestRun
; i
< *size
-3; i
+=2){
369 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
370 BitStream
[bitnum
++]=invert
;
371 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
372 BitStream
[bitnum
++]=invert
^1;
374 BitStream
[bitnum
++]=7;
376 if(bitnum
>MaxBits
) break;
382 uint32_t manchesterEncode2Bytes(uint16_t datain
) {
385 for (uint8_t i
=0; i
<16; i
++) {
386 curBit
= (datain
>> (15-i
) & 1);
387 output
|= (1<<(((15-i
)*2)+curBit
));
393 //encode binary data into binary manchester
394 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
396 size_t modIdx
=20000, i
=0;
397 if (size
>modIdx
) return -1;
398 for (size_t idx
=0; idx
< size
; idx
++){
399 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
400 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
402 for (; i
<(size
*2); i
++){
403 BitStream
[i
] = BitStream
[i
+20000];
409 //take 01 or 10 = 1 and 11 or 00 = 0
410 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
411 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
412 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
417 uint16_t MaxBits
=512;
418 //if not enough samples - error
419 if (*size
< 51) return -1;
420 //check for phase change faults - skip one sample if faulty
421 uint8_t offsetA
= 1, offsetB
= 1;
423 if (BitStream
[i
+1]==BitStream
[i
+2]) offsetA
=0;
424 if (BitStream
[i
+2]==BitStream
[i
+3]) offsetB
=0;
426 if (!offsetA
&& offsetB
) offset
++;
427 for (i
=offset
; i
<*size
-3; i
+=2){
428 //check for phase error
429 if (BitStream
[i
+1]==BitStream
[i
+2]) {
430 BitStream
[bitnum
++]=7;
433 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
434 BitStream
[bitnum
++]=1^invert
;
435 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
436 BitStream
[bitnum
++]=invert
;
438 BitStream
[bitnum
++]=7;
441 if(bitnum
>MaxBits
) break;
448 // demod gProxIIDemod
449 // error returns as -x
450 // success returns start position in BitStream
451 // BitStream must contain previously askrawdemod and biphasedemoded data
452 int gProxII_Demod(uint8_t BitStream
[], size_t *size
)
455 uint8_t preamble
[] = {1,1,1,1,1,0};
457 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
458 if (errChk
== 0) return -3; //preamble not found
459 if (*size
!= 96) return -2; //should have found 96 bits
460 //check first 6 spacer bits to verify format
461 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
462 //confirmed proper separator bits found
463 //return start position
464 return (int) startIdx
;
466 return -5; //spacer bits not found - not a valid gproxII
469 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
470 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
472 size_t last_transition
= 0;
475 if (fchigh
==0) fchigh
=10;
476 if (fclow
==0) fclow
=8;
477 //set the threshold close to 0 (graph) or 128 std to avoid static
478 uint8_t threshold_value
= 123;
479 size_t preLastSample
= 0;
480 size_t LastSample
= 0;
481 size_t currSample
= 0;
482 // sync to first lo-hi transition, and threshold
484 // Need to threshold first sample
485 // skip 160 samples to allow antenna/samples to settle
486 if(dest
[160] < threshold_value
) dest
[0] = 0;
490 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
491 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
492 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
493 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
494 for(idx
= 161; idx
< size
-20; idx
++) {
495 // threshold current value
497 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
500 // Check for 0->1 transition
501 if (dest
[idx
-1] < dest
[idx
]) {
502 preLastSample
= LastSample
;
503 LastSample
= currSample
;
504 currSample
= idx
-last_transition
;
505 if (currSample
< (fclow
-2)){ //0-5 = garbage noise (or 0-3)
506 //do nothing with extra garbage
507 } else if (currSample
< (fchigh
-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
508 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
509 if (LastSample
> (fchigh
-2) && (preLastSample
< (fchigh
-1) || preLastSample
== 0 )){
514 } else if (currSample
> (fchigh
) && !numBits
) { //12 + and first bit = unusable garbage
515 //do nothing with beginning garbage
516 } else if (currSample
== (fclow
+1) && LastSample
== (fclow
-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
518 } else { //9+ = 10 sample waves (or 6+ = 7)
521 last_transition
= idx
;
524 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
527 //translate 11111100000 to 10
528 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
529 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
,
530 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
532 uint8_t lastval
=dest
[0];
536 for( idx
=1; idx
< size
; idx
++) {
538 if (dest
[idx
]==lastval
) continue;
540 //find out how many bits (n) we collected
541 //if lastval was 1, we have a 1->0 crossing
542 if (dest
[idx
-1]==1) {
543 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
544 } else {// 0->1 crossing
545 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
549 //add to our destination the bits we collected
550 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
555 // if valid extra bits at the end were all the same frequency - add them in
556 if (n
> rfLen
/fchigh
) {
557 if (dest
[idx
-2]==1) {
558 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
560 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
562 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
568 //by marshmellow (from holiman's base)
569 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
570 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
573 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
574 size
= aggregate_bits(dest
, size
, rfLen
, invert
, fchigh
, fclow
);
578 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
579 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
581 if (justNoise(dest
, *size
)) return -1;
583 size_t numStart
=0, size2
=*size
, startIdx
=0;
585 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
586 if (*size
< 96*2) return -2;
587 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
588 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
589 // find bitstring in array
590 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
591 if (errChk
== 0) return -3; //preamble not found
593 numStart
= startIdx
+ sizeof(preamble
);
594 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
595 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
596 if (dest
[idx
] == dest
[idx
+1]){
597 return -4; //not manchester data
599 *hi2
= (*hi2
<<1)|(*hi
>>31);
600 *hi
= (*hi
<<1)|(*lo
>>31);
601 //Then, shift in a 0 or one into low
602 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
607 return (int)startIdx
;
610 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
611 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
613 if (justNoise(dest
, *size
)) return -1;
615 size_t numStart
=0, size2
=*size
, startIdx
=0;
617 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
618 if (*size
< 96) return -2;
620 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
621 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
623 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
624 if (errChk
== 0) return -3; //preamble not found
626 numStart
= startIdx
+ sizeof(preamble
);
627 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
628 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
629 if (dest
[idx
] == dest
[idx
+1])
630 return -4; //not manchester data
631 *hi2
= (*hi2
<<1)|(*hi
>>31);
632 *hi
= (*hi
<<1)|(*lo
>>31);
633 //Then, shift in a 0 or one into low
634 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
639 return (int)startIdx
;
642 int IOdemodFSK(uint8_t *dest
, size_t size
)
644 if (justNoise(dest
, size
)) return -1;
645 //make sure buffer has data
646 if (size
< 66*64) return -2;
648 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
649 if (size
< 65) return -3; //did we get a good demod?
651 //0 10 20 30 40 50 60
653 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
654 //-----------------------------------------------------------------------------
655 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
657 //XSF(version)facility:codeone+codetwo
660 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
661 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
662 if (errChk
== 0) return -4; //preamble not found
664 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
665 //confirmed proper separator bits found
666 //return start position
667 return (int) startIdx
;
673 // find viking preamble 0xF200 in already demoded data
674 int VikingDemod_AM(uint8_t *dest
, size_t *size
) {
675 //make sure buffer has data
676 if (*size
< 64*2) return -2;
679 uint8_t preamble
[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
680 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
681 if (errChk
== 0) return -4; //preamble not found
682 uint32_t checkCalc
= bytebits_to_byte(dest
+startIdx
,8) ^ bytebits_to_byte(dest
+startIdx
+8,8) ^ bytebits_to_byte(dest
+startIdx
+16,8)
683 ^ bytebits_to_byte(dest
+startIdx
+24,8) ^ bytebits_to_byte(dest
+startIdx
+32,8) ^ bytebits_to_byte(dest
+startIdx
+40,8)
684 ^ bytebits_to_byte(dest
+startIdx
+48,8) ^ bytebits_to_byte(dest
+startIdx
+56,8);
685 if ( checkCalc
!= 0xA8 ) return -5;
686 if (*size
!= 64) return -6;
687 //return start position
688 return (int) startIdx
;
691 // find presco preamble 0x10D in already demoded data
692 int PrescoDemod(uint8_t *dest
, size_t *size
) {
693 //make sure buffer has data
694 if (*size
< 64*2) return -2;
697 uint8_t preamble
[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
698 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
699 if (errChk
== 0) return -4; //preamble not found
700 //return start position
701 return (int) startIdx
;
704 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
705 // BitStream must contain previously askrawdemod and biphasedemoded data
706 int FDXBdemodBI(uint8_t *dest
, size_t *size
)
708 //make sure buffer has enough data
709 if (*size
< 128) return -1;
712 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,1};
714 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
715 if (errChk
== 0) return -2; //preamble not found
716 return (int)startIdx
;
720 // FSK Demod then try to locate an AWID ID
721 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
723 //make sure buffer has enough data
724 if (*size
< 96*50) return -1;
726 if (justNoise(dest
, *size
)) return -2;
729 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
730 if (*size
< 96) return -3; //did we get a good demod?
732 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
734 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
735 if (errChk
== 0) return -4; //preamble not found
736 if (*size
!= 96) return -5;
737 return (int)startIdx
;
741 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
742 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
744 //make sure buffer has data
745 if (*size
< 128*50) return -5;
747 //test samples are not just noise
748 if (justNoise(dest
, *size
)) return -1;
751 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
752 if (*size
< 128) return -2; //did we get a good demod?
754 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
756 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
757 if (errChk
== 0) return -4; //preamble not found
758 if (*size
!= 128) return -3;
759 return (int)startIdx
;
763 // to detect a wave that has heavily clipped (clean) samples
764 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
766 bool allArePeaks
= true;
768 size_t loopEnd
= 512+160;
769 if (loopEnd
> size
) loopEnd
= size
;
770 for (size_t i
=160; i
<loopEnd
; i
++){
771 if (dest
[i
]>low
&& dest
[i
]<high
)
777 if (cntPeaks
> 300) return true;
782 // to help detect clocks on heavily clipped samples
783 // based on count of low to low
784 int DetectStrongAskClock(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
786 uint8_t fndClk
[] = {8,16,32,40,50,64,128};
790 // get to first full low to prime loop and skip incomplete first pulse
791 while ((dest
[i
] < high
) && (i
< size
))
793 while ((dest
[i
] > low
) && (i
< size
))
796 // loop through all samples
798 // measure from low to low
799 while ((dest
[i
] > low
) && (i
< size
))
802 while ((dest
[i
] < high
) && (i
< size
))
804 while ((dest
[i
] > low
) && (i
< size
))
806 //get minimum measured distance
807 if (i
-startwave
< minClk
&& i
< size
)
808 minClk
= i
- startwave
;
811 if (g_debugMode
==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk
);
812 for (uint8_t clkCnt
= 0; clkCnt
<7; clkCnt
++) {
813 if (minClk
>= fndClk
[clkCnt
]-(fndClk
[clkCnt
]/8) && minClk
<= fndClk
[clkCnt
]+1)
814 return fndClk
[clkCnt
];
820 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
821 // maybe somehow adjust peak trimming value based on samples to fix?
822 // return start index of best starting position for that clock and return clock (by reference)
823 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
)
826 uint8_t clk
[] = {255,8,16,32,40,50,64,100,128,255};
828 uint8_t loopCnt
= 255; //don't need to loop through entire array...
829 if (size
<= loopCnt
+60) return -1; //not enough samples
830 size
-= 60; //sometimes there is a strange end wave - filter out this....
831 //if we already have a valid clock
834 if (clk
[i
] == *clock
) clockFnd
= i
;
835 //clock found but continue to find best startpos
837 //get high and low peak
839 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return -1;
841 //test for large clean peaks
843 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
844 int ans
= DetectStrongAskClock(dest
, size
, peak
, low
);
845 if (g_debugMode
==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans
);
846 for (i
=clkEnd
-1; i
>0; i
--){
850 return 0; // for strong waves i don't use the 'best start position' yet...
851 //break; //clock found but continue to find best startpos [not yet]
857 uint8_t clkCnt
, tol
= 0;
858 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
859 uint8_t bestStart
[]={0,0,0,0,0,0,0,0,0};
861 size_t arrLoc
, loopEnd
;
869 //test each valid clock from smallest to greatest to see which lines up
870 for(; clkCnt
< clkEnd
; clkCnt
++){
871 if (clk
[clkCnt
] <= 32){
876 //if no errors allowed - keep start within the first clock
877 if (!maxErr
&& size
> clk
[clkCnt
]*2 + tol
&& clk
[clkCnt
]<128) loopCnt
=clk
[clkCnt
]*2;
878 bestErr
[clkCnt
]=1000;
879 //try lining up the peaks by moving starting point (try first few clocks)
880 for (ii
=0; ii
< loopCnt
; ii
++){
881 if (dest
[ii
] < peak
&& dest
[ii
] > low
) continue;
884 // now that we have the first one lined up test rest of wave array
885 loopEnd
= ((size
-ii
-tol
) / clk
[clkCnt
]) - 1;
886 for (i
=0; i
< loopEnd
; ++i
){
887 arrLoc
= ii
+ (i
* clk
[clkCnt
]);
888 if (dest
[arrLoc
] >= peak
|| dest
[arrLoc
] <= low
){
889 }else if (dest
[arrLoc
-tol
] >= peak
|| dest
[arrLoc
-tol
] <= low
){
890 }else if (dest
[arrLoc
+tol
] >= peak
|| dest
[arrLoc
+tol
] <= low
){
891 }else{ //error no peak detected
895 //if we found no errors then we can stop here and a low clock (common clocks)
896 // this is correct one - return this clock
897 if (g_debugMode
== 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk
[clkCnt
],errCnt
,ii
,i
);
898 if(errCnt
==0 && clkCnt
<7) {
899 if (!clockFnd
) *clock
= clk
[clkCnt
];
902 //if we found errors see if it is lowest so far and save it as best run
903 if(errCnt
<bestErr
[clkCnt
]){
904 bestErr
[clkCnt
]=errCnt
;
905 bestStart
[clkCnt
]=ii
;
911 for (iii
=1; iii
<clkEnd
; ++iii
){
912 if (bestErr
[iii
] < bestErr
[best
]){
913 if (bestErr
[iii
] == 0) bestErr
[iii
]=1;
914 // current best bit to error ratio vs new bit to error ratio
915 if ( (size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
] ){
919 if (g_debugMode
== 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk
[iii
],bestErr
[iii
],clk
[best
],bestStart
[best
]);
921 if (!clockFnd
) *clock
= clk
[best
];
922 return bestStart
[best
];
926 //detect psk clock by reading each phase shift
927 // a phase shift is determined by measuring the sample length of each wave
928 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
)
930 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
931 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
932 if (size
== 0) return 0;
933 if (size
<loopCnt
) loopCnt
= size
-20;
935 //if we already have a valid clock quit
938 if (clk
[i
] == clock
) return clock
;
940 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
941 uint8_t clkCnt
, fc
=0, fullWaveLen
=0, tol
=1;
942 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0;
943 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
944 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
945 fc
= countFC(dest
, size
, 0);
946 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
947 if (g_debugMode
==2) prnt("DEBUG PSK: FC: %d",fc
);
949 //find first full wave
950 for (i
=160; i
<loopCnt
; i
++){
951 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
952 if (waveStart
== 0) {
954 //prnt("DEBUG: waveStart: %d",waveStart);
957 //prnt("DEBUG: waveEnd: %d",waveEnd);
958 waveLenCnt
= waveEnd
-waveStart
;
959 if (waveLenCnt
> fc
){
960 firstFullWave
= waveStart
;
961 fullWaveLen
=waveLenCnt
;
968 if (g_debugMode
==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave
,fullWaveLen
);
970 //test each valid clock from greatest to smallest to see which lines up
971 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--){
972 lastClkBit
= firstFullWave
; //set end of wave as clock align
976 if (g_debugMode
== 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk
[clkCnt
],lastClkBit
);
978 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
979 //top edge of wave = start of new wave
980 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
981 if (waveStart
== 0) {
986 waveLenCnt
= waveEnd
-waveStart
;
987 if (waveLenCnt
> fc
){
988 //if this wave is a phase shift
989 if (g_debugMode
== 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart
,waveLenCnt
,lastClkBit
+clk
[clkCnt
]-tol
,i
+1,fc
);
990 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
992 lastClkBit
+=clk
[clkCnt
];
993 } else if (i
<lastClkBit
+8){
994 //noise after a phase shift - ignore
995 } else { //phase shift before supposed to based on clock
998 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ fc
){
999 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
1008 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
1009 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
1011 //all tested with errors
1012 //return the highest clk with the most peaks found
1014 for (i
=7; i
>=1; i
--){
1015 if (peaksdet
[i
] > peaksdet
[best
]) {
1018 if (g_debugMode
== 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk
[i
],peaksdet
[i
],bestErr
[i
],clk
[best
]);
1023 int DetectStrongNRZClk(uint8_t *dest
, size_t size
, int peak
, int low
){
1024 //find shortest transition from high to low
1026 size_t transition1
= 0;
1027 int lowestTransition
= 255;
1028 bool lastWasHigh
= false;
1030 //find first valid beginning of a high or low wave
1031 while ((dest
[i
] >= peak
|| dest
[i
] <= low
) && (i
< size
))
1033 while ((dest
[i
] < peak
&& dest
[i
] > low
) && (i
< size
))
1035 lastWasHigh
= (dest
[i
] >= peak
);
1037 if (i
==size
) return 0;
1040 for (;i
< size
; i
++) {
1041 if ((dest
[i
] >= peak
&& !lastWasHigh
) || (dest
[i
] <= low
&& lastWasHigh
)) {
1042 lastWasHigh
= (dest
[i
] >= peak
);
1043 if (i
-transition1
< lowestTransition
) lowestTransition
= i
-transition1
;
1047 if (lowestTransition
== 255) lowestTransition
= 0;
1048 if (g_debugMode
==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition
);
1049 return lowestTransition
;
1053 //detect nrz clock by reading #peaks vs no peaks(or errors)
1054 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
)
1057 uint8_t clk
[]={8,16,32,40,50,64,100,128,255};
1058 size_t loopCnt
= 4096; //don't need to loop through entire array...
1059 if (size
== 0) return 0;
1060 if (size
<loopCnt
) loopCnt
= size
-20;
1061 //if we already have a valid clock quit
1063 if (clk
[i
] == clock
) return clock
;
1065 //get high and low peak
1067 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return 0;
1069 int lowestTransition
= DetectStrongNRZClk(dest
, size
-20, peak
, low
);
1073 uint16_t smplCnt
= 0;
1074 int16_t peakcnt
= 0;
1075 int16_t peaksdet
[] = {0,0,0,0,0,0,0,0};
1076 uint16_t maxPeak
= 255;
1077 bool firstpeak
= false;
1078 //test for large clipped waves
1079 for (i
=0; i
<loopCnt
; i
++){
1080 if (dest
[i
] >= peak
|| dest
[i
] <= low
){
1081 if (!firstpeak
) continue;
1086 if (maxPeak
> smplCnt
){
1088 //prnt("maxPk: %d",maxPeak);
1091 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1096 bool errBitHigh
= 0;
1098 uint8_t ignoreCnt
= 0;
1099 uint8_t ignoreWindow
= 4;
1100 bool lastPeakHigh
= 0;
1103 //test each valid clock from smallest to greatest to see which lines up
1104 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
1105 //ignore clocks smaller than smallest peak
1106 if (clk
[clkCnt
] < maxPeak
- (clk
[clkCnt
]/4)) continue;
1107 //try lining up the peaks by moving starting point (try first 256)
1108 for (ii
=20; ii
< loopCnt
; ++ii
){
1109 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
1113 lastBit
= ii
-clk
[clkCnt
];
1114 //loop through to see if this start location works
1115 for (i
= ii
; i
< size
-20; ++i
) {
1116 //if we are at a clock bit
1117 if ((i
>= lastBit
+ clk
[clkCnt
] - tol
) && (i
<= lastBit
+ clk
[clkCnt
] + tol
)) {
1119 if (dest
[i
] >= peak
|| dest
[i
] <= low
) {
1120 //if same peak don't count it
1121 if ((dest
[i
] >= peak
&& !lastPeakHigh
) || (dest
[i
] <= low
&& lastPeakHigh
)) {
1124 lastPeakHigh
= (dest
[i
] >= peak
);
1127 ignoreCnt
= ignoreWindow
;
1128 lastBit
+= clk
[clkCnt
];
1129 } else if (i
== lastBit
+ clk
[clkCnt
] + tol
) {
1130 lastBit
+= clk
[clkCnt
];
1132 //else if not a clock bit and no peaks
1133 } else if (dest
[i
] < peak
&& dest
[i
] > low
){
1136 if (errBitHigh
==true) peakcnt
--;
1141 // else if not a clock bit but we have a peak
1142 } else if ((dest
[i
]>=peak
|| dest
[i
]<=low
) && (!bitHigh
)) {
1143 //error bar found no clock...
1147 if(peakcnt
>peaksdet
[clkCnt
]) {
1148 peaksdet
[clkCnt
]=peakcnt
;
1155 for (iii
=7; iii
> 0; iii
--){
1156 if ((peaksdet
[iii
] >= (peaksdet
[best
]-1)) && (peaksdet
[iii
] <= peaksdet
[best
]+1) && lowestTransition
) {
1157 if (clk
[iii
] > (lowestTransition
- (clk
[iii
]/8)) && clk
[iii
] < (lowestTransition
+ (clk
[iii
]/8))) {
1160 } else if (peaksdet
[iii
] > peaksdet
[best
]){
1163 if (g_debugMode
==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk
[iii
],peaksdet
[iii
],maxPeak
, clk
[best
], lowestTransition
);
1170 // convert psk1 demod to psk2 demod
1171 // only transition waves are 1s
1172 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
1175 uint8_t lastBit
=BitStream
[0];
1176 for (; i
<size
; i
++){
1177 if (BitStream
[i
]==7){
1179 } else if (lastBit
!=BitStream
[i
]){
1180 lastBit
=BitStream
[i
];
1190 // convert psk2 demod to psk1 demod
1191 // from only transition waves are 1s to phase shifts change bit
1192 void psk2TOpsk1(uint8_t *BitStream
, size_t size
)
1195 for (size_t i
=0; i
<size
; i
++){
1196 if (BitStream
[i
]==1){
1204 // redesigned by marshmellow adjusted from existing decode functions
1205 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1206 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
1208 //26 bit 40134 format (don't know other formats)
1209 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1210 uint8_t preamble_i
[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1211 size_t startidx
= 0;
1212 if (!preambleSearch(bitStream
, preamble
, sizeof(preamble
), size
, &startidx
)){
1213 // if didn't find preamble try again inverting
1214 if (!preambleSearch(bitStream
, preamble_i
, sizeof(preamble_i
), size
, &startidx
)) return -1;
1217 if (*size
!= 64 && *size
!= 224) return -2;
1219 for (size_t i
= startidx
; i
< *size
; i
++)
1222 return (int) startidx
;
1225 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1226 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1227 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
){
1228 if (justNoise(dest
, *size
)) return -1;
1229 *clk
= DetectNRZClock(dest
, *size
, *clk
);
1230 if (*clk
==0) return -2;
1231 size_t i
, gLen
= 4096;
1232 if (gLen
>*size
) gLen
= *size
-20;
1234 if (getHiLo(dest
, gLen
, &high
, &low
, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1237 //convert wave samples to 1's and 0's
1238 for(i
=20; i
< *size
-20; i
++){
1239 if (dest
[i
] >= high
) bit
= 1;
1240 if (dest
[i
] <= low
) bit
= 0;
1243 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1246 for(i
=21; i
< *size
-20; i
++) {
1247 //if transition detected or large number of same bits - store the passed bits
1248 if (dest
[i
] != dest
[i
-1] || (i
-lastBit
) == (10 * *clk
)) {
1249 memset(dest
+numBits
, dest
[i
-1] ^ *invert
, (i
- lastBit
+ (*clk
/4)) / *clk
);
1250 numBits
+= (i
- lastBit
+ (*clk
/4)) / *clk
;
1259 //detects the bit clock for FSK given the high and low Field Clocks
1260 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1262 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1263 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1264 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1265 uint8_t rfLensFnd
= 0;
1266 uint8_t lastFCcnt
= 0;
1267 uint16_t fcCounter
= 0;
1268 uint16_t rfCounter
= 0;
1269 uint8_t firstBitFnd
= 0;
1271 if (size
== 0) return 0;
1273 uint8_t fcTol
= ((fcHigh
*100 - fcLow
*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1278 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1279 // prime i to first peak / up transition
1280 for (i
= 160; i
< size
-20; i
++)
1281 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1284 for (; i
< size
-20; i
++){
1288 if (BitStream
[i
] <= BitStream
[i
-1] || BitStream
[i
] < BitStream
[i
+1])
1291 // if we got less than the small fc + tolerance then set it to the small fc
1292 if (fcCounter
< fcLow
+fcTol
)
1294 else //set it to the large fc
1297 //look for bit clock (rf/xx)
1298 if ((fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1299 //not the same size as the last wave - start of new bit sequence
1300 if (firstBitFnd
> 1){ //skip first wave change - probably not a complete bit
1301 for (int ii
=0; ii
<15; ii
++){
1302 if (rfLens
[ii
] >= (rfCounter
-4) && rfLens
[ii
] <= (rfCounter
+4)){
1308 if (rfCounter
> 0 && rfLensFnd
< 15){
1309 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1310 rfCnts
[rfLensFnd
]++;
1311 rfLens
[rfLensFnd
++] = rfCounter
;
1317 lastFCcnt
=fcCounter
;
1321 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1323 for (i
=0; i
<15; i
++){
1324 //get highest 2 RF values (might need to get more values to compare or compare all?)
1325 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1326 rfHighest3
=rfHighest2
;
1327 rfHighest2
=rfHighest
;
1329 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1330 rfHighest3
=rfHighest2
;
1332 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1335 if (g_debugMode
==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens
[i
], rfCnts
[i
]);
1337 // set allowed clock remainder tolerance to be 1 large field clock length+1
1338 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1339 uint8_t tol1
= fcHigh
+1;
1341 if (g_debugMode
==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens
[rfHighest
],rfLens
[rfHighest2
],rfLens
[rfHighest3
]);
1343 // loop to find the highest clock that has a remainder less than the tolerance
1344 // compare samples counted divided by
1345 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1347 for (; ii
>=2; ii
--){
1348 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1349 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1350 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1351 if (g_debugMode
==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk
[ii
]);
1358 if (ii
<0) return 0; // oops we went too far
1364 //countFC is to detect the field clock lengths.
1365 //counts and returns the 2 most common wave lengths
1366 //mainly used for FSK field clock detection
1367 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t fskAdj
)
1369 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1370 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1371 uint8_t fcLensFnd
= 0;
1372 uint8_t lastFCcnt
=0;
1373 uint8_t fcCounter
= 0;
1375 if (size
== 0) return 0;
1377 // prime i to first up transition
1378 for (i
= 160; i
< size
-20; i
++)
1379 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1382 for (; i
< size
-20; i
++){
1383 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1384 // new up transition
1387 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1388 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1389 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1390 if ((fcCounter
==9) || fcCounter
==4) fcCounter
++;
1391 // save last field clock count (fc/xx)
1392 lastFCcnt
= fcCounter
;
1394 // find which fcLens to save it to:
1395 for (int ii
=0; ii
<15; ii
++){
1396 if (fcLens
[ii
]==fcCounter
){
1402 if (fcCounter
>0 && fcLensFnd
<15){
1404 fcCnts
[fcLensFnd
]++;
1405 fcLens
[fcLensFnd
++]=fcCounter
;
1414 uint8_t best1
=14, best2
=14, best3
=14;
1416 // go through fclens and find which ones are bigest 2
1417 for (i
=0; i
<15; i
++){
1418 // get the 3 best FC values
1419 if (fcCnts
[i
]>maxCnt1
) {
1424 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1427 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1430 if (g_debugMode
==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens
[i
],fcCnts
[i
],fcLens
[best1
],fcLens
[best2
]);
1432 if (fcLens
[best1
]==0) return 0;
1433 uint8_t fcH
=0, fcL
=0;
1434 if (fcLens
[best1
]>fcLens
[best2
]){
1441 if ((size
-180)/fcH
/3 > fcCnts
[best1
]+fcCnts
[best2
]) {
1442 if (g_debugMode
==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size
-180)/fcH
/3,fcCnts
[best1
]+fcCnts
[best2
]);
1443 return 0; //lots of waves not psk or fsk
1445 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1447 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1448 if (fskAdj
) return fcs
;
1449 return fcLens
[best1
];
1452 //by marshmellow - demodulate PSK1 wave
1453 //uses wave lengths (# Samples)
1454 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
)
1456 if (size
== 0) return -1;
1457 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1458 if (*size
<loopCnt
) loopCnt
= *size
;
1461 uint8_t curPhase
= *invert
;
1462 size_t i
, waveStart
=1, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1463 uint8_t fc
=0, fullWaveLen
=0, tol
=1;
1464 uint16_t errCnt
=0, waveLenCnt
=0;
1465 fc
= countFC(dest
, *size
, 0);
1466 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
1467 //PrintAndLog("DEBUG: FC: %d",fc);
1468 *clock
= DetectPSKClock(dest
, *size
, *clock
);
1469 if (*clock
== 0) return -1;
1470 int avgWaveVal
=0, lastAvgWaveVal
=0;
1471 //find first phase shift
1472 for (i
=0; i
<loopCnt
; i
++){
1473 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1475 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1476 waveLenCnt
= waveEnd
-waveStart
;
1477 if (waveLenCnt
> fc
&& waveStart
> fc
&& !(waveLenCnt
> fc
+2)){ //not first peak and is a large wave but not out of whack
1478 lastAvgWaveVal
= avgWaveVal
/(waveLenCnt
);
1479 firstFullWave
= waveStart
;
1480 fullWaveLen
=waveLenCnt
;
1481 //if average wave value is > graph 0 then it is an up wave or a 1
1482 if (lastAvgWaveVal
> 123) curPhase
^= 1; //fudge graph 0 a little 123 vs 128
1488 avgWaveVal
+= dest
[i
+2];
1490 if (firstFullWave
== 0) {
1491 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1492 // so skip a little to ensure we are past any Start Signal
1493 firstFullWave
= 160;
1494 memset(dest
, curPhase
, firstFullWave
/ *clock
);
1496 memset(dest
, curPhase
^1, firstFullWave
/ *clock
);
1499 numBits
+= (firstFullWave
/ *clock
);
1500 //set start of wave as clock align
1501 lastClkBit
= firstFullWave
;
1502 if (g_debugMode
==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave
,fullWaveLen
);
1503 if (g_debugMode
==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock
, lastClkBit
,(unsigned int) fc
);
1505 dest
[numBits
++] = curPhase
; //set first read bit
1506 for (i
= firstFullWave
+ fullWaveLen
- 1; i
< *size
-3; i
++){
1507 //top edge of wave = start of new wave
1508 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1509 if (waveStart
== 0) {
1512 avgWaveVal
= dest
[i
+1];
1515 waveLenCnt
= waveEnd
-waveStart
;
1516 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1517 if (waveLenCnt
> fc
){
1518 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1519 //this wave is a phase shift
1520 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1521 if (i
+1 >= lastClkBit
+ *clock
- tol
){ //should be a clock bit
1523 dest
[numBits
++] = curPhase
;
1524 lastClkBit
+= *clock
;
1525 } else if (i
< lastClkBit
+10+fc
){
1526 //noise after a phase shift - ignore
1527 } else { //phase shift before supposed to based on clock
1529 dest
[numBits
++] = 7;
1531 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
){
1532 lastClkBit
+= *clock
; //no phase shift but clock bit
1533 dest
[numBits
++] = curPhase
;
1539 avgWaveVal
+= dest
[i
+1];
1546 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1547 bool DetectST(uint8_t buffer
[], size_t *size
, int *foundclock
) {
1548 size_t bufsize
= *size
;
1549 //need to loop through all samples and identify our clock, look for the ST pattern
1550 uint8_t fndClk
[] = {8,16,32,40,50,64,128};
1553 int i
, j
, skip
, start
, end
, low
, high
, minClk
, waveStart
;
1554 bool complete
= false;
1555 int tmpbuff
[bufsize
/ 64];
1556 int waveLen
[bufsize
/ 64];
1557 size_t testsize
= (bufsize
< 512) ? bufsize
: 512;
1560 memset(tmpbuff
, 0, sizeof(tmpbuff
));
1562 if ( getHiLo(buffer
, testsize
, &high
, &low
, 80, 80) == -1 ) {
1563 if (g_debugMode
==2) prnt("DEBUG STT: just noise detected - quitting");
1564 return false; //just noise
1569 // get to first full low to prime loop and skip incomplete first pulse
1570 while ((buffer
[i
] < high
) && (i
< bufsize
))
1572 while ((buffer
[i
] > low
) && (i
< bufsize
))
1576 // populate tmpbuff buffer with pulse lengths
1577 while (i
< bufsize
) {
1578 // measure from low to low
1579 while ((buffer
[i
] > low
) && (i
< bufsize
))
1582 while ((buffer
[i
] < high
) && (i
< bufsize
))
1584 //first high point for this wave
1586 while ((buffer
[i
] > low
) && (i
< bufsize
))
1588 if (j
>= (bufsize
/64)) {
1591 waveLen
[j
] = i
- waveStart
; //first high to first low
1592 tmpbuff
[j
++] = i
- start
;
1593 if (i
-start
< minClk
&& i
< bufsize
) {
1597 // set clock - might be able to get this externally and remove this work...
1599 for (uint8_t clkCnt
= 0; clkCnt
<7; clkCnt
++) {
1600 tol
= fndClk
[clkCnt
]/8;
1601 if (minClk
>= fndClk
[clkCnt
]-tol
&& minClk
<= fndClk
[clkCnt
]+1) {
1606 // clock not found - ERROR
1608 if (g_debugMode
==2) prnt("DEBUG STT: clock not found - quitting");
1615 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1617 for (i
= 0; i
< j
- 4; ++i
) {
1619 if (tmpbuff
[i
] >= clk
*1-tol
&& tmpbuff
[i
] <= (clk
*2)+tol
&& waveLen
[i
] < clk
+tol
) { //1 to 2 clocks depending on 2 bits prior
1620 if (tmpbuff
[i
+1] >= clk
*2-tol
&& tmpbuff
[i
+1] <= clk
*2+tol
&& waveLen
[i
+1] > clk
*3/2-tol
) { //2 clocks and wave size is 1 1/2
1621 if (tmpbuff
[i
+2] >= (clk
*3)/2-tol
&& tmpbuff
[i
+2] <= clk
*2+tol
&& waveLen
[i
+2] > clk
-tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1622 if (tmpbuff
[i
+3] >= clk
*1-tol
&& tmpbuff
[i
+3] <= clk
*2+tol
) { //1 to 2 clocks for end of ST + first bit
1630 // first ST not found - ERROR
1632 if (g_debugMode
==2) prnt("DEBUG STT: first STT not found - quitting");
1635 if (waveLen
[i
+2] > clk
*1+tol
)
1640 // skip over the remainder of ST
1641 skip
+= clk
*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1643 // now do it again to find the end
1645 for (i
+= 3; i
< j
- 4; ++i
) {
1647 if (tmpbuff
[i
] >= clk
*1-tol
&& tmpbuff
[i
] <= (clk
*2)+tol
) { //1 to 2 clocks depending on 2 bits prior
1648 if (tmpbuff
[i
+1] >= clk
*2-tol
&& tmpbuff
[i
+1] <= clk
*2+tol
&& waveLen
[i
+1] > clk
*3/2-tol
) { //2 clocks and wave size is 1 1/2
1649 if (tmpbuff
[i
+2] >= (clk
*3)/2-tol
&& tmpbuff
[i
+2] <= clk
*2+tol
&& waveLen
[i
+2] > clk
-tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1650 if (tmpbuff
[i
+3] >= clk
*1-tol
&& tmpbuff
[i
+3] <= clk
*2+tol
) { //1 to 2 clocks for end of ST + first bit
1659 //didn't find second ST - ERROR
1661 if (g_debugMode
==2) prnt("DEBUG STT: second STT not found - quitting");
1664 if (g_debugMode
==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip
, end
, end
-skip
, clk
, (end
-skip
)/clk
, phaseoff
);
1665 //now begin to trim out ST so we can use normal demod cmds
1667 size_t datalen
= end
- start
;
1668 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1669 if (datalen
% clk
> clk
/8) {
1670 if (g_debugMode
==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen
, clk
, datalen
% clk
);
1673 // padd the amount off - could be problematic... but shouldn't happen often
1674 datalen
+= datalen
% clk
;
1676 // if datalen is less than one t55xx block - ERROR
1677 if (datalen
/clk
< 8*4) {
1678 if (g_debugMode
==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1681 size_t dataloc
= start
;
1684 // warning - overwriting buffer given with raw wave data with ST removed...
1685 while ( dataloc
< bufsize
-(clk
/2) ) {
1686 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1687 if (buffer
[dataloc
]<high
&& buffer
[dataloc
]>low
&& buffer
[dataloc
+3]<high
&& buffer
[dataloc
+3]>low
) {
1688 for(i
=0; i
< clk
/2-tol
; ++i
) {
1689 buffer
[dataloc
+i
] = high
+5;
1692 for (i
=0; i
<datalen
; ++i
) {
1693 if (i
+newloc
< bufsize
) {
1694 if (i
+newloc
< dataloc
)
1695 buffer
[i
+newloc
] = buffer
[dataloc
];
1701 //skip next ST - we just assume it will be there from now on...