1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12 #include "iso14443a.h"
14 static uint32_t iso14a_timeout
;
17 // the block number for the ISO14443-4 PCB
18 static uint8_t iso14_pcb_blocknum
= 0;
20 static uint8_t* free_buffer_pointer
;
25 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
26 #define REQUEST_GUARD_TIME (7000/16 + 1)
27 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
28 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
29 // bool LastCommandWasRequest = FALSE;
32 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
34 // When the PM acts as reader and is receiving tag data, it takes
35 // 3 ticks delay in the AD converter
36 // 16 ticks until the modulation detector completes and sets curbit
37 // 8 ticks until bit_to_arm is assigned from curbit
38 // 8*16 ticks for the transfer from FPGA to ARM
39 // 4*16 ticks until we measure the time
40 // - 8*16 ticks because we measure the time of the previous transfer
41 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
43 // When the PM acts as a reader and is sending, it takes
44 // 4*16 ticks until we can write data to the sending hold register
45 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
46 // 8 ticks until the first transfer starts
47 // 8 ticks later the FPGA samples the data
48 // 1 tick to assign mod_sig_coil
49 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
51 // When the PM acts as tag and is receiving it takes
52 // 2 ticks delay in the RF part (for the first falling edge),
53 // 3 ticks for the A/D conversion,
54 // 8 ticks on average until the start of the SSC transfer,
55 // 8 ticks until the SSC samples the first data
56 // 7*16 ticks to complete the transfer from FPGA to ARM
57 // 8 ticks until the next ssp_clk rising edge
58 // 4*16 ticks until we measure the time
59 // - 8*16 ticks because we measure the time of the previous transfer
60 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
62 // The FPGA will report its internal sending delay in
63 uint16_t FpgaSendQueueDelay
;
64 // the 5 first bits are the number of bits buffered in mod_sig_buf
65 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
66 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
68 // When the PM acts as tag and is sending, it takes
69 // 4*16 ticks until we can write data to the sending hold register
70 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
71 // 8 ticks until the first transfer starts
72 // 8 ticks later the FPGA samples the data
73 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
74 // + 1 tick to assign mod_sig_coil
75 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
77 // When the PM acts as sniffer and is receiving tag data, it takes
78 // 3 ticks A/D conversion
79 // 14 ticks to complete the modulation detection
80 // 8 ticks (on average) until the result is stored in to_arm
81 // + the delays in transferring data - which is the same for
82 // sniffing reader and tag data and therefore not relevant
83 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
85 // When the PM acts as sniffer and is receiving reader data, it takes
86 // 2 ticks delay in analogue RF receiver (for the falling edge of the
87 // start bit, which marks the start of the communication)
88 // 3 ticks A/D conversion
89 // 8 ticks on average until the data is stored in to_arm.
90 // + the delays in transferring data - which is the same for
91 // sniffing reader and tag data and therefore not relevant
92 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
94 //variables used for timing purposes:
95 //these are in ssp_clk cycles:
96 static uint32_t NextTransferTime
;
97 static uint32_t LastTimeProxToAirStart
;
98 static uint32_t LastProxToAirDuration
;
100 // CARD TO READER - manchester
101 // Sequence D: 11110000 modulation with subcarrier during first half
102 // Sequence E: 00001111 modulation with subcarrier during second half
103 // Sequence F: 00000000 no modulation with subcarrier
104 // READER TO CARD - miller
105 // Sequence X: 00001100 drop after half a period
106 // Sequence Y: 00000000 no drop
107 // Sequence Z: 11000000 drop at start
115 void iso14a_set_trigger(bool enable
) {
119 void iso14a_set_timeout(uint32_t timeout
) {
120 iso14a_timeout
= timeout
;
121 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
124 void iso14a_set_ATS_timeout(uint8_t *ats
) {
129 if (ats
[0] > 1) { // there is a format byte T0
130 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
132 if ((ats
[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1)
137 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
138 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
139 //fwt = 4096 * (1 << fwi);
141 iso14a_set_timeout(fwt
/(8*16));
142 //iso14a_set_timeout(fwt/128);
147 //-----------------------------------------------------------------------------
148 // Generate the parity value for a byte sequence
150 //-----------------------------------------------------------------------------
151 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
) {
152 uint16_t paritybit_cnt
= 0;
153 uint16_t paritybyte_cnt
= 0;
154 uint8_t parityBits
= 0;
156 for (uint16_t i
= 0; i
< iLen
; i
++) {
157 // Generate the parity bits
158 parityBits
|= ((oddparity8(pbtCmd
[i
])) << (7-paritybit_cnt
));
159 if (paritybit_cnt
== 7) {
160 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
161 parityBits
= 0; // and advance to next Parity Byte
169 // save remaining parity bits
170 par
[paritybyte_cnt
] = parityBits
;
173 void AppendCrc14443a(uint8_t* data
, int len
) {
174 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
177 //=============================================================================
178 // ISO 14443 Type A - Miller decoder
179 //=============================================================================
181 // This decoder is used when the PM3 acts as a tag.
182 // The reader will generate "pauses" by temporarily switching of the field.
183 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
184 // The FPGA does a comparison with a threshold and would deliver e.g.:
185 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
186 // The Miller decoder needs to identify the following sequences:
187 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
188 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
189 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
190 // Note 1: the bitstream may start at any time. We therefore need to sync.
191 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
192 //-----------------------------------------------------------------------------
195 // Lookup-Table to decide if 4 raw bits are a modulation.
196 // We accept the following:
197 // 0001 - a 3 tick wide pause
198 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
199 // 0111 - a 2 tick wide pause shifted left
200 // 1001 - a 2 tick wide pause shifted right
201 const bool Mod_Miller_LUT
[] = {
202 FALSE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, TRUE
,
203 FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
205 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
206 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
209 Uart
.state
= STATE_UNSYNCD
;
211 Uart
.len
= 0; // number of decoded data bytes
212 Uart
.parityLen
= 0; // number of decoded parity bytes
213 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
214 Uart
.parityBits
= 0; // holds 8 parity bits
223 void UartInit(uint8_t *data
, uint8_t *parity
) {
225 Uart
.parity
= parity
;
226 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
230 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
231 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
) {
232 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
234 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
235 Uart
.syncBit
= 9999; // not set
237 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
238 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
239 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
241 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
242 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
243 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
244 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
246 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
247 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
249 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
250 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
251 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
252 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
253 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
254 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
255 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
256 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
258 if (Uart
.syncBit
!= 9999) { // found a sync bit
259 Uart
.startTime
= non_real_time
? non_real_time
: (GetCountSspClk() & 0xfffffff8);
260 Uart
.startTime
-= Uart
.syncBit
;
261 Uart
.endTime
= Uart
.startTime
;
262 Uart
.state
= STATE_START_OF_COMMUNICATION
;
266 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
267 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
269 } else { // Modulation in first half = Sequence Z = logic "0"
270 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
274 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
275 Uart
.state
= STATE_MILLER_Z
;
276 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
277 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
278 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
279 Uart
.parityBits
<<= 1; // make room for the parity bit
280 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
283 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
284 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
291 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
293 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
294 Uart
.state
= STATE_MILLER_X
;
295 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
296 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
297 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
298 Uart
.parityBits
<<= 1; // make room for the new parity bit
299 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
302 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
303 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
307 } else { // no modulation in both halves - Sequence Y
308 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
309 Uart
.state
= STATE_UNSYNCD
;
310 Uart
.bitCount
--; // last "0" was part of EOC sequence
311 Uart
.shiftReg
<<= 1; // drop it
312 if(Uart
.bitCount
> 0) { // if we decoded some bits
313 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
314 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
315 Uart
.parityBits
<<= 1; // add a (void) parity bit
316 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
317 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
319 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
320 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
321 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
324 return TRUE
; // we are finished with decoding the raw data sequence
326 UartReset(); // Nothing received - start over
329 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
331 } else { // a logic "0"
333 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
334 Uart
.state
= STATE_MILLER_Y
;
335 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
336 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
337 Uart
.parityBits
<<= 1; // make room for the parity bit
338 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
341 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
342 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
350 return FALSE
; // not finished yet, need more data
353 //=============================================================================
354 // ISO 14443 Type A - Manchester decoder
355 //=============================================================================
357 // This decoder is used when the PM3 acts as a reader.
358 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
359 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
360 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
361 // The Manchester decoder needs to identify the following sequences:
362 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
363 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
364 // 8 ticks unmodulated: Sequence F = end of communication
365 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
366 // Note 1: the bitstream may start at any time. We therefore need to sync.
367 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
370 // Lookup-Table to decide if 4 raw bits are a modulation.
371 // We accept three or four "1" in any position
372 const bool Mod_Manchester_LUT
[] = {
373 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
374 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
377 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
378 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
381 Demod
.state
= DEMOD_UNSYNCD
;
382 Demod
.len
= 0; // number of decoded data bytes
384 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
385 Demod
.parityBits
= 0; //
386 Demod
.collisionPos
= 0; // Position of collision bit
387 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
392 Demod
.syncBit
= 0xFFFF;
396 void DemodInit(uint8_t *data
, uint8_t *parity
) {
398 Demod
.parity
= parity
;
402 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
403 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
) {
404 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
406 if (Demod
.state
== DEMOD_UNSYNCD
) {
408 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
409 if (Demod
.twoBits
== 0x0000) {
415 Demod
.syncBit
= 0xFFFF; // not set
416 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
417 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
418 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
419 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
420 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
421 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
422 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
423 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
424 if (Demod
.syncBit
!= 0xFFFF) {
425 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
426 Demod
.startTime
-= Demod
.syncBit
;
427 Demod
.bitCount
= offset
; // number of decoded data bits
428 Demod
.state
= DEMOD_MANCHESTER_DATA
;
433 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
434 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
435 if (!Demod
.collisionPos
) {
436 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
438 } // modulation in first half only - Sequence D = 1
440 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
441 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
442 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
443 Demod
.parityBits
<<= 1; // make room for the parity bit
444 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
447 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
448 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
449 Demod
.parityBits
= 0;
452 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
453 } else { // no modulation in first half
454 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
456 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
457 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
458 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
459 Demod
.parityBits
<<= 1; // make room for the new parity bit
460 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
463 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
464 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
465 Demod
.parityBits
= 0;
468 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
469 } else { // no modulation in both halves - End of communication
470 if(Demod
.bitCount
> 0) { // there are some remaining data bits
471 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
472 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
473 Demod
.parityBits
<<= 1; // add a (void) parity bit
474 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
475 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
477 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
478 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
479 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
482 return TRUE
; // we are finished with decoding the raw data sequence
483 } else { // nothing received. Start over
489 return FALSE
; // not finished yet, need more data
492 //=============================================================================
493 // Finally, a `sniffer' for ISO 14443 Type A
494 // Both sides of communication!
495 //=============================================================================
497 //-----------------------------------------------------------------------------
498 // Record the sequence of commands sent by the reader to the tag, with
499 // triggering so that we start recording at the point that the tag is moved
502 //-----------------------------------------------------------------------------
503 void RAMFUNC
SniffIso14443a(uint8_t param
) {
505 // bit 0 - trigger from first card answer
506 // bit 1 - trigger from first reader 7-bit request
509 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
511 // Allocate memory from BigBuf for some buffers
512 // free all previous allocations first
513 BigBuf_free(); BigBuf_Clear_ext(false);
517 // The command (reader -> tag) that we're receiving.
518 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
519 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
521 // The response (tag -> reader) that we're receiving.
522 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
523 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
525 // The DMA buffer, used to stream samples from the FPGA
526 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
528 uint8_t *data
= dmaBuf
;
529 uint8_t previous_data
= 0;
532 bool TagIsActive
= FALSE
;
533 bool ReaderIsActive
= FALSE
;
535 // Set up the demodulator for tag -> reader responses.
536 DemodInit(receivedResponse
, receivedResponsePar
);
538 // Set up the demodulator for the reader -> tag commands
539 UartInit(receivedCmd
, receivedCmdPar
);
541 // Setup and start DMA.
542 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, DMA_BUFFER_SIZE
) ){
543 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
547 // We won't start recording the frames that we acquire until we trigger;
548 // a good trigger condition to get started is probably when we see a
549 // response from the tag.
550 // triggered == FALSE -- to wait first for card
551 bool triggered
= !(param
& 0x03);
553 // And now we loop, receiving samples.
554 for(uint32_t rsamples
= 0; TRUE
; ) {
557 DbpString("cancelled by button");
564 int register readBufDataP
= data
- dmaBuf
;
565 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
566 if (readBufDataP
<= dmaBufDataP
){
567 dataLen
= dmaBufDataP
- readBufDataP
;
569 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
571 // test for length of buffer
572 if(dataLen
> maxDataLen
) {
573 maxDataLen
= dataLen
;
574 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
575 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
579 if(dataLen
< 1) continue;
581 // primary buffer was stopped( <-- we lost data!
582 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
583 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
584 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
585 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
587 // secondary buffer sets as primary, secondary buffer was stopped
588 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
589 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
590 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
595 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
597 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
598 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
599 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
602 // check - if there is a short 7bit request from reader
603 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
606 if (!LogTrace(receivedCmd
,
608 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
609 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
613 /* And ready to receive another command. */
615 /* And also reset the demod code, which might have been */
616 /* false-triggered by the commands from the reader. */
620 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
623 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
624 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
625 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
628 if (!LogTrace(receivedResponse
,
630 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
631 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
635 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
637 // And ready to receive another response.
639 // And reset the Miller decoder including itS (now outdated) input buffer
640 UartInit(receivedCmd
, receivedCmdPar
);
643 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
647 previous_data
= *data
;
650 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
655 if (MF_DBGLEVEL
>= 1) {
656 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
657 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
660 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
665 //-----------------------------------------------------------------------------
666 // Prepare tag messages
667 //-----------------------------------------------------------------------------
668 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
) {
671 // Correction bit, might be removed when not needed
676 ToSendStuffBit(1); // 1
682 ToSend
[++ToSendMax
] = SEC_D
;
683 LastProxToAirDuration
= 8 * ToSendMax
- 4;
685 for(uint16_t i
= 0; i
< len
; i
++) {
689 for(uint16_t j
= 0; j
< 8; j
++) {
691 ToSend
[++ToSendMax
] = SEC_D
;
693 ToSend
[++ToSendMax
] = SEC_E
;
698 // Get the parity bit
699 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
700 ToSend
[++ToSendMax
] = SEC_D
;
701 LastProxToAirDuration
= 8 * ToSendMax
- 4;
703 ToSend
[++ToSendMax
] = SEC_E
;
704 LastProxToAirDuration
= 8 * ToSendMax
;
709 ToSend
[++ToSendMax
] = SEC_F
;
711 // Convert from last byte pos to length
715 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
) {
716 uint8_t par
[MAX_PARITY_SIZE
] = {0};
717 GetParity(cmd
, len
, par
);
718 CodeIso14443aAsTagPar(cmd
, len
, par
);
721 static void Code4bitAnswerAsTag(uint8_t cmd
) {
726 // Correction bit, might be removed when not needed
731 ToSendStuffBit(1); // 1
737 ToSend
[++ToSendMax
] = SEC_D
;
739 for(uint8_t i
= 0; i
< 4; i
++) {
741 ToSend
[++ToSendMax
] = SEC_D
;
742 LastProxToAirDuration
= 8 * ToSendMax
- 4;
744 ToSend
[++ToSendMax
] = SEC_E
;
745 LastProxToAirDuration
= 8 * ToSendMax
;
751 ToSend
[++ToSendMax
] = SEC_F
;
753 // Convert from last byte pos to length
757 //-----------------------------------------------------------------------------
758 // Wait for commands from reader
759 // Stop when button is pressed
760 // Or return TRUE when command is captured
761 //-----------------------------------------------------------------------------
762 int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
) {
763 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
764 // only, since we are receiving, not transmitting).
765 // Signal field is off with the appropriate LED
767 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
769 // Now run a `software UART` on the stream of incoming samples.
770 UartInit(received
, parity
);
773 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
778 if(BUTTON_PRESS()) return FALSE
;
780 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
781 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
782 if(MillerDecoding(b
, 0)) {
790 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
791 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
792 // This will need the following byte array for a modulation sequence
793 // 144 data bits (18 * 8)
796 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
797 // 1 just for the case
799 // 166 bytes, since every bit that needs to be send costs us a byte
801 // Prepare the tag modulation bits from the message
802 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
804 // Make sure we do not exceed the free buffer space
805 if (ToSendMax
> max_buffer_size
) {
806 Dbprintf("Out of memory, when modulating bits for tag answer:");
807 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
811 // Copy the byte array, used for this modulation to the buffer position
812 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
814 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
815 response_info
->modulation_n
= ToSendMax
;
816 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
820 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
821 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
822 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
823 // -> need 273 bytes buffer
824 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
825 // 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
826 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
828 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
829 // Retrieve and store the current buffer index
830 response_info
->modulation
= free_buffer_pointer
;
832 // Determine the maximum size we can use from our buffer
833 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
835 // Forward the prepare tag modulation function to the inner function
836 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
837 // Update the free buffer offset
838 free_buffer_pointer
+= ToSendMax
;
845 //-----------------------------------------------------------------------------
846 // Main loop of simulated tag: receive commands from reader, decide what
847 // response to send, and send it.
849 //-----------------------------------------------------------------------------
850 void SimulateIso14443aTag(int tagType
, int flags
, byte_t
* data
) {
852 #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack()
860 // PACK response to PWD AUTH for EV1/NTAG
861 uint8_t response8
[4] = {0,0,0,0};
862 // Counter for EV1/NTAG
863 uint32_t counters
[] = {0,0,0};
865 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
866 uint8_t response1
[] = {0,0};
868 // Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2
869 // it should also collect block, keytype.
870 uint8_t cardAUTHSC
= 0;
871 uint8_t cardAUTHKEY
= 0xff; // no authentication
872 // allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys
874 nonces_t ar_nr_nonces
[ATTACK_KEY_COUNT
]; // for attack types moebius
875 memset(ar_nr_nonces
, 0x00, sizeof(ar_nr_nonces
));
876 uint8_t moebius_count
= 0;
879 case 1: { // MIFARE Classic 1k
883 case 2: { // MIFARE Ultralight
887 case 3: { // MIFARE DESFire
892 case 4: { // ISO/IEC 14443-4 - javacard (JCOP)
896 case 5: { // MIFARE TNP3XXX
901 case 6: { // MIFARE Mini 320b
911 ComputeCrc14443(CRC_14443_A
, response8
, 2, &response8
[2], &response8
[3]);
912 // uid not supplied then get from emulator memory
914 uint16_t start
= 4 * (0+12);
916 emlGetMemBt( emdata
, start
, sizeof(emdata
));
917 memcpy(data
, emdata
, 3); // uid bytes 0-2
918 memcpy(data
+3, emdata
+4, 4); // uid bytes 3-7
919 flags
|= FLAG_7B_UID_IN_DATA
;
922 case 8: { // MIFARE Classic 4k
927 Dbprintf("Error: unkown tagtype (%d)",tagType
);
932 // The second response contains the (mandatory) first 24 bits of the UID
933 uint8_t response2
[5] = {0x00};
936 uint8_t response2a
[5] = {0x00};
938 if ( (flags
& FLAG_7B_UID_IN_DATA
) == FLAG_7B_UID_IN_DATA
) {
939 response2
[0] = 0x88; // Cascade Tag marker
940 response2
[1] = data
[0];
941 response2
[2] = data
[1];
942 response2
[3] = data
[2];
944 response2a
[0] = data
[3];
945 response2a
[1] = data
[4];
946 response2a
[2] = data
[5];
947 response2a
[3] = data
[6]; //??
948 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
950 // Configure the ATQA and SAK accordingly
951 response1
[0] |= 0x40;
954 cuid
= bytes_to_num(data
+3, 4);
956 memcpy(response2
, data
, 4);
957 // Configure the ATQA and SAK accordingly
958 response1
[0] &= 0xBF;
960 cuid
= bytes_to_num(data
, 4);
963 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
964 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
966 // Prepare the mandatory SAK (for 4 and 7 byte UID)
967 uint8_t response3
[3] = {sak
, 0x00, 0x00};
968 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
970 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
971 uint8_t response3a
[3] = {0x00};
972 response3a
[0] = sak
& 0xFB;
973 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
976 uint8_t response5
[4];
978 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
979 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
980 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
981 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
982 // TC(1) = 0x02: CID supported, NAD not supported
983 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
985 // Prepare GET_VERSION (different for UL EV-1 / NTAG)
986 // uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
987 // uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
988 // Prepare CHK_TEARING
989 // uint8_t response9[] = {0xBD,0x90,0x3f};
991 #define TAG_RESPONSE_COUNT 10
992 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
993 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
994 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
995 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
996 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
997 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
998 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
999 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1001 { .response
= response8
, .response_n
= sizeof(response8
) } // EV1/NTAG PACK response
1003 // { .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
1004 // { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
1007 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1008 // Such a response is less time critical, so we can prepare them on the fly
1009 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1010 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1011 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1012 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1013 tag_response_info_t dynamic_response_info
= {
1014 .response
= dynamic_response_buffer
,
1016 .modulation
= dynamic_modulation_buffer
,
1020 // We need to listen to the high-frequency, peak-detected path.
1021 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1023 BigBuf_free_keep_EM();
1027 // allocate buffers:
1028 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1029 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1030 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1032 // Prepare the responses of the anticollision phase
1033 // there will be not enough time to do this at the moment the reader sends it REQA
1034 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++)
1035 prepare_allocated_tag_modulation(&responses
[i
]);
1039 // To control where we are in the protocol
1043 // Just to allow some checks
1047 tag_response_info_t
* p_response
;
1053 // Clean receive command buffer
1054 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1055 Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
1060 // Okay, look at the command now.
1062 if(receivedCmd
[0] == ISO14443A_CMD_REQA
) { // Received a REQUEST
1063 p_response
= &responses
[0]; order
= 1;
1064 } else if(receivedCmd
[0] == ISO14443A_CMD_WUPA
) { // Received a WAKEUP
1065 p_response
= &responses
[0]; order
= 6;
1066 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
) { // Received request for UID (cascade 1)
1067 p_response
= &responses
[1]; order
= 2;
1068 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
) { // Received request for UID (cascade 2)
1069 p_response
= &responses
[2]; order
= 20;
1070 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
) { // Received a SELECT (cascade 1)
1071 p_response
= &responses
[3]; order
= 3;
1072 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
) { // Received a SELECT (cascade 2)
1073 p_response
= &responses
[4]; order
= 30;
1074 } else if(receivedCmd
[0] == ISO14443A_CMD_READBLOCK
) { // Received a (plain) READ
1075 uint8_t block
= receivedCmd
[1];
1076 // if Ultralight or NTAG (4 byte blocks)
1077 if ( tagType
== 7 || tagType
== 2 ) {
1078 // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1079 uint16_t start
= 4 * (block
+12);
1080 uint8_t emdata
[MAX_MIFARE_FRAME_SIZE
];
1081 emlGetMemBt( emdata
, start
, 16);
1082 AppendCrc14443a(emdata
, 16);
1083 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1084 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1086 } else { // all other tags (16 byte block tags)
1087 uint8_t emdata
[MAX_MIFARE_FRAME_SIZE
];
1088 emlGetMemBt( emdata
, block
, 16);
1089 AppendCrc14443a(emdata
, 16);
1090 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1091 // EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
1092 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1093 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1096 } else if(receivedCmd
[0] == MIFARE_ULEV1_FASTREAD
) { // Received a FAST READ (ranged read)
1097 uint8_t emdata
[MAX_FRAME_SIZE
];
1098 // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1099 int start
= (receivedCmd
[1]+12) * 4;
1100 int len
= (receivedCmd
[2] - receivedCmd
[1] + 1) * 4;
1101 emlGetMemBt( emdata
, start
, len
);
1102 AppendCrc14443a(emdata
, len
);
1103 EmSendCmdEx(emdata
, len
+2, false);
1105 } else if(receivedCmd
[0] == MIFARE_ULEV1_READSIG
&& tagType
== 7) { // Received a READ SIGNATURE --
1106 // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1107 uint16_t start
= 4 * 4;
1109 emlGetMemBt( emdata
, start
, 32);
1110 AppendCrc14443a(emdata
, 32);
1111 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1113 } else if (receivedCmd
[0] == MIFARE_ULEV1_READ_CNT
&& tagType
== 7) { // Received a READ COUNTER --
1114 uint8_t index
= receivedCmd
[1];
1115 uint8_t cmd
[] = {0x00,0x00,0x00,0x14,0xa5};
1116 if ( counters
[index
] > 0) {
1117 num_to_bytes(counters
[index
], 3, cmd
);
1118 AppendCrc14443a(cmd
, sizeof(cmd
)-2);
1120 EmSendCmdEx(cmd
,sizeof(cmd
),false);
1122 } else if (receivedCmd
[0] == MIFARE_ULEV1_INCR_CNT
&& tagType
== 7) { // Received a INC COUNTER --
1123 // number of counter
1124 uint8_t counter
= receivedCmd
[1];
1125 uint32_t val
= bytes_to_num(receivedCmd
+2,4);
1126 counters
[counter
] = val
;
1129 uint8_t ack
[] = {0x0a};
1130 EmSendCmdEx(ack
,sizeof(ack
),false);
1132 } else if(receivedCmd
[0] == MIFARE_ULEV1_CHECKTEAR
&& tagType
== 7) { // Received a CHECK_TEARING_EVENT --
1133 // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1136 if (receivedCmd
[1]<3) counter
= receivedCmd
[1];
1137 emlGetMemBt( emdata
, 10+counter
, 1);
1138 AppendCrc14443a(emdata
, sizeof(emdata
)-2);
1139 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1141 } else if(receivedCmd
[0] == ISO14443A_CMD_HALT
) { // Received a HALT
1142 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1144 } else if(receivedCmd
[0] == MIFARE_AUTH_KEYA
|| receivedCmd
[0] == MIFARE_AUTH_KEYB
) { // Received an authentication request
1145 if ( tagType
== 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1147 emlGetMemBt( emdata
, 0, 8 );
1148 AppendCrc14443a(emdata
, sizeof(emdata
)-2);
1149 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1153 cardAUTHKEY
= receivedCmd
[0] - 0x60;
1154 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
1156 // incease nonce at AUTH requests. this is time consuming.
1158 //num_to_bytes(nonce, 4, response5);
1159 num_to_bytes(nonce
, 4, dynamic_response_info
.response
);
1160 dynamic_response_info
.response_n
= 4;
1162 //prepare_tag_modulation(&responses[5], DYNAMIC_MODULATION_BUFFER_SIZE);
1163 prepare_tag_modulation(&dynamic_response_info
, DYNAMIC_MODULATION_BUFFER_SIZE
);
1164 p_response
= &dynamic_response_info
;
1165 //p_response = &responses[5];
1168 } else if(receivedCmd
[0] == ISO14443A_CMD_RATS
) { // Received a RATS request
1169 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1170 EmSend4bit(CARD_NACK_NA
);
1173 p_response
= &responses
[6]; order
= 70;
1175 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1176 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1177 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1178 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1180 // Collect AR/NR per keytype & sector
1181 if ( (flags
& FLAG_NR_AR_ATTACK
) == FLAG_NR_AR_ATTACK
) {
1185 for (uint8_t i
= 0; i
< ATTACK_KEY_COUNT
; i
++) {
1186 // find which index to use
1187 if ( (cardAUTHSC
== ar_nr_nonces
[i
].sector
) && (cardAUTHKEY
== ar_nr_nonces
[i
].keytype
))
1190 // keep track of empty slots.
1191 if ( ar_nr_nonces
[i
].state
== EMPTY
)
1194 // if no empty slots. Choose first and overwrite.
1195 if ( index
== -1 ) {
1196 if ( empty
== -1 ) {
1198 ar_nr_nonces
[index
].state
= EMPTY
;
1204 switch(ar_nr_nonces
[index
].state
) {
1206 // first nonce collect
1207 ar_nr_nonces
[index
].cuid
= cuid
;
1208 ar_nr_nonces
[index
].sector
= cardAUTHSC
;
1209 ar_nr_nonces
[index
].keytype
= cardAUTHKEY
;
1210 ar_nr_nonces
[index
].nonce
= nonce
;
1211 ar_nr_nonces
[index
].nr
= nr
;
1212 ar_nr_nonces
[index
].ar
= ar
;
1213 ar_nr_nonces
[index
].state
= FIRST
;
1217 // second nonce collect
1218 ar_nr_nonces
[index
].nonce2
= nonce
;
1219 ar_nr_nonces
[index
].nr2
= nr
;
1220 ar_nr_nonces
[index
].ar2
= ar
;
1221 ar_nr_nonces
[index
].state
= SECOND
;
1224 cmd_send(CMD_ACK
, CMD_SIMULATE_MIFARE_CARD
, 0, 0, &ar_nr_nonces
[index
], sizeof(nonces_t
));
1226 ar_nr_nonces
[index
].state
= EMPTY
;
1227 ar_nr_nonces
[index
].sector
= 0;
1228 ar_nr_nonces
[index
].keytype
= 0;
1238 } else if (receivedCmd
[0] == MIFARE_ULC_AUTH_1
) { // ULC authentication, or Desfire Authentication
1239 } else if (receivedCmd
[0] == MIFARE_ULEV1_AUTH
) { // NTAG / EV-1 authentication
1240 if ( tagType
== 7 ) {
1241 uint16_t start
= 13; // first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
1243 emlGetMemBt( emdata
, start
, 2);
1244 AppendCrc14443a(emdata
, 2);
1245 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1247 uint32_t pwd
= bytes_to_num(receivedCmd
+1,4);
1249 if ( MF_DBGLEVEL
>= 3) Dbprintf("Auth attempt: %08x", pwd
);
1252 // Check for ISO 14443A-4 compliant commands, look at left nibble
1253 switch (receivedCmd
[0]) {
1255 case 0x03: { // IBlock (command no CID)
1256 dynamic_response_info
.response
[0] = receivedCmd
[0];
1257 dynamic_response_info
.response
[1] = 0x90;
1258 dynamic_response_info
.response
[2] = 0x00;
1259 dynamic_response_info
.response_n
= 3;
1262 case 0x0A: { // IBlock (command CID)
1263 dynamic_response_info
.response
[0] = receivedCmd
[0];
1264 dynamic_response_info
.response
[1] = 0x00;
1265 dynamic_response_info
.response
[2] = 0x90;
1266 dynamic_response_info
.response
[3] = 0x00;
1267 dynamic_response_info
.response_n
= 4;
1271 case 0x1B: { // Chaining command
1272 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1273 dynamic_response_info
.response_n
= 2;
1278 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1279 dynamic_response_info
.response_n
= 2;
1282 case 0xBA: { // ping / pong
1283 dynamic_response_info
.response
[0] = 0xAB;
1284 dynamic_response_info
.response
[1] = 0x00;
1285 dynamic_response_info
.response_n
= 2;
1289 case 0xC2: { // Readers sends deselect command
1290 dynamic_response_info
.response
[0] = 0xCA;
1291 dynamic_response_info
.response
[1] = 0x00;
1292 dynamic_response_info
.response_n
= 2;
1296 // Never seen this command before
1297 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1298 Dbprintf("Received unknown command (len=%d):",len
);
1299 Dbhexdump(len
,receivedCmd
,false);
1301 dynamic_response_info
.response_n
= 0;
1305 if (dynamic_response_info
.response_n
> 0) {
1306 // Copy the CID from the reader query
1307 dynamic_response_info
.response
[1] = receivedCmd
[1];
1309 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1310 AppendCrc14443a(dynamic_response_info
.response
, dynamic_response_info
.response_n
);
1311 dynamic_response_info
.response_n
+= 2;
1313 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1314 DbpString("Error preparing tag response");
1315 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1318 p_response
= &dynamic_response_info
;
1322 // Count number of wakeups received after a halt
1323 if(order
== 6 && lastorder
== 5) { happened
++; }
1325 // Count number of other messages after a halt
1326 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1328 // comment this limit if you want to simulation longer
1330 DbpString("Trace Full. Simulation stopped.");
1333 // comment this limit if you want to simulation longer
1334 if(cmdsRecvd
> 999) {
1335 DbpString("1000 commands later...");
1340 if (p_response
!= NULL
) {
1341 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1342 // do the tracing for the previous reader request and this tag answer:
1343 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1344 GetParity(p_response
->response
, p_response
->response_n
, par
);
1346 EmLogTrace(Uart
.output
,
1348 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1349 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1351 p_response
->response
,
1352 p_response
->response_n
,
1353 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1354 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1359 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1361 BigBuf_free_keep_EM();
1364 if (MF_DBGLEVEL
>= 4){
1365 Dbprintf("-[ Wake ups after halt [%d]", happened
);
1366 Dbprintf("-[ Messages after halt [%d]", happened2
);
1367 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd
);
1368 Dbprintf("-[ Num of moebius tries [%d]", moebius_count
);
1371 cmd_send(CMD_ACK
,1,0,0,0,0);
1374 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1375 // of bits specified in the delay parameter.
1376 void PrepareDelayedTransfer(uint16_t delay
) {
1380 uint8_t bitmask
= 0;
1381 uint8_t bits_to_shift
= 0;
1382 uint8_t bits_shifted
= 0;
1385 for (i
= 0; i
< delay
; ++i
)
1386 bitmask
|= (0x01 << i
);
1388 ToSend
[++ToSendMax
] = 0x00;
1390 for (i
= 0; i
< ToSendMax
; ++i
) {
1391 bits_to_shift
= ToSend
[i
] & bitmask
;
1392 ToSend
[i
] = ToSend
[i
] >> delay
;
1393 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1394 bits_shifted
= bits_to_shift
;
1399 //-------------------------------------------------------------------------------------
1400 // Transmit the command (to the tag) that was placed in ToSend[].
1401 // Parameter timing:
1402 // if NULL: transfer at next possible time, taking into account
1403 // request guard time and frame delay time
1404 // if == 0: transfer immediately and return time of transfer
1405 // if != 0: delay transfer until time specified
1406 //-------------------------------------------------------------------------------------
1407 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
) {
1408 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1410 uint32_t ThisTransferTime
= 0;
1413 if(*timing
== 0) { // Measure time
1414 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1416 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1418 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1419 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1420 LastTimeProxToAirStart
= *timing
;
1422 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1424 while(GetCountSspClk() < ThisTransferTime
);
1426 LastTimeProxToAirStart
= ThisTransferTime
;
1430 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1434 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1435 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1442 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1445 //-----------------------------------------------------------------------------
1446 // Prepare reader command (in bits, support short frames) to send to FPGA
1447 //-----------------------------------------------------------------------------
1448 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
) {
1455 // Start of Communication (Seq. Z)
1456 ToSend
[++ToSendMax
] = SEC_Z
;
1457 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1459 size_t bytecount
= nbytes(bits
);
1460 // Generate send structure for the data bits
1461 for (i
= 0; i
< bytecount
; i
++) {
1462 // Get the current byte to send
1464 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1466 for (j
= 0; j
< bitsleft
; j
++) {
1469 ToSend
[++ToSendMax
] = SEC_X
;
1470 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1475 ToSend
[++ToSendMax
] = SEC_Z
;
1476 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1479 ToSend
[++ToSendMax
] = SEC_Y
;
1486 // Only transmit parity bit if we transmitted a complete byte
1487 if (j
== 8 && parity
!= NULL
) {
1488 // Get the parity bit
1489 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1491 ToSend
[++ToSendMax
] = SEC_X
;
1492 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1497 ToSend
[++ToSendMax
] = SEC_Z
;
1498 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1501 ToSend
[++ToSendMax
] = SEC_Y
;
1508 // End of Communication: Logic 0 followed by Sequence Y
1511 ToSend
[++ToSendMax
] = SEC_Z
;
1512 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1515 ToSend
[++ToSendMax
] = SEC_Y
;
1518 ToSend
[++ToSendMax
] = SEC_Y
;
1520 // Convert to length of command:
1524 //-----------------------------------------------------------------------------
1525 // Prepare reader command to send to FPGA
1526 //-----------------------------------------------------------------------------
1527 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
) {
1528 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1531 //-----------------------------------------------------------------------------
1532 // Wait for commands from reader
1533 // Stop when button is pressed (return 1) or field was gone (return 2)
1534 // Or return 0 when command is captured
1535 //-----------------------------------------------------------------------------
1536 int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
) {
1539 uint32_t timer
= 0, vtime
= 0;
1543 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1544 // only, since we are receiving, not transmitting).
1545 // Signal field is off with the appropriate LED
1547 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1549 // Set ADC to read field strength
1550 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1551 AT91C_BASE_ADC
->ADC_MR
=
1552 ADC_MODE_PRESCALE(63) |
1553 ADC_MODE_STARTUP_TIME(1) |
1554 ADC_MODE_SAMPLE_HOLD_TIME(15);
1555 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1557 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1559 // Now run a 'software UART' on the stream of incoming samples.
1560 UartInit(received
, parity
);
1563 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1568 if (BUTTON_PRESS()) return 1;
1570 // test if the field exists
1571 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1573 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1574 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1575 if (analogCnt
>= 32) {
1576 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1577 vtime
= GetTickCount();
1578 if (!timer
) timer
= vtime
;
1579 // 50ms no field --> card to idle state
1580 if (vtime
- timer
> 50) return 2;
1582 if (timer
) timer
= 0;
1588 // receive and test the miller decoding
1589 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1590 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1591 if(MillerDecoding(b
, 0)) {
1599 int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
) {
1602 uint32_t ThisTransferTime
;
1604 // Modulate Manchester
1605 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1607 // include correction bit if necessary
1608 if (Uart
.parityBits
& 0x01) {
1609 correctionNeeded
= TRUE
;
1611 // 1236, so correction bit needed
1612 i
= (correctionNeeded
) ? 0 : 1;
1614 // clear receiving shift register and holding register
1615 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1616 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1617 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1618 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1620 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1621 for (uint8_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1622 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1623 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1626 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1629 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1632 for(; i
< respLen
; ) {
1633 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1634 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1635 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1638 if(BUTTON_PRESS()) break;
1641 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1642 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3; // twich /8 ?? >>3,
1643 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1644 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1645 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1646 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1650 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1654 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1655 Code4bitAnswerAsTag(resp
);
1656 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1657 // do the tracing for the previous reader request and this tag answer:
1658 uint8_t par
[1] = {0x00};
1659 GetParity(&resp
, 1, par
);
1660 EmLogTrace(Uart
.output
,
1662 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1663 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1667 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1668 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1673 int EmSend4bit(uint8_t resp
){
1674 return EmSend4bitEx(resp
, false);
1677 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1678 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1679 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1680 // do the tracing for the previous reader request and this tag answer:
1681 EmLogTrace(Uart
.output
,
1683 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1684 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1688 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1689 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1694 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1695 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1696 GetParity(resp
, respLen
, par
);
1697 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1700 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1701 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1702 GetParity(resp
, respLen
, par
);
1703 return EmSendCmdExPar(resp
, respLen
, false, par
);
1706 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1707 return EmSendCmdExPar(resp
, respLen
, false, par
);
1710 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1711 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1713 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1714 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1715 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1716 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1717 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1718 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1719 reader_EndTime
= tag_StartTime
- exact_fdt
;
1720 reader_StartTime
= reader_EndTime
- reader_modlen
;
1722 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
))
1725 return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1729 //-----------------------------------------------------------------------------
1730 // Wait a certain time for tag response
1731 // If a response is captured return TRUE
1732 // If it takes too long return FALSE
1733 //-----------------------------------------------------------------------------
1734 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
) {
1737 // Set FPGA mode to "reader listen mode", no modulation (listen
1738 // only, since we are receiving, not transmitting).
1739 // Signal field is on with the appropriate LED
1741 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1743 // Now get the answer from the card
1744 DemodInit(receivedResponse
, receivedResponsePar
);
1747 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1752 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1753 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1754 if(ManchesterDecoding(b
, offset
, 0)) {
1755 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1757 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1764 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
) {
1766 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1767 // Send command to tag
1768 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1769 if(trigger
) LED_A_ON();
1771 LogTrace(frame
, nbytes(bits
), (LastTimeProxToAirStart
<<4) + DELAY_ARM2AIR_AS_READER
, ((LastTimeProxToAirStart
+ LastProxToAirDuration
)<<4) + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1774 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
) {
1775 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1778 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
) {
1779 // Generate parity and redirect
1780 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1781 GetParity(frame
, len
/8, par
);
1782 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1785 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
) {
1786 // Generate parity and redirect
1787 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1788 GetParity(frame
, len
, par
);
1789 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1792 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
) {
1793 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
))
1795 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1799 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
) {
1800 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0))
1802 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1806 // performs iso14443a anticollision (optional) and card select procedure
1807 // fills the uid and cuid pointer unless NULL
1808 // fills the card info record unless NULL
1809 // if anticollision is false, then the UID must be provided in uid_ptr[]
1810 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1811 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
, bool anticollision
, uint8_t num_cascades
) {
1812 uint8_t wupa
[] = { ISO14443A_CMD_WUPA
}; // 0x26 - ISO14443A_CMD_REQA 0x52 - ISO14443A_CMD_WUPA
1813 uint8_t sel_all
[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT
,0x20 };
1814 uint8_t sel_uid
[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT
,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1815 uint8_t rats
[] = { ISO14443A_CMD_RATS
,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1816 uint8_t resp
[MAX_FRAME_SIZE
] = {0}; // theoretically. A usual RATS will be much smaller
1817 uint8_t resp_par
[MAX_PARITY_SIZE
] = {0};
1818 byte_t uid_resp
[4] = {0};
1819 size_t uid_resp_len
= 0;
1821 uint8_t sak
= 0x04; // cascade uid
1822 int cascade_level
= 0;
1825 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1826 ReaderTransmitBitsPar(wupa
, 7, NULL
, NULL
);
1829 if(!ReaderReceive(resp
, resp_par
)) return 0;
1832 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1833 p_hi14a_card
->uidlen
= 0;
1834 memset(p_hi14a_card
->uid
,0,10);
1837 if (anticollision
) {
1840 memset(uid_ptr
,0,10);
1843 // reset the PCB block number
1844 iso14_pcb_blocknum
= 0;
1846 // check for proprietary anticollision:
1847 if ((resp
[0] & 0x1F) == 0) return 3;
1849 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1850 // which case we need to make a cascade 2 request and select - this is a long UID
1851 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1852 for(; sak
& 0x04; cascade_level
++) {
1853 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1854 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1856 if (anticollision
) {
1858 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1859 if (!ReaderReceive(resp
, resp_par
)) return 0;
1861 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1862 memset(uid_resp
, 0, 4);
1863 uint16_t uid_resp_bits
= 0;
1864 uint16_t collision_answer_offset
= 0;
1865 // anti-collision-loop:
1866 while (Demod
.collisionPos
) {
1867 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1868 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1869 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1870 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1872 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1874 // construct anticollosion command:
1875 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1876 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1877 sel_uid
[2+i
] = uid_resp
[i
];
1879 collision_answer_offset
= uid_resp_bits
%8;
1880 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1881 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1883 // finally, add the last bits and BCC of the UID
1884 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1885 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1886 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1889 } else { // no collision, use the response to SELECT_ALL as current uid
1890 memcpy(uid_resp
, resp
, 4);
1894 if (cascade_level
< num_cascades
- 1) {
1896 memcpy(uid_resp
+1, uid_ptr
+cascade_level
*3, 3);
1898 memcpy(uid_resp
, uid_ptr
+cascade_level
*3, 4);
1903 // calculate crypto UID. Always use last 4 Bytes.
1905 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1907 // Construct SELECT UID command
1908 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1909 memcpy(sel_uid
+2, uid_resp
, 4); // the UID received during anticollision, or the provided UID
1910 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1911 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1912 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1915 if (!ReaderReceive(resp
, resp_par
)) return 0;
1919 // Test if more parts of the uid are coming
1920 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1921 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1922 // http://www.nxp.com/documents/application_note/AN10927.pdf
1923 uid_resp
[0] = uid_resp
[1];
1924 uid_resp
[1] = uid_resp
[2];
1925 uid_resp
[2] = uid_resp
[3];
1929 if(uid_ptr
&& anticollision
)
1930 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1933 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1934 p_hi14a_card
->uidlen
+= uid_resp_len
;
1939 p_hi14a_card
->sak
= sak
;
1940 p_hi14a_card
->ats_len
= 0;
1943 // non iso14443a compliant tag
1944 if( (sak
& 0x20) == 0) return 2;
1946 // Request for answer to select
1947 AppendCrc14443a(rats
, 2);
1948 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1950 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1953 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1954 p_hi14a_card
->ats_len
= len
;
1957 // set default timeout based on ATS
1958 iso14a_set_ATS_timeout(resp
);
1962 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1964 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1965 // Set up the synchronous serial port
1967 // connect Demodulated Signal to ADC:
1968 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1971 // Signal field is on with the appropriate LED
1972 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
||
1973 fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
)
1976 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1983 // Prepare the demodulation functions
1986 NextTransferTime
= 2 * DELAY_ARM2AIR_AS_READER
;
1987 iso14a_set_timeout(10*106); // 20ms default
1990 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1991 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00};
1992 uint8_t real_cmd
[cmd_len
+4];
1993 real_cmd
[0] = 0x0a; //I-Block
1994 // put block number into the PCB
1995 real_cmd
[0] |= iso14_pcb_blocknum
;
1996 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1997 memcpy(real_cmd
+2, cmd
, cmd_len
);
1998 AppendCrc14443a(real_cmd
,cmd_len
+2);
2000 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
2001 size_t len
= ReaderReceive(data
, parity
);
2005 uint8_t *data_bytes
= (uint8_t *) data
;
2007 // if we received an I- or R(ACK)-Block with a block number equal to the
2008 // current block number, toggle the current block number
2009 if (len
>= 4 // PCB+CID+CRC = 4 bytes
2010 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
2011 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2012 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
2014 iso14_pcb_blocknum
^= 1;
2020 //-----------------------------------------------------------------------------
2021 // Read an ISO 14443a tag. Send out commands and store answers.
2022 //-----------------------------------------------------------------------------
2023 void ReaderIso14443a(UsbCommand
*c
) {
2024 iso14a_command_t param
= c
->arg
[0];
2025 size_t len
= c
->arg
[1] & 0xffff;
2026 size_t lenbits
= c
->arg
[1] >> 16;
2027 uint32_t timeout
= c
->arg
[2];
2028 uint8_t *cmd
= c
->d
.asBytes
;
2030 byte_t buf
[USB_CMD_DATA_SIZE
] = {0x00};
2031 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
2033 if (param
& ISO14A_CONNECT
)
2038 if (param
& ISO14A_REQUEST_TRIGGER
)
2039 iso14a_set_trigger(TRUE
);
2041 if (param
& ISO14A_CONNECT
) {
2042 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
2043 if(!(param
& ISO14A_NO_SELECT
)) {
2044 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
2045 arg0
= iso14443a_select_card(NULL
,card
,NULL
, true, 0);
2046 cmd_send(CMD_ACK
, arg0
, card
->uidlen
, 0, buf
, sizeof(iso14a_card_select_t
));
2047 // if it fails, the cmdhf14a.c client quites.. however this one still executes.
2048 if ( arg0
== 0 ) return;
2052 if (param
& ISO14A_SET_TIMEOUT
)
2053 iso14a_set_timeout(timeout
);
2055 if (param
& ISO14A_APDU
) {
2056 arg0
= iso14_apdu(cmd
, len
, buf
);
2057 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2060 if (param
& ISO14A_RAW
) {
2061 if (param
& ISO14A_APPEND_CRC
) {
2062 if (param
& ISO14A_TOPAZMODE
)
2063 AppendCrc14443b(cmd
,len
);
2065 AppendCrc14443a(cmd
,len
);
2068 if (lenbits
) lenbits
+= 16;
2070 if (lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
2071 if (param
& ISO14A_TOPAZMODE
) {
2072 int bits_to_send
= lenbits
;
2074 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
2076 while (bits_to_send
> 0) {
2077 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
2081 GetParity(cmd
, lenbits
/8, par
);
2082 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
2084 } else { // want to send complete bytes only
2085 if (param
& ISO14A_TOPAZMODE
) {
2087 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
2089 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
2092 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
2095 arg0
= ReaderReceive(buf
, par
);
2096 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2099 if (param
& ISO14A_REQUEST_TRIGGER
)
2100 iso14a_set_trigger(FALSE
);
2102 if (param
& ISO14A_NO_DISCONNECT
)
2105 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2110 // Determine the distance between two nonces.
2111 // Assume that the difference is small, but we don't know which is first.
2112 // Therefore try in alternating directions.
2113 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2115 if (nt1
== nt2
) return 0;
2117 uint32_t nttmp1
= nt1
;
2118 uint32_t nttmp2
= nt2
;
2120 // 0xFFFF -- Half up and half down to find distance between nonces
2121 for (uint16_t i
= 1; i
< 32768/8; i
+= 8) {
2122 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
;
2123 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+1;
2124 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+2;
2125 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+3;
2126 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+4;
2127 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+5;
2128 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+6;
2129 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+7;
2131 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -i
;
2132 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+1);
2133 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+2);
2134 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+3);
2135 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+4);
2136 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+5);
2137 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+6);
2138 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+7);
2140 // either nt1 or nt2 are invalid nonces
2144 //-----------------------------------------------------------------------------
2145 // Recover several bits of the cypher stream. This implements (first stages of)
2146 // the algorithm described in "The Dark Side of Security by Obscurity and
2147 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2148 // (article by Nicolas T. Courtois, 2009)
2149 //-----------------------------------------------------------------------------
2151 void ReaderMifare(bool first_try
, uint8_t block
, uint8_t keytype
) {
2153 uint8_t mf_auth
[] = { keytype
, block
, 0x00, 0x00 };
2154 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2155 uint8_t uid
[10] = {0,0,0,0,0,0,0,0,0,0};
2156 uint8_t par_list
[8] = {0,0,0,0,0,0,0,0};
2157 uint8_t ks_list
[8] = {0,0,0,0,0,0,0,0};
2158 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2159 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2160 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2163 uint32_t previous_nt
= 0;
2166 int32_t catch_up_cycles
= 0;
2167 int32_t last_catch_up
= 0;
2169 int32_t nt_distance
= 0;
2171 uint16_t elapsed_prng_sequences
= 1;
2172 uint16_t consecutive_resyncs
= 0;
2173 uint16_t unexpected_random
= 0;
2174 uint16_t sync_tries
= 0;
2176 // static variables here, is re-used in the next call
2177 static uint32_t nt_attacked
= 0;
2178 static uint32_t sync_time
= 0;
2179 static uint32_t sync_cycles
= 0;
2180 static uint8_t par_low
= 0;
2181 static uint8_t mf_nr_ar3
= 0;
2183 #define PRNG_SEQUENCE_LENGTH (1 << 16)
2184 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2185 #define MAX_SYNC_TRIES 32
2187 AppendCrc14443a(mf_auth
, 2);
2189 BigBuf_free(); BigBuf_Clear_ext(false);
2192 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2194 sync_time
= GetCountSspClk() & 0xfffffff8;
2195 sync_cycles
= PRNG_SEQUENCE_LENGTH
; // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2198 if (MF_DBGLEVEL
>= 4) Dbprintf("Mifare::Sync %u", sync_time
);
2204 // we were unsuccessful on a previous call.
2205 // Try another READER nonce (first 3 parity bits remain the same)
2207 mf_nr_ar
[3] = mf_nr_ar3
;
2211 bool have_uid
= FALSE
;
2212 uint8_t cascade_levels
= 0;
2216 for(i
= 0; TRUE
; ++i
) {
2220 // Test if the action was cancelled
2221 if(BUTTON_PRESS()) {
2226 // this part is from Piwi's faster nonce collecting part in Hardnested.
2227 if (!have_uid
) { // need a full select cycle to get the uid first
2228 iso14a_card_select_t card_info
;
2229 if(!iso14443a_select_card(uid
, &card_info
, &cuid
, true, 0)) {
2230 if (MF_DBGLEVEL
>= 4) Dbprintf("Mifare: Can't select card (ALL)");
2233 switch (card_info
.uidlen
) {
2234 case 4 : cascade_levels
= 1; break;
2235 case 7 : cascade_levels
= 2; break;
2236 case 10: cascade_levels
= 3; break;
2240 } else { // no need for anticollision. We can directly select the card
2241 if(!iso14443a_select_card(uid
, NULL
, &cuid
, false, cascade_levels
)) {
2242 if (MF_DBGLEVEL
>= 4) Dbprintf("Mifare: Can't select card (UID)");
2247 // Sending timeslot of ISO14443a frame
2248 sync_time
= (sync_time
& 0xfffffff8 ) + sync_cycles
+ catch_up_cycles
;
2249 catch_up_cycles
= 0;
2251 // if we missed the sync time already, advance to the next nonce repeat
2252 while( GetCountSspClk() > sync_time
) {
2253 ++elapsed_prng_sequences
;
2254 sync_time
= (sync_time
& 0xfffffff8 ) + sync_cycles
;
2257 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2258 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2260 // Receive the (4 Byte) "random" nonce from TAG
2261 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2265 nt
= bytes_to_num(receivedAnswer
, 4);
2267 // Transmit reader nonce with fake par
2268 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2270 // we didn't calibrate our clock yet,
2271 // iceman: has to be calibrated every time.
2272 if (previous_nt
&& !nt_attacked
) {
2274 nt_distance
= dist_nt(previous_nt
, nt
);
2276 // if no distance between, then we are in sync.
2277 if (nt_distance
== 0) {
2280 if (nt_distance
== -99999) { // invalid nonce received
2281 ++unexpected_random
;
2282 if (unexpected_random
> MAX_UNEXPECTED_RANDOM
) {
2283 isOK
= -3; // Card has an unpredictable PRNG. Give up
2286 if (sync_cycles
<= 0) sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2288 continue; // continue trying...
2292 if (++sync_tries
> MAX_SYNC_TRIES
) {
2293 isOK
= -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2297 sync_cycles
= (sync_cycles
- nt_distance
)/elapsed_prng_sequences
;
2299 if (sync_cycles
<= 0)
2300 sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2302 if (MF_DBGLEVEL
>= 4)
2303 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i
, nt_distance
, elapsed_prng_sequences
, sync_cycles
);
2311 if ( (nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2313 catch_up_cycles
= ABS(dist_nt(nt_attacked
, nt
));
2314 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2315 catch_up_cycles
= 0;
2319 catch_up_cycles
/= elapsed_prng_sequences
;
2321 if (catch_up_cycles
== last_catch_up
) {
2322 ++consecutive_resyncs
;
2324 last_catch_up
= catch_up_cycles
;
2325 consecutive_resyncs
= 0;
2328 if (consecutive_resyncs
< 3) {
2329 if (MF_DBGLEVEL
>= 4)
2330 Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, catch_up_cycles
, consecutive_resyncs
);
2332 sync_cycles
+= catch_up_cycles
;
2334 if (MF_DBGLEVEL
>= 4)
2335 Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, catch_up_cycles
, sync_cycles
);
2338 catch_up_cycles
= 0;
2339 consecutive_resyncs
= 0;
2344 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2345 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2346 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2349 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2351 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2352 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05; // xor with NACK value to get keystream
2354 // Test if the information is complete
2355 if (nt_diff
== 0x07) {
2360 nt_diff
= (nt_diff
+ 1) & 0x07;
2361 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2366 if (nt_diff
== 0 && first_try
) {
2368 if (par
[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2374 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2378 // reset the resyncs since we got a complete transaction on right time.
2379 consecutive_resyncs
= 0;
2382 mf_nr_ar
[3] &= 0x1F;
2384 if (MF_DBGLEVEL
>= 4) Dbprintf("Number of sent auth requestes: %u", i
);
2386 uint8_t buf
[28] = {0x00};
2387 memset(buf
, 0x00, sizeof(buf
));
2388 num_to_bytes(cuid
, 4, buf
);
2389 num_to_bytes(nt
, 4, buf
+ 4);
2390 memcpy(buf
+ 8, par_list
, 8);
2391 memcpy(buf
+ 16, ks_list
, 8);
2392 memcpy(buf
+ 24, mf_nr_ar
, 4);
2394 cmd_send(CMD_ACK
, isOK
, 0, 0, buf
, sizeof(buf
) );
2396 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2403 *MIFARE 1K simulate.
2406 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2407 * FLAG_4B_UID_IN_DATA - use 4-byte UID in the data-section
2408 * FLAG_7B_UID_IN_DATA - use 7-byte UID in the data-section
2409 * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section
2410 * FLAG_UID_IN_EMUL - use 4-byte UID from emulator memory
2411 * FLAG_NR_AR_ATTACK - collect NR_AR responses for bruteforcing later
2412 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2414 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
) {
2417 fast_prand( GetTickCount() );
2419 int cardSTATE
= MFEMUL_NOFIELD
;
2420 int _UID_LEN
= 0; // 4, 7, 10
2421 int vHf
= 0; // in mV
2423 uint32_t selTimer
= 0;
2424 uint32_t authTimer
= 0;
2426 uint8_t cardWRBL
= 0;
2427 uint8_t cardAUTHSC
= 0;
2428 uint8_t cardAUTHKEY
= 0xff; // no authentication
2431 uint32_t cardINTREG
= 0;
2432 uint8_t cardINTBLOCK
= 0;
2433 struct Crypto1State mpcs
= {0, 0};
2434 struct Crypto1State
*pcs
;
2436 uint32_t numReads
= 0; // Counts numer of times reader read a block
2437 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2438 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2439 uint8_t response
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2440 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2442 uint8_t atqa
[] = {0x04, 0x00}; // Mifare classic 1k
2443 uint8_t sak_4
[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
2444 uint8_t sak_7
[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
2445 uint8_t sak_10
[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
2446 // uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2448 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2449 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2450 uint8_t rUIDBCC3
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2452 // TAG Nonce - Authenticate response
2453 uint8_t rAUTH_NT
[4];
2454 uint32_t nonce
= prand();
2455 num_to_bytes(nonce
, 4, rAUTH_NT
);
2457 // uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
2458 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2460 // Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
2461 // This can be used in a reader-only attack.
2462 nonces_t ar_nr_nonces
[ATTACK_KEY_COUNT
];
2463 memset(ar_nr_nonces
, 0x00, sizeof(ar_nr_nonces
));
2465 // -- Determine the UID
2466 // Can be set from emulator memory or incoming data
2467 // Length: 4,7,or 10 bytes
2468 if ( (flags
& FLAG_UID_IN_EMUL
) == FLAG_UID_IN_EMUL
)
2469 emlGetMemBt(datain
, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
2471 if ( (flags
& FLAG_4B_UID_IN_DATA
) == FLAG_4B_UID_IN_DATA
) {
2472 memcpy(rUIDBCC1
, datain
, 4);
2474 } else if ( (flags
& FLAG_7B_UID_IN_DATA
) == FLAG_7B_UID_IN_DATA
) {
2475 memcpy(&rUIDBCC1
[1], datain
, 3);
2476 memcpy( rUIDBCC2
, datain
+3, 4);
2478 } else if ( (flags
& FLAG_10B_UID_IN_DATA
) == FLAG_10B_UID_IN_DATA
) {
2479 memcpy(&rUIDBCC1
[1], datain
, 3);
2480 memcpy(&rUIDBCC2
[1], datain
+3, 3);
2481 memcpy( rUIDBCC3
, datain
+6, 4);
2489 cuid
= bytes_to_num(rUIDBCC1
, 4);
2491 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2492 if (MF_DBGLEVEL
>= 2) {
2493 Dbprintf("4B UID: %02x%02x%02x%02x",
2505 cuid
= bytes_to_num(rUIDBCC2
, 4);
2509 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2510 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2511 if (MF_DBGLEVEL
>= 2) {
2512 Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
2527 cuid
= bytes_to_num(rUIDBCC3
, 4);
2532 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2533 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2534 rUIDBCC3
[4] = rUIDBCC3
[0] ^ rUIDBCC3
[1] ^ rUIDBCC3
[2] ^ rUIDBCC3
[3];
2536 if (MF_DBGLEVEL
>= 2) {
2537 Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
2555 ComputeCrc14443(CRC_14443_A
, sak_4
, 1, &sak_4
[1], &sak_4
[2]);
2556 ComputeCrc14443(CRC_14443_A
, sak_7
, 1, &sak_7
[1], &sak_7
[2]);
2557 ComputeCrc14443(CRC_14443_A
, sak_10
, 1, &sak_10
[1], &sak_10
[2]);
2559 // We need to listen to the high-frequency, peak-detected path.
2560 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2562 // free eventually allocated BigBuf memory but keep Emulator Memory
2563 BigBuf_free_keep_EM();
2567 bool finished
= FALSE
;
2568 while (!BUTTON_PRESS() && !finished
&& !usb_poll_validate_length()) {
2571 // find reader field
2572 if (cardSTATE
== MFEMUL_NOFIELD
) {
2573 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2574 if (vHf
> MF_MINFIELDV
) {
2575 cardSTATE_TO_IDLE();
2579 if (cardSTATE
== MFEMUL_NOFIELD
) continue;
2582 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2583 if (res
== 2) { //Field is off!
2584 cardSTATE
= MFEMUL_NOFIELD
;
2587 } else if (res
== 1) {
2588 break; // return value 1 means button press
2591 // REQ or WUP request in ANY state and WUP in HALTED state
2592 // this if-statement doesn't match the specification above. (iceman)
2593 if (len
== 1 && ((receivedCmd
[0] == ISO14443A_CMD_REQA
&& cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == ISO14443A_CMD_WUPA
)) {
2594 selTimer
= GetTickCount();
2595 EmSendCmdEx(atqa
, sizeof(atqa
), (receivedCmd
[0] == ISO14443A_CMD_WUPA
));
2596 cardSTATE
= MFEMUL_SELECT1
;
2597 crypto1_destroy(pcs
);
2604 switch (cardSTATE
) {
2605 case MFEMUL_NOFIELD
:
2608 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2611 case MFEMUL_SELECT1
:{
2612 if (len
== 2 && (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
&& receivedCmd
[1] == 0x20)) {
2613 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2614 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2619 ( receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
&&
2620 receivedCmd
[1] == 0x70 &&
2621 memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2624 EmSendCmd(sak_4
, sizeof(sak_4
));
2627 cardSTATE
= MFEMUL_WORK
;
2629 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2633 cardSTATE
= MFEMUL_SELECT2
;
2638 cardSTATE_TO_IDLE();
2642 case MFEMUL_SELECT2
:{
2644 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2647 if (len
== 2 && (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
&& receivedCmd
[1] == 0x20)) {
2648 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2652 (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
&&
2653 receivedCmd
[1] == 0x70 &&
2654 memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0) ) {
2656 EmSendCmd(sak_7
, sizeof(sak_7
));
2659 cardSTATE
= MFEMUL_WORK
;
2661 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2664 cardSTATE
= MFEMUL_SELECT3
;
2669 cardSTATE_TO_IDLE();
2672 case MFEMUL_SELECT3
:{
2674 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2677 if (len
== 2 && (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3
&& receivedCmd
[1] == 0x20)) {
2678 EmSendCmd(rUIDBCC3
, sizeof(rUIDBCC3
));
2682 (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3
&&
2683 receivedCmd
[1] == 0x70 &&
2684 memcmp(&receivedCmd
[2], rUIDBCC3
, 4) == 0) ) {
2686 EmSendCmd(sak_10
, sizeof(sak_10
));
2687 cardSTATE
= MFEMUL_WORK
;
2689 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer
);
2692 cardSTATE_TO_IDLE();
2697 cardSTATE_TO_IDLE();
2698 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2702 uint32_t nr
= bytes_to_num(receivedCmd
, 4);
2703 uint32_t ar
= bytes_to_num(&receivedCmd
[4], 4);
2705 // Collect AR/NR per keytype & sector
2706 if ( (flags
& FLAG_NR_AR_ATTACK
) == FLAG_NR_AR_ATTACK
) {
2710 for (uint8_t i
= 0; i
< ATTACK_KEY_COUNT
; i
++) {
2711 // find which index to use
2712 if ( (cardAUTHSC
== ar_nr_nonces
[i
].sector
) && (cardAUTHKEY
== ar_nr_nonces
[i
].keytype
))
2715 // keep track of empty slots.
2716 if ( ar_nr_nonces
[i
].state
== EMPTY
)
2719 // if no empty slots. Choose first and overwrite.
2720 if ( index
== -1 ) {
2721 if ( empty
== -1 ) {
2723 ar_nr_nonces
[index
].state
= EMPTY
;
2729 switch(ar_nr_nonces
[index
].state
) {
2731 // first nonce collect
2732 ar_nr_nonces
[index
].cuid
= cuid
;
2733 ar_nr_nonces
[index
].sector
= cardAUTHSC
;
2734 ar_nr_nonces
[index
].keytype
= cardAUTHKEY
;
2735 ar_nr_nonces
[index
].nonce
= nonce
;
2736 ar_nr_nonces
[index
].nr
= nr
;
2737 ar_nr_nonces
[index
].ar
= ar
;
2738 ar_nr_nonces
[index
].state
= FIRST
;
2742 // second nonce collect
2743 ar_nr_nonces
[index
].nonce2
= nonce
;
2744 ar_nr_nonces
[index
].nr2
= nr
;
2745 ar_nr_nonces
[index
].ar2
= ar
;
2746 ar_nr_nonces
[index
].state
= SECOND
;
2749 cmd_send(CMD_ACK
, CMD_SIMULATE_MIFARE_CARD
, 0, 0, &ar_nr_nonces
[index
], sizeof(nonces_t
));
2751 ar_nr_nonces
[index
].state
= EMPTY
;
2752 ar_nr_nonces
[index
].sector
= 0;
2753 ar_nr_nonces
[index
].keytype
= 0;
2760 crypto1_word(pcs
, nr
, 1);
2761 uint32_t cardRr
= ar
^ crypto1_word(pcs
, 0, 0);
2764 if (cardRr
!= prng_successor(nonce
, 64)){
2766 if (MF_DBGLEVEL
>= 3) {
2767 Dbprintf("AUTH FAILED for sector %d with key %c. [nr=%08x cardRr=%08x] [nt=%08x succ=%08x]"
2769 , (cardAUTHKEY
== 0) ? 'A' : 'B'
2773 , prng_successor(nonce
, 64)
2776 // Shouldn't we respond anything here?
2777 // Right now, we don't nack or anything, which causes the
2778 // reader to do a WUPA after a while. /Martin
2779 // -- which is the correct response. /piwi
2780 cardSTATE_TO_IDLE();
2781 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2785 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2786 num_to_bytes(ans
, 4, rAUTH_AT
);
2787 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2790 if (MF_DBGLEVEL
>= 1) {
2791 Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2793 cardAUTHKEY
== 0 ? 'A' : 'B',
2794 GetTickCount() - authTimer
2797 cardSTATE
= MFEMUL_WORK
;
2802 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2805 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2808 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2810 if (len
== 4 && (receivedCmd
[0] == MIFARE_AUTH_KEYA
||
2811 receivedCmd
[0] == MIFARE_AUTH_KEYB
) ) {
2813 authTimer
= GetTickCount();
2814 cardAUTHSC
= receivedCmd
[1] / 4; // received block -> sector
2815 cardAUTHKEY
= receivedCmd
[0] & 0x1;
2816 crypto1_destroy(pcs
);
2818 // load key into crypto
2819 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2821 if (!encrypted_data
) {
2822 // first authentication
2823 // Update crypto state init (UID ^ NONCE)
2824 crypto1_word(pcs
, cuid
^ nonce
, 0);
2825 num_to_bytes(nonce
, 4, rAUTH_AT
);
2827 // nested authentication
2828 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2829 num_to_bytes(ans
, 4, rAUTH_AT
);
2831 if (MF_DBGLEVEL
>= 3) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %c", receivedCmd
[1], receivedCmd
[1], cardAUTHKEY
== 0 ? 'A' : 'B');
2834 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2835 cardSTATE
= MFEMUL_AUTH1
;
2839 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2840 // BUT... ACK --> NACK
2841 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2842 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2846 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2847 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2848 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2853 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2857 if ( receivedCmd
[0] == ISO14443A_CMD_READBLOCK
||
2858 receivedCmd
[0] == ISO14443A_CMD_WRITEBLOCK
||
2859 receivedCmd
[0] == MIFARE_CMD_INC
||
2860 receivedCmd
[0] == MIFARE_CMD_DEC
||
2861 receivedCmd
[0] == MIFARE_CMD_RESTORE
||
2862 receivedCmd
[0] == MIFARE_CMD_TRANSFER
) {
2864 if (receivedCmd
[1] >= 16 * 4) {
2865 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2866 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2870 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2871 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2872 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2877 if (receivedCmd
[0] == ISO14443A_CMD_READBLOCK
) {
2878 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader reading block %d (0x%02x)", receivedCmd
[1], receivedCmd
[1]);
2880 emlGetMem(response
, receivedCmd
[1], 1);
2881 AppendCrc14443a(response
, 16);
2882 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2883 EmSendCmdPar(response
, 18, response_par
);
2885 if(exitAfterNReads
> 0 && numReads
>= exitAfterNReads
) {
2886 Dbprintf("%d reads done, exiting", numReads
);
2892 if (receivedCmd
[0] == ISO14443A_CMD_WRITEBLOCK
) {
2893 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", receivedCmd
[1], receivedCmd
[1]);
2894 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2895 cardSTATE
= MFEMUL_WRITEBL2
;
2896 cardWRBL
= receivedCmd
[1];
2899 // increment, decrement, restore
2900 if ( receivedCmd
[0] == MIFARE_CMD_INC
||
2901 receivedCmd
[0] == MIFARE_CMD_DEC
||
2902 receivedCmd
[0] == MIFARE_CMD_RESTORE
) {
2904 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0], receivedCmd
[1], receivedCmd
[1]);
2906 if (emlCheckValBl(receivedCmd
[1])) {
2907 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2908 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2911 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2912 if (receivedCmd
[0] == MIFARE_CMD_INC
) cardSTATE
= MFEMUL_INTREG_INC
;
2913 if (receivedCmd
[0] == MIFARE_CMD_DEC
) cardSTATE
= MFEMUL_INTREG_DEC
;
2914 if (receivedCmd
[0] == MIFARE_CMD_RESTORE
) cardSTATE
= MFEMUL_INTREG_REST
;
2915 cardWRBL
= receivedCmd
[1];
2919 if (receivedCmd
[0] == MIFARE_CMD_TRANSFER
) {
2920 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd
[0], receivedCmd
[1], receivedCmd
[1]);
2921 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2922 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2924 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2928 if (receivedCmd
[0] == ISO14443A_CMD_HALT
&& receivedCmd
[1] == 0x00) {
2931 cardSTATE
= MFEMUL_HALTED
;
2932 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2933 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2937 if (receivedCmd
[0] == ISO14443A_CMD_RATS
) {
2938 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2941 // command not allowed
2942 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2943 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2946 case MFEMUL_WRITEBL2
:{
2948 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2949 emlSetMem(receivedCmd
, cardWRBL
, 1);
2950 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2951 cardSTATE
= MFEMUL_WORK
;
2953 cardSTATE_TO_IDLE();
2954 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2958 case MFEMUL_INTREG_INC
:{
2959 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2960 memcpy(&ans
, receivedCmd
, 4);
2961 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2962 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2963 cardSTATE_TO_IDLE();
2966 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2967 cardINTREG
= cardINTREG
+ ans
;
2968 cardSTATE
= MFEMUL_WORK
;
2971 case MFEMUL_INTREG_DEC
:{
2972 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2973 memcpy(&ans
, receivedCmd
, 4);
2974 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2975 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2976 cardSTATE_TO_IDLE();
2979 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2980 cardINTREG
= cardINTREG
- ans
;
2981 cardSTATE
= MFEMUL_WORK
;
2984 case MFEMUL_INTREG_REST
:{
2985 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2986 memcpy(&ans
, receivedCmd
, 4);
2987 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2988 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2989 cardSTATE_TO_IDLE();
2992 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2993 cardSTATE
= MFEMUL_WORK
;
2999 if (MF_DBGLEVEL
>= 1)
3000 Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
3002 cmd_send(CMD_ACK
,1,0,0,0,0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
3008 //-----------------------------------------------------------------------------
3011 // if no activity for 2sec, it sends the collected data to the client.
3012 //-----------------------------------------------------------------------------
3014 void RAMFUNC
SniffMifare(uint8_t param
) {
3018 // free eventually allocated BigBuf memory
3019 BigBuf_free(); BigBuf_Clear_ext(false);
3023 // The command (reader -> tag) that we're receiving.
3024 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
3025 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
3027 // The response (tag -> reader) that we're receiving.
3028 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
3029 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
3031 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
3033 // allocate the DMA buffer, used to stream samples from the FPGA
3034 // [iceman] is this sniffed data unsigned?
3035 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
3036 uint8_t *data
= dmaBuf
;
3037 uint8_t previous_data
= 0;
3040 bool ReaderIsActive
= FALSE
;
3041 bool TagIsActive
= FALSE
;
3043 // Set up the demodulator for tag -> reader responses.
3044 DemodInit(receivedResponse
, receivedResponsePar
);
3046 // Set up the demodulator for the reader -> tag commands
3047 UartInit(receivedCmd
, receivedCmdPar
);
3049 // Setup and start DMA.
3050 // set transfer address and number of bytes. Start transfer.
3051 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, DMA_BUFFER_SIZE
) ){
3052 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
3060 // And now we loop, receiving samples.
3061 for(uint32_t sniffCounter
= 0;; ) {
3066 if(BUTTON_PRESS()) {
3067 DbpString("cancelled by button");
3071 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
3072 // check if a transaction is completed (timeout after 2000ms).
3073 // if yes, stop the DMA transfer and send what we have so far to the client
3074 if (MfSniffSend(2000)) {
3075 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3079 ReaderIsActive
= FALSE
;
3080 TagIsActive
= FALSE
;
3081 // Setup and start DMA. set transfer address and number of bytes. Start transfer.
3082 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, DMA_BUFFER_SIZE
) ){
3083 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
3089 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
3090 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
3092 if (readBufDataP
<= dmaBufDataP
) // we are processing the same block of data which is currently being transferred
3093 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
3095 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
3097 // test for length of buffer
3098 if(dataLen
> maxDataLen
) { // we are more behind than ever...
3099 maxDataLen
= dataLen
;
3100 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
3101 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
3105 if(dataLen
< 1) continue;
3107 // primary buffer was stopped ( <-- we lost data!
3108 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
3109 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
3110 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
3111 Dbprintf("RxEmpty ERROR, data length:%d", dataLen
); // temporary
3113 // secondary buffer sets as primary, secondary buffer was stopped
3114 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
3115 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
3116 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
3121 if (sniffCounter
& 0x01) {
3123 // no need to try decoding tag data if the reader is sending
3125 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
3126 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
3129 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
3131 UartInit(receivedCmd
, receivedCmdPar
);
3134 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
3137 // no need to try decoding tag data if the reader is sending
3138 if(!ReaderIsActive
) {
3139 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
3140 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
3143 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
3146 UartInit(receivedCmd
, receivedCmdPar
);
3148 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
3152 previous_data
= *data
;
3156 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
)
3161 if (MF_DBGLEVEL
>= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);
3163 FpgaDisableSscDma();
3165 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);