]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/util.c
Fix data mtrim
[proxmark3-svn] / armsrc / util.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Sept 2005
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Utility functions used in many places, not specific to any piece of code.
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "util.h"
13 #include "string.h"
14 #include "apps.h"
15 #include "BigBuf.h"
16
17
18
19 void print_result(char *name, uint8_t *buf, size_t len) {
20 uint8_t *p = buf;
21
22 if ( len % 16 == 0 ) {
23 for(; p-buf < len; p += 16)
24 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
25 name,
26 p-buf,
27 len,
28 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
29 );
30 }
31 else {
32 for(; p-buf < len; p += 8)
33 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
34 }
35 }
36
37 size_t nbytes(size_t nbits) {
38 return (nbits >> 3)+((nbits % 8) > 0);
39 }
40
41 uint32_t SwapBits(uint32_t value, int nrbits) {
42 int i;
43 uint32_t newvalue = 0;
44 for(i = 0; i < nrbits; i++) {
45 newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i);
46 }
47 return newvalue;
48 }
49
50 void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
51 {
52 while (len--) {
53 dest[len] = (uint8_t) n;
54 n >>= 8;
55 }
56 }
57
58 uint64_t bytes_to_num(uint8_t* src, size_t len)
59 {
60 uint64_t num = 0;
61 while (len--)
62 {
63 num = (num << 8) | (*src);
64 src++;
65 }
66 return num;
67 }
68
69 // RotateLeft - Ultralight, Desfire
70 void rol(uint8_t *data, const size_t len){
71 uint8_t first = data[0];
72 for (size_t i = 0; i < len-1; i++) {
73 data[i] = data[i+1];
74 }
75 data[len-1] = first;
76 }
77 void lsl (uint8_t *data, size_t len) {
78 for (size_t n = 0; n < len - 1; n++) {
79 data[n] = (data[n] << 1) | (data[n+1] >> 7);
80 }
81 data[len - 1] <<= 1;
82 }
83
84 int32_t le24toh (uint8_t data[3])
85 {
86 return (data[2] << 16) | (data[1] << 8) | data[0];
87 }
88
89 void LEDsoff()
90 {
91 LED_A_OFF();
92 LED_B_OFF();
93 LED_C_OFF();
94 LED_D_OFF();
95 }
96
97 // LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
98 void LED(int led, int ms)
99 {
100 if (led & LED_RED)
101 LED_C_ON();
102 if (led & LED_ORANGE)
103 LED_A_ON();
104 if (led & LED_GREEN)
105 LED_B_ON();
106 if (led & LED_RED2)
107 LED_D_ON();
108
109 if (!ms)
110 return;
111
112 SpinDelay(ms);
113
114 if (led & LED_RED)
115 LED_C_OFF();
116 if (led & LED_ORANGE)
117 LED_A_OFF();
118 if (led & LED_GREEN)
119 LED_B_OFF();
120 if (led & LED_RED2)
121 LED_D_OFF();
122 }
123
124
125 // Determine if a button is double clicked, single clicked,
126 // not clicked, or held down (for ms || 1sec)
127 // In general, don't use this function unless you expect a
128 // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
129 int BUTTON_CLICKED(int ms)
130 {
131 // Up to 500ms in between clicks to mean a double click
132 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
133
134 // If we're not even pressed, forget about it!
135 if (!BUTTON_PRESS())
136 return BUTTON_NO_CLICK;
137
138 // Borrow a PWM unit for my real-time clock
139 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
140 // 48 MHz / 1024 gives 46.875 kHz
141 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
142 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
143 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
144
145 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
146
147 int letoff = 0;
148 for(;;)
149 {
150 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
151
152 // We haven't let off the button yet
153 if (!letoff)
154 {
155 // We just let it off!
156 if (!BUTTON_PRESS())
157 {
158 letoff = 1;
159
160 // reset our timer for 500ms
161 start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
162 ticks = (48000 * (500)) >> 10;
163 }
164
165 // Still haven't let it off
166 else
167 // Have we held down a full second?
168 if (now == (uint16_t)(start + ticks))
169 return BUTTON_HOLD;
170 }
171
172 // We already let off, did we click again?
173 else
174 // Sweet, double click!
175 if (BUTTON_PRESS())
176 return BUTTON_DOUBLE_CLICK;
177
178 // Have we ran out of time to double click?
179 else
180 if (now == (uint16_t)(start + ticks))
181 // At least we did a single click
182 return BUTTON_SINGLE_CLICK;
183
184 WDT_HIT();
185 }
186
187 // We should never get here
188 return BUTTON_ERROR;
189 }
190
191 // Determine if a button is held down
192 int BUTTON_HELD(int ms)
193 {
194 // If button is held for one second
195 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
196
197 // If we're not even pressed, forget about it!
198 if (!BUTTON_PRESS())
199 return BUTTON_NO_CLICK;
200
201 // Borrow a PWM unit for my real-time clock
202 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
203 // 48 MHz / 1024 gives 46.875 kHz
204 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
205 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
206 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
207
208 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
209
210 for(;;)
211 {
212 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
213
214 // As soon as our button let go, we didn't hold long enough
215 if (!BUTTON_PRESS())
216 return BUTTON_SINGLE_CLICK;
217
218 // Have we waited the full second?
219 else
220 if (now == (uint16_t)(start + ticks))
221 return BUTTON_HOLD;
222
223 WDT_HIT();
224 }
225
226 // We should never get here
227 return BUTTON_ERROR;
228 }
229
230 // attempt at high resolution microsecond timer
231 // beware: timer counts in 21.3uS increments (1024/48Mhz)
232 void SpinDelayUs(int us)
233 {
234 int ticks = (48*us) >> 10;
235
236 // Borrow a PWM unit for my real-time clock
237 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
238 // 48 MHz / 1024 gives 46.875 kHz
239 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
240 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
241 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
242
243 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
244
245 for(;;) {
246 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
247 if (now == (uint16_t)(start + ticks))
248 return;
249
250 WDT_HIT();
251 }
252 }
253
254 void SpinDelay(int ms)
255 {
256 // convert to uS and call microsecond delay function
257 SpinDelayUs(ms*1000);
258 }
259
260 /* Similar to FpgaGatherVersion this formats stored version information
261 * into a string representation. It takes a pointer to the struct version_information,
262 * verifies the magic properties, then stores a formatted string, prefixed by
263 * prefix in dst.
264 */
265 void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information)
266 {
267 struct version_information *v = (struct version_information*)version_information;
268 dst[0] = 0;
269 strncat(dst, prefix, len-1);
270 if(v->magic != VERSION_INFORMATION_MAGIC) {
271 strncat(dst, "Missing/Invalid version information\n", len - strlen(dst) - 1);
272 return;
273 }
274 if(v->versionversion != 1) {
275 strncat(dst, "Version information not understood\n", len - strlen(dst) - 1);
276 return;
277 }
278 if(!v->present) {
279 strncat(dst, "Version information not available\n", len - strlen(dst) - 1);
280 return;
281 }
282
283 strncat(dst, v->gitversion, len - strlen(dst) - 1);
284 if(v->clean == 0) {
285 strncat(dst, "-unclean", len - strlen(dst) - 1);
286 } else if(v->clean == 2) {
287 strncat(dst, "-suspect", len - strlen(dst) - 1);
288 }
289
290 strncat(dst, " ", len - strlen(dst) - 1);
291 strncat(dst, v->buildtime, len - strlen(dst) - 1);
292 strncat(dst, "\n", len - strlen(dst) - 1);
293 }
294
295 // -------------------------------------------------------------------------
296 // timer lib
297 // -------------------------------------------------------------------------
298 // test procedure:
299 //
300 // ti = GetTickCount();
301 // SpinDelay(1000);
302 // ti = GetTickCount() - ti;
303 // Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
304
305 void StartTickCount()
306 {
307 // This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
308 // We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
309 uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
310 // set RealTimeCounter divider to count at 1kHz:
311 AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
312 // note: worst case precision is approx 2.5%
313 }
314
315 /*
316 * Get the current count.
317 */
318 uint32_t RAMFUNC GetTickCount(){
319 return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
320 }
321
322 // -------------------------------------------------------------------------
323 // microseconds timer
324 // -------------------------------------------------------------------------
325 void StartCountUS()
326 {
327 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
328 // AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
329 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
330
331 // fast clock
332 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
333 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
334 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
335 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
336 AT91C_BASE_TC0->TC_RA = 1;
337 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
338
339 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
340 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
341
342 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
343 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
344 AT91C_BASE_TCB->TCB_BCR = 1;
345 }
346
347 uint32_t RAMFUNC GetCountUS(){
348 return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3); //was /15) * 10);
349 }
350
351 static uint32_t GlobalUsCounter = 0;
352
353 uint32_t RAMFUNC GetDeltaCountUS(){
354 uint32_t g_cnt = GetCountUS();
355 uint32_t g_res = g_cnt - GlobalUsCounter;
356 GlobalUsCounter = g_cnt;
357 return g_res;
358 }
359
360
361 // -------------------------------------------------------------------------
362 // Timer for iso14443 commands. Uses ssp_clk from FPGA
363 // -------------------------------------------------------------------------
364 void StartCountSspClk()
365 {
366 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
367 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
368 | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
369 | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
370
371 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
372 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
373 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
374 | AT91C_TC_CPCSTOP // Stop clock on RC compare
375 | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
376 | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
377 | AT91C_TC_ENETRG // Enable external trigger event
378 | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
379 | AT91C_TC_WAVE // Waveform Mode
380 | AT91C_TC_AEEVT_SET // Set TIOA1 on external event
381 | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
382 AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
383
384 // use TC0 to count TIOA1 pulses
385 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
386 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
387 | AT91C_TC_WAVE // Waveform Mode
388 | AT91C_TC_WAVESEL_UP // just count
389 | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
390 | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
391 AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
392 AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
393
394 // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
395 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
396 AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
397 | AT91C_TC_WAVE // Waveform Mode
398 | AT91C_TC_WAVESEL_UP; // just count
399
400 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
401 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
402 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
403
404 //
405 // synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present
406 //
407 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
408 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
409 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
410 // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
411 // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
412 AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
413 // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
414 // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
415 // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
416 // (just started with the transfer of the 4th Bit).
417 // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
418 // we can use the counter.
419 while (AT91C_BASE_TC0->TC_CV < 0xFFF0);
420 }
421 void ResetSspClk(void) {
422 //enable clock of timer and software trigger
423 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
424 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
425 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
426 while (AT91C_BASE_TC2->TC_CV > 0);
427 }
428 uint32_t RAMFUNC GetCountSspClk(){
429 uint32_t tmp_count;
430 tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
431 if ((tmp_count & 0x0000ffff) == 0) { //small chance that we may have missed an increment in TC2
432 return (AT91C_BASE_TC2->TC_CV << 16);
433 }
434 else {
435 return tmp_count;
436 }
437 }
438
439 // -------------------------------------------------------------------------
440 // Timer for bitbanging, or LF stuff when you need a very precis timer
441 // 1us = 1.5ticks
442 // -------------------------------------------------------------------------
443 void StartTicks(void){
444 //initialization of the timer
445 // tc1 is higher 0xFFFF0000
446 // tc0 is lower 0x0000FFFF
447 AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
448 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
449 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
450 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
451 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
452 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
453 AT91C_BASE_TC0->TC_RA = 1;
454 AT91C_BASE_TC0->TC_RC = 0;
455
456 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
457 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from TC0
458
459 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
460 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
461 AT91C_BASE_TCB->TCB_BCR = 1;
462
463 // wait until timer becomes zero.
464 while (AT91C_BASE_TC1->TC_CV > 0);
465 }
466
467 // Wait - Spindelay in ticks.
468 // if called with a high number, this will trigger the WDT...
469 void WaitTicks(uint32_t ticks){
470 if ( ticks == 0 ) return;
471 ticks += GET_TICKS;
472 while (GET_TICKS < ticks);
473 }
474 // Wait / Spindelay in us (microseconds)
475 // 1us = 1.5ticks.
476 void WaitUS(uint16_t us){
477 if ( us == 0 ) return;
478 WaitTicks( (uint32_t)(us * 1.5) );
479 }
480 void WaitMS(uint16_t ms){
481 if (ms == 0) return;
482 WaitTicks( (uint32_t)(ms * 1500) );
483 }
484 // Starts Clock and waits until its reset
485 void ResetTicks(void){
486 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
487 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
488 while (AT91C_BASE_TC1->TC_CV > 0);
489 }
490 void ResetTimer(AT91PS_TC timer){
491 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
492 while(timer->TC_CV > 0) ;
493 }
494 // stop clock
495 void StopTicks(void){
496 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
497 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
498 }
499
500 static uint64_t next_random = 1;
501
502 /* Generates a (non-cryptographically secure) 32-bit random number.
503 *
504 * We don't have an implementation of the "rand" function or a clock to seed it
505 * with, so we just call GetTickCount the first time to seed ourselves.
506 */
507 uint32_t prand() {
508 if (next_random == 1) {
509 next_random = GetTickCount();
510 }
511
512 next_random = next_random * 6364136223846793005 + 1;
513 return (uint32_t)(next_random >> 32) % 0xffffffff;
514 }
515
Impressum, Datenschutz