1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
27 #include "lfsampling.h"
29 #include "mifareutil.h"
35 // Craig Young - 14a stand-alone code
36 #ifdef WITH_ISO14443a_StandAlone
37 #include "iso14443a.h"
40 #define abs(x) ( ((x)<0) ? -(x) : (x) )
42 //=============================================================================
43 // A buffer where we can queue things up to be sent through the FPGA, for
44 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
45 // is the order in which they go out on the wire.
46 //=============================================================================
48 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
49 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
52 struct common_area common_area
__attribute__((section(".commonarea")));
54 void ToSendReset(void)
60 void ToSendStuffBit(int b
)
64 ToSend
[ToSendMax
] = 0;
69 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
74 if(ToSendMax
>= sizeof(ToSend
)) {
76 DbpString("ToSendStuffBit overflowed!");
80 //=============================================================================
81 // Debug print functions, to go out over USB, to the usual PC-side client.
82 //=============================================================================
84 void DbpString(char *str
)
86 byte_t len
= strlen(str
);
87 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
91 void DbpIntegers(int x1
, int x2
, int x3
)
93 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void Dbprintf(const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128];
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpString(output_string
);
109 // prints HEX & ASCII
110 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
123 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
126 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
128 Dbprintf("%*D",l
,d
," ");
136 //-----------------------------------------------------------------------------
137 // Read an ADC channel and block till it completes, then return the result
138 // in ADC units (0 to 1023). Also a routine to average 32 samples and
140 //-----------------------------------------------------------------------------
141 static int ReadAdc(int ch
)
145 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
146 AT91C_BASE_ADC
->ADC_MR
=
147 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
148 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
149 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
151 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
152 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
153 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
156 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
158 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
160 // Note: with the "historic" values in the comments above, the error was 34% !!!
162 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
164 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
166 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
168 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
173 int AvgAdc(int ch
) // was static - merlok
178 for(i
= 0; i
< 32; i
++) {
182 return (a
+ 15) >> 5;
185 void MeasureAntennaTuning(void)
187 uint8_t LF_Results
[256];
188 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
189 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
194 * Sweeps the useful LF range of the proxmark from
195 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
196 * read the voltage in the antenna, the result left
197 * in the buffer is a graph which should clearly show
198 * the resonating frequency of your LF antenna
199 * ( hopefully around 95 if it is tuned to 125kHz!)
202 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
203 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
204 for (i
=255; i
>=19; i
--) {
206 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
208 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
209 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
210 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
212 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
213 if(LF_Results
[i
] > peak
) {
215 peak
= LF_Results
[i
];
221 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
228 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
230 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
237 void MeasureAntennaTuningHf(void)
239 int vHf
= 0; // in mV
241 DbpString("Measuring HF antenna, press button to exit");
243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
244 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
245 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
249 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
251 Dbprintf("%d mV",vHf
);
252 if (BUTTON_PRESS()) break;
254 DbpString("cancelled");
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
261 void ReadMem(int addr
)
263 const uint8_t *data
= ((uint8_t *)addr
);
265 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
266 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
269 /* osimage version information is linked in */
270 extern struct version_information version_information
;
271 /* bootrom version information is pointed to from _bootphase1_version_pointer */
272 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
273 void SendVersion(void)
275 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
276 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
278 /* Try to find the bootrom version information. Expect to find a pointer at
279 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
280 * pointer, then use it.
282 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
283 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
284 strcat(VersionString
, "bootrom version information appears invalid\n");
286 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
287 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
290 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
291 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
295 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
296 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
298 // Send Chip ID and used flash memory
299 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
300 uint32_t compressed_data_section_size
= common_area
.arg1
;
301 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
304 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
305 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
306 void printUSBSpeed(void)
308 Dbprintf("USB Speed:");
309 Dbprintf(" Sending USB packets to client...");
311 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
312 uint8_t *test_data
= BigBuf_get_addr();
315 uint32_t start_time
= end_time
= GetTickCount();
316 uint32_t bytes_transferred
= 0;
319 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
320 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
321 end_time
= GetTickCount();
322 bytes_transferred
+= USB_CMD_DATA_SIZE
;
326 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
327 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
328 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
329 1000 * bytes_transferred
/ (end_time
- start_time
));
334 * Prints runtime information about the PM3.
336 void SendStatus(void)
338 BigBuf_print_status();
340 printConfig(); //LF Sampling config
343 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
344 Dbprintf(" ToSendMax........%d",ToSendMax
);
345 Dbprintf(" ToSendBit........%d",ToSendBit
);
347 cmd_send(CMD_ACK
,1,0,0,0,0);
350 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
354 void StandAloneMode()
356 DbpString("Stand-alone mode! No PC necessary.");
357 // Oooh pretty -- notify user we're in elite samy mode now
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
365 LED(LED_ORANGE
, 200);
374 #ifdef WITH_ISO14443a_StandAlone
375 void StandAloneMode14a()
378 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
381 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
382 int cardRead
[OPTS
] = {0};
383 uint8_t readUID
[10] = {0};
384 uint32_t uid_1st
[OPTS
]={0};
385 uint32_t uid_2nd
[OPTS
]={0};
386 uint32_t uid_tmp1
= 0;
387 uint32_t uid_tmp2
= 0;
388 iso14a_card_select_t hi14a_card
[OPTS
];
390 LED(selected
+ 1, 0);
398 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
402 LED(selected
+ 1, 0);
406 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
407 /* need this delay to prevent catching some weird data */
409 /* Code for reading from 14a tag */
410 uint8_t uid
[10] ={0};
412 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
417 if (BUTTON_PRESS()) {
418 if (cardRead
[selected
]) {
419 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
422 else if (cardRead
[(selected
+1)%OPTS
]) {
423 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
424 selected
= (selected
+1)%OPTS
;
425 break; // playing = 1;
428 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
432 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
))
436 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
437 memcpy(readUID
,uid
,10*sizeof(uint8_t));
438 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
439 // Set UID byte order
440 for (int i
=0; i
<4; i
++)
442 dst
= (uint8_t *)&uid_tmp2
;
443 for (int i
=0; i
<4; i
++)
445 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
446 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
450 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
451 uid_1st
[selected
] = (uid_tmp1
)>>8;
452 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
455 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
456 uid_1st
[selected
] = uid_tmp1
;
457 uid_2nd
[selected
] = uid_tmp2
;
463 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
464 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
467 LED(LED_ORANGE
, 200);
469 LED(LED_ORANGE
, 200);
472 LED(selected
+ 1, 0);
474 // Next state is replay:
477 cardRead
[selected
] = 1;
479 /* MF Classic UID clone */
480 else if (iGotoClone
==1)
484 LED(selected
+ 1, 0);
485 LED(LED_ORANGE
, 250);
489 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
491 // wait for button to be released
492 while(BUTTON_PRESS())
494 // Delay cloning until card is in place
497 Dbprintf("Starting clone. [Bank: %u]", selected
);
498 // need this delay to prevent catching some weird data
500 // Begin clone function here:
501 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
502 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
503 memcpy(c.d.asBytes, data, 16);
506 Block read is similar:
507 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
508 We need to imitate that call with blockNo 0 to set a uid.
510 The get and set commands are handled in this file:
511 // Work with "magic Chinese" card
512 case CMD_MIFARE_CSETBLOCK:
513 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
515 case CMD_MIFARE_CGETBLOCK:
516 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
519 mfCSetUID provides example logic for UID set workflow:
520 -Read block0 from card in field with MifareCGetBlock()
521 -Configure new values without replacing reserved bytes
522 memcpy(block0, uid, 4); // Copy UID bytes from byte array
524 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
525 Bytes 5-7 are reserved SAK and ATQA for mifare classic
526 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
528 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
529 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
530 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
531 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
532 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
536 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
537 memcpy(newBlock0
,oldBlock0
,16);
538 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
540 newBlock0
[0] = uid_1st
[selected
]>>24;
541 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
542 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
543 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
544 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
545 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
546 MifareCSetBlock(0, 0xFF,0, newBlock0
);
547 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
548 if (memcmp(testBlock0
,newBlock0
,16)==0)
550 DbpString("Cloned successfull!");
551 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
554 selected
= (selected
+1) % OPTS
;
557 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
562 LED(selected
+ 1, 0);
565 // Change where to record (or begin playing)
566 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
569 LED(selected
+ 1, 0);
571 // Begin transmitting
575 DbpString("Playing");
578 int button_action
= BUTTON_HELD(1000);
579 if (button_action
== 0) { // No button action, proceed with sim
580 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
581 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
582 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
583 DbpString("Mifare Classic");
584 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
586 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
587 DbpString("Mifare Ultralight");
588 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
590 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
591 DbpString("Mifare DESFire");
592 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
595 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
596 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
599 else if (button_action
== BUTTON_SINGLE_CLICK
) {
600 selected
= (selected
+ 1) % OPTS
;
601 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
605 else if (button_action
== BUTTON_HOLD
) {
606 Dbprintf("Playtime over. Begin cloning...");
613 /* We pressed a button so ignore it here with a delay */
616 LED(selected
+ 1, 0);
619 while(BUTTON_PRESS())
625 // samy's sniff and repeat routine
629 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
631 int high
[OPTS
], low
[OPTS
];
636 // Turn on selected LED
637 LED(selected
+ 1, 0);
644 // Was our button held down or pressed?
645 int button_pressed
= BUTTON_HELD(1000);
648 // Button was held for a second, begin recording
649 if (button_pressed
> 0 && cardRead
== 0)
652 LED(selected
+ 1, 0);
656 DbpString("Starting recording");
658 // wait for button to be released
659 while(BUTTON_PRESS())
662 /* need this delay to prevent catching some weird data */
665 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
666 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
669 LED(selected
+ 1, 0);
670 // Finished recording
672 // If we were previously playing, set playing off
673 // so next button push begins playing what we recorded
680 else if (button_pressed
> 0 && cardRead
== 1)
683 LED(selected
+ 1, 0);
687 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
689 // wait for button to be released
690 while(BUTTON_PRESS())
693 /* need this delay to prevent catching some weird data */
696 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
697 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
700 LED(selected
+ 1, 0);
701 // Finished recording
703 // If we were previously playing, set playing off
704 // so next button push begins playing what we recorded
711 // Change where to record (or begin playing)
712 else if (button_pressed
)
714 // Next option if we were previously playing
716 selected
= (selected
+ 1) % OPTS
;
720 LED(selected
+ 1, 0);
722 // Begin transmitting
726 DbpString("Playing");
727 // wait for button to be released
728 while(BUTTON_PRESS())
730 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
731 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
732 DbpString("Done playing");
733 if (BUTTON_HELD(1000) > 0)
735 DbpString("Exiting");
740 /* We pressed a button so ignore it here with a delay */
743 // when done, we're done playing, move to next option
744 selected
= (selected
+ 1) % OPTS
;
747 LED(selected
+ 1, 0);
750 while(BUTTON_PRESS())
759 Listen and detect an external reader. Determine the best location
763 Inside the ListenReaderField() function, there is two mode.
764 By default, when you call the function, you will enter mode 1.
765 If you press the PM3 button one time, you will enter mode 2.
766 If you press the PM3 button a second time, you will exit the function.
768 DESCRIPTION OF MODE 1:
769 This mode just listens for an external reader field and lights up green
770 for HF and/or red for LF. This is the original mode of the detectreader
773 DESCRIPTION OF MODE 2:
774 This mode will visually represent, using the LEDs, the actual strength of the
775 current compared to the maximum current detected. Basically, once you know
776 what kind of external reader is present, it will help you spot the best location to place
777 your antenna. You will probably not get some good results if there is a LF and a HF reader
778 at the same place! :-)
782 static const char LIGHT_SCHEME
[] = {
783 0x0, /* ---- | No field detected */
784 0x1, /* X--- | 14% of maximum current detected */
785 0x2, /* -X-- | 29% of maximum current detected */
786 0x4, /* --X- | 43% of maximum current detected */
787 0x8, /* ---X | 57% of maximum current detected */
788 0xC, /* --XX | 71% of maximum current detected */
789 0xE, /* -XXX | 86% of maximum current detected */
790 0xF, /* XXXX | 100% of maximum current detected */
792 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
794 void ListenReaderField(int limit
)
796 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
797 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
798 int mode
=1, display_val
, display_max
, i
;
802 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
805 // switch off FPGA - we don't want to measure our own signal
806 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
807 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
811 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
813 if(limit
!= HF_ONLY
) {
814 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
818 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
820 if (limit
!= LF_ONLY
) {
821 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
826 if (BUTTON_PRESS()) {
831 DbpString("Signal Strength Mode");
835 DbpString("Stopped");
843 if (limit
!= HF_ONLY
) {
845 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
851 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
852 // see if there's a significant change
853 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
854 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
861 if (limit
!= LF_ONLY
) {
863 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
869 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
870 // see if there's a significant change
871 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
872 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
880 if (limit
== LF_ONLY
) {
882 display_max
= lf_max
;
883 } else if (limit
== HF_ONLY
) {
885 display_max
= hf_max
;
886 } else { /* Pick one at random */
887 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
889 display_max
= hf_max
;
892 display_max
= lf_max
;
895 for (i
=0; i
<LIGHT_LEN
; i
++) {
896 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
897 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
898 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
899 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
900 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
908 void UsbPacketReceived(uint8_t *packet
, int len
)
910 UsbCommand
*c
= (UsbCommand
*)packet
;
912 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
916 case CMD_SET_LF_SAMPLING_CONFIG
:
917 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
919 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
920 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
922 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
923 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
925 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
926 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
928 case CMD_HID_DEMOD_FSK
:
929 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
931 case CMD_HID_SIM_TAG
:
932 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
934 case CMD_FSK_SIM_TAG
:
935 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
937 case CMD_ASK_SIM_TAG
:
938 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
940 case CMD_PSK_SIM_TAG
:
941 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
943 case CMD_HID_CLONE_TAG
:
944 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
946 case CMD_IO_DEMOD_FSK
:
947 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
949 case CMD_IO_CLONE_TAG
:
950 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
952 case CMD_EM410X_DEMOD
:
953 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
955 case CMD_EM410X_WRITE_TAG
:
956 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
958 case CMD_READ_TI_TYPE
:
961 case CMD_WRITE_TI_TYPE
:
962 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
964 case CMD_SIMULATE_TAG_125K
:
966 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
969 case CMD_LF_SIMULATE_BIDIR
:
970 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
972 case CMD_INDALA_CLONE_TAG
:
973 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
975 case CMD_INDALA_CLONE_TAG_L
:
976 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
978 case CMD_T55XX_READ_BLOCK
:
979 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
981 case CMD_T55XX_WRITE_BLOCK
:
982 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
984 case CMD_T55XX_WAKEUP
:
985 T55xxWakeUp(c
->arg
[0]);
987 case CMD_T55XX_RESET_READ
:
990 case CMD_PCF7931_READ
:
993 case CMD_PCF7931_WRITE
:
994 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
996 case CMD_EM4X_READ_WORD
:
997 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
999 case CMD_EM4X_WRITE_WORD
:
1000 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1002 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1003 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1005 case CMD_VIKING_CLONE_TAG
:
1006 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1011 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1012 SnoopHitag(c
->arg
[0]);
1014 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1015 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1017 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1018 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1020 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1021 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1023 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1024 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1026 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1027 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1029 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1030 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1034 #ifdef WITH_ISO15693
1035 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1036 AcquireRawAdcSamplesIso15693();
1038 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1039 RecordRawAdcSamplesIso15693();
1042 case CMD_ISO_15693_COMMAND
:
1043 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1046 case CMD_ISO_15693_FIND_AFI
:
1047 BruteforceIso15693Afi(c
->arg
[0]);
1050 case CMD_ISO_15693_DEBUG
:
1051 SetDebugIso15693(c
->arg
[0]);
1054 case CMD_READER_ISO_15693
:
1055 ReaderIso15693(c
->arg
[0]);
1057 case CMD_SIMTAG_ISO_15693
:
1058 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1063 case CMD_SIMULATE_TAG_LEGIC_RF
:
1064 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1067 case CMD_WRITER_LEGIC_RF
:
1068 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1071 case CMD_READER_LEGIC_RF
:
1072 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1076 #ifdef WITH_ISO14443b
1077 case CMD_READ_SRI512_TAG
:
1078 ReadSTMemoryIso14443b(0x0F);
1080 case CMD_READ_SRIX4K_TAG
:
1081 ReadSTMemoryIso14443b(0x7F);
1083 case CMD_SNOOP_ISO_14443B
:
1086 case CMD_SIMULATE_TAG_ISO_14443B
:
1087 SimulateIso14443bTag();
1089 case CMD_ISO_14443B_COMMAND
:
1090 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1094 #ifdef WITH_ISO14443a
1095 case CMD_SNOOP_ISO_14443a
:
1096 SnoopIso14443a(c
->arg
[0]);
1098 case CMD_READER_ISO_14443a
:
1101 case CMD_SIMULATE_TAG_ISO_14443a
:
1102 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1105 case CMD_EPA_PACE_COLLECT_NONCE
:
1106 EPA_PACE_Collect_Nonce(c
);
1108 case CMD_EPA_PACE_REPLAY
:
1112 case CMD_READER_MIFARE
:
1113 ReaderMifare(c
->arg
[0]);
1115 case CMD_MIFARE_READBL
:
1116 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1118 case CMD_MIFAREU_READBL
:
1119 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1121 case CMD_MIFAREUC_AUTH
:
1122 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1124 case CMD_MIFAREU_READCARD
:
1125 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1127 case CMD_MIFAREUC_SETPWD
:
1128 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1130 case CMD_MIFARE_READSC
:
1131 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1133 case CMD_MIFARE_WRITEBL
:
1134 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1136 //case CMD_MIFAREU_WRITEBL_COMPAT:
1137 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1139 case CMD_MIFAREU_WRITEBL
:
1140 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1142 case CMD_MIFARE_NESTED
:
1143 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1145 case CMD_MIFARE_CHKKEYS
:
1146 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1148 case CMD_SIMULATE_MIFARE_CARD
:
1149 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1153 case CMD_MIFARE_SET_DBGMODE
:
1154 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1156 case CMD_MIFARE_EML_MEMCLR
:
1157 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1159 case CMD_MIFARE_EML_MEMSET
:
1160 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1162 case CMD_MIFARE_EML_MEMGET
:
1163 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1165 case CMD_MIFARE_EML_CARDLOAD
:
1166 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1169 // Work with "magic Chinese" card
1170 case CMD_MIFARE_CSETBLOCK
:
1171 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1173 case CMD_MIFARE_CGETBLOCK
:
1174 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1176 case CMD_MIFARE_CIDENT
:
1181 case CMD_MIFARE_SNIFFER
:
1182 SniffMifare(c
->arg
[0]);
1188 // Makes use of ISO14443a FPGA Firmware
1189 case CMD_SNOOP_ICLASS
:
1192 case CMD_SIMULATE_TAG_ICLASS
:
1193 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1195 case CMD_READER_ICLASS
:
1196 ReaderIClass(c
->arg
[0]);
1198 case CMD_READER_ICLASS_REPLAY
:
1199 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1201 case CMD_ICLASS_EML_MEMSET
:
1202 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1204 case CMD_ICLASS_WRITEBLOCK
:
1205 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1207 case CMD_ICLASS_READCHECK
: // auth step 1
1208 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1210 case CMD_ICLASS_READBLOCK
:
1211 iClass_ReadBlk(c
->arg
[0]);
1213 case CMD_ICLASS_AUTHENTICATION
: //check
1214 iClass_Authentication(c
->d
.asBytes
);
1216 case CMD_ICLASS_DUMP
:
1217 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1219 case CMD_ICLASS_CLONE
:
1220 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1224 case CMD_HF_SNIFFER
:
1225 HfSnoop(c
->arg
[0], c
->arg
[1]);
1229 case CMD_BUFF_CLEAR
:
1233 case CMD_MEASURE_ANTENNA_TUNING
:
1234 MeasureAntennaTuning();
1237 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1238 MeasureAntennaTuningHf();
1241 case CMD_LISTEN_READER_FIELD
:
1242 ListenReaderField(c
->arg
[0]);
1245 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1246 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1248 LED_D_OFF(); // LED D indicates field ON or OFF
1251 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1254 uint8_t *BigBuf
= BigBuf_get_addr();
1255 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1256 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1257 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1259 // Trigger a finish downloading signal with an ACK frame
1260 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1264 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1265 uint8_t *b
= BigBuf_get_addr();
1266 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1267 cmd_send(CMD_ACK
,0,0,0,0,0);
1274 case CMD_SET_LF_DIVISOR
:
1275 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1276 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1279 case CMD_SET_ADC_MUX
:
1281 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1282 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1283 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1284 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1295 cmd_send(CMD_ACK
,0,0,0,0,0);
1305 case CMD_SETUP_WRITE
:
1306 case CMD_FINISH_WRITE
:
1307 case CMD_HARDWARE_RESET
:
1311 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1313 // We're going to reset, and the bootrom will take control.
1317 case CMD_START_FLASH
:
1318 if(common_area
.flags
.bootrom_present
) {
1319 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1322 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1326 case CMD_DEVICE_INFO
: {
1327 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1328 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1329 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1333 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1338 void __attribute__((noreturn
)) AppMain(void)
1342 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1343 /* Initialize common area */
1344 memset(&common_area
, 0, sizeof(common_area
));
1345 common_area
.magic
= COMMON_AREA_MAGIC
;
1346 common_area
.version
= 1;
1348 common_area
.flags
.osimage_present
= 1;
1358 // The FPGA gets its clock from us from PCK0 output, so set that up.
1359 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1360 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1361 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1362 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1363 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1364 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1365 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1368 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1370 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1372 // Load the FPGA image, which we have stored in our flash.
1373 // (the HF version by default)
1374 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1382 byte_t rx
[sizeof(UsbCommand
)];
1387 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1389 UsbPacketReceived(rx
,rx_len
);
1395 #ifndef WITH_ISO14443a_StandAlone
1396 if (BUTTON_HELD(1000) > 0)
1400 #ifdef WITH_ISO14443a
1401 #ifdef WITH_ISO14443a_StandAlone
1402 if (BUTTON_HELD(1000) > 0)
1403 StandAloneMode14a();