1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
41 #include "proxmark3.h"
48 #include "iso14443a.h"
50 // Needed for CRC in emulation mode;
51 // same construction as in ISO 14443;
52 // different initial value (CRC_ICLASS)
53 #include "iso14443crc.h"
54 #include "iso15693tools.h"
55 #include "protocols.h"
56 #include "optimized_cipher.h"
57 #include "usb_cdc.h" // for usb_poll_validate_length
58 #include "fpgaloader.h"
60 static int timeout
= 4096;
62 // iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
63 // the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
64 // 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
65 // 56,64us = 24 ssp_clk_cycles
66 #define DELAY_ICLASS_VCD_TO_VICC_SIM 140
67 #define TAG_SOF_UNMODULATED 24
69 //-----------------------------------------------------------------------------
70 // The software UART that receives commands from the reader, and its state
72 //-----------------------------------------------------------------------------
76 STATE_START_OF_COMMUNICATION
,
96 static RAMFUNC
int OutOfNDecoding(int bit
) {
100 if (!Uart
.bitBuffer
) {
101 Uart
.bitBuffer
= bit
^ 0xFF0;
104 Uart
.bitBuffer
<<= 4;
105 Uart
.bitBuffer
^= bit
;
108 /*if (Uart.swapper) {
109 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
112 if (Uart.byteCnt > 15) { return true; }
118 if (Uart
.state
!= STATE_UNSYNCD
) {
121 if ((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
126 if (((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
131 if (bit
!= bitright
) {
136 // So, now we only have to deal with *bit*, lets see...
137 if (Uart
.posCnt
== 1) {
138 // measurement first half bitperiod
140 // Drop in first half means that we are either seeing
143 if (Uart
.nOutOfCnt
== 1) {
144 // End of Communication
145 Uart
.state
= STATE_UNSYNCD
;
147 if (Uart
.byteCnt
== 0) {
148 // Its not straightforward to show single EOFs
149 // So just leave it and do not return true
150 Uart
.output
[0] = 0xf0;
155 } else if (Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
156 // When not part of SOF or EOF, it is an error
157 Uart
.state
= STATE_UNSYNCD
;
163 // measurement second half bitperiod
164 // Count the bitslot we are in... (ISO 15693)
168 if (Uart
.dropPosition
) {
169 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
174 // It is an error if we already have seen a drop in current frame
175 Uart
.state
= STATE_UNSYNCD
;
178 Uart
.dropPosition
= Uart
.nOutOfCnt
;
185 if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
188 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
189 if (Uart
.dropPosition
== 4) {
190 Uart
.state
= STATE_RECEIVING
;
192 } else if (Uart
.dropPosition
== 3) {
193 Uart
.state
= STATE_RECEIVING
;
195 //Uart.output[Uart.byteCnt] = 0xdd;
198 Uart
.state
= STATE_UNSYNCD
;
201 Uart
.dropPosition
= 0;
205 if (!Uart
.dropPosition
) {
206 Uart
.state
= STATE_UNSYNCD
;
214 //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
215 //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
217 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
219 Uart
.dropPosition
= 0;
221 if (Uart
.bitCnt
== 8) {
222 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
229 } else if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
232 if (!Uart
.dropPosition
) {
233 Uart
.state
= STATE_UNSYNCD
;
238 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
243 Uart
.dropPosition
= 0;
248 Uart.output[Uart.byteCnt] = 0xAA;
250 Uart.output[Uart.byteCnt] = error & 0xFF;
252 Uart.output[Uart.byteCnt] = 0xAA;
254 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
256 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
258 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
260 Uart.output[Uart.byteCnt] = 0xAA;
267 bit
= Uart
.bitBuffer
& 0xf0;
269 bit
^= 0x0F; // drops become 1s ;-)
271 // should have been high or at least (4 * 128) / fc
272 // according to ISO this should be at least (9 * 128 + 20) / fc
273 if (Uart
.highCnt
== 8) {
274 // we went low, so this could be start of communication
275 // it turns out to be safer to choose a less significant
276 // syncbit... so we check whether the neighbour also represents the drop
277 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
278 Uart
.syncBit
= bit
& 8;
280 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
281 else if (bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
282 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
283 else if (bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
284 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
285 if (Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
288 // the first half bit period is expected in next sample
292 } else if (bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
295 Uart
.state
= STATE_START_OF_COMMUNICATION
;
299 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
300 Uart
.dropPosition
= 0;
306 } else if (Uart
.highCnt
< 8) {
315 //=============================================================================
317 //=============================================================================
322 DEMOD_START_OF_COMMUNICATION
,
323 DEMOD_START_OF_COMMUNICATION2
,
324 DEMOD_START_OF_COMMUNICATION3
,
328 DEMOD_END_OF_COMMUNICATION
,
329 DEMOD_END_OF_COMMUNICATION2
,
352 static RAMFUNC
int ManchesterDecoding(int v
) {
358 Demod
.buffer
= Demod
.buffer2
;
359 Demod
.buffer2
= Demod
.buffer3
;
362 if (Demod
.buff
< 3) {
367 if (Demod
.state
==DEMOD_UNSYNCD
) {
368 Demod
.output
[Demod
.len
] = 0xfa;
371 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
374 Demod
.syncBit
= 0x08;
381 Demod
.syncBit
= 0x04;
388 Demod
.syncBit
= 0x02;
391 if (bit
& 0x01 && Demod
.syncBit
) {
392 Demod
.syncBit
= 0x01;
397 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
398 Demod
.sub
= SUB_FIRST_HALF
;
402 if (Demod
.posCount
) {
403 switch (Demod
.syncBit
) {
404 case 0x08: Demod
.samples
= 3; break;
405 case 0x04: Demod
.samples
= 2; break;
406 case 0x02: Demod
.samples
= 1; break;
407 case 0x01: Demod
.samples
= 0; break;
409 // SOF must be long burst... otherwise stay unsynced!!!
410 if (!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
411 Demod
.state
= DEMOD_UNSYNCD
;
414 // SOF must be long burst... otherwise stay unsynced!!!
415 if (!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
416 Demod
.state
= DEMOD_UNSYNCD
;
425 // state is DEMOD is in SYNC from here on.
426 modulation
= bit
& Demod
.syncBit
;
427 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
431 if (Demod
.posCount
== 0) {
434 Demod
.sub
= SUB_FIRST_HALF
;
436 Demod
.sub
= SUB_NONE
;
441 if (Demod
.sub
== SUB_FIRST_HALF
) {
442 Demod
.sub
= SUB_BOTH
;
444 Demod
.sub
= SUB_SECOND_HALF
;
446 } else if (Demod
.sub
== SUB_NONE
) {
447 if (Demod
.state
== DEMOD_SOF_COMPLETE
) {
448 Demod
.output
[Demod
.len
] = 0x0f;
450 Demod
.state
= DEMOD_UNSYNCD
;
453 Demod
.state
= DEMOD_ERROR_WAIT
;
458 switch(Demod
.state
) {
459 case DEMOD_START_OF_COMMUNICATION
:
460 if (Demod
.sub
== SUB_BOTH
) {
461 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
463 Demod
.sub
= SUB_NONE
;
465 Demod
.output
[Demod
.len
] = 0xab;
466 Demod
.state
= DEMOD_ERROR_WAIT
;
470 case DEMOD_START_OF_COMMUNICATION2
:
471 if (Demod
.sub
== SUB_SECOND_HALF
) {
472 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
474 Demod
.output
[Demod
.len
] = 0xab;
475 Demod
.state
= DEMOD_ERROR_WAIT
;
479 case DEMOD_START_OF_COMMUNICATION3
:
480 if (Demod
.sub
== SUB_SECOND_HALF
) {
481 Demod
.state
= DEMOD_SOF_COMPLETE
;
483 Demod
.output
[Demod
.len
] = 0xab;
484 Demod
.state
= DEMOD_ERROR_WAIT
;
488 case DEMOD_SOF_COMPLETE
:
489 case DEMOD_MANCHESTER_D
:
490 case DEMOD_MANCHESTER_E
:
491 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
492 // 00001111 = 1 (0 in 14443)
493 if (Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
495 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
496 Demod
.state
= DEMOD_MANCHESTER_D
;
497 } else if (Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
499 Demod
.shiftReg
>>= 1;
500 Demod
.state
= DEMOD_MANCHESTER_E
;
501 } else if (Demod
.sub
== SUB_BOTH
) {
502 Demod
.state
= DEMOD_MANCHESTER_F
;
504 Demod
.state
= DEMOD_ERROR_WAIT
;
509 case DEMOD_MANCHESTER_F
:
510 // Tag response does not need to be a complete byte!
511 if (Demod
.len
> 0 || Demod
.bitCount
> 0) {
512 if (Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
513 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
514 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
518 Demod
.state
= DEMOD_UNSYNCD
;
521 Demod
.output
[Demod
.len
] = 0xad;
522 Demod
.state
= DEMOD_ERROR_WAIT
;
527 case DEMOD_ERROR_WAIT
:
528 Demod
.state
= DEMOD_UNSYNCD
;
532 Demod
.output
[Demod
.len
] = 0xdd;
533 Demod
.state
= DEMOD_UNSYNCD
;
537 if (Demod
.bitCount
>= 8) {
538 Demod
.shiftReg
>>= 1;
539 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
546 Demod
.output
[Demod
.len
] = 0xBB;
548 Demod
.output
[Demod
.len
] = error
& 0xFF;
550 Demod
.output
[Demod
.len
] = 0xBB;
552 Demod
.output
[Demod
.len
] = bit
& 0xFF;
554 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
557 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
559 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
561 Demod
.output
[Demod
.len
] = 0xBB;
568 } // end (state != UNSYNCED)
573 //=============================================================================
574 // Finally, a `sniffer' for iClass communication
575 // Both sides of communication!
576 //=============================================================================
578 //-----------------------------------------------------------------------------
579 // Record the sequence of commands sent by the reader to the tag, with
580 // triggering so that we start recording at the point that the tag is moved
582 //-----------------------------------------------------------------------------
583 void RAMFUNC
SnoopIClass(void) {
585 // We won't start recording the frames that we acquire until we trigger;
586 // a good trigger condition to get started is probably when we see a
587 // response from the tag.
588 //int triggered = false; // false to wait first for card
590 // The command (reader -> tag) that we're receiving.
591 // The length of a received command will in most cases be no more than 18 bytes.
592 // So 32 should be enough!
593 #define ICLASS_BUFFER_SIZE 32
594 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
595 // The response (tag -> reader) that we're receiving.
596 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
598 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
600 // free all BigBuf memory
602 // The DMA buffer, used to stream samples from the FPGA
603 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
607 iso14a_set_trigger(false);
614 // Count of samples received so far, so that we can include timing
615 // information in the trace buffer.
619 // Set up the demodulator for tag -> reader responses.
620 Demod
.output
= tagToReaderResponse
;
622 Demod
.state
= DEMOD_UNSYNCD
;
624 // Setup for the DMA.
625 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
627 lastRxCounter
= DMA_BUFFER_SIZE
;
628 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
630 // And the reader -> tag commands
631 memset(&Uart
, 0, sizeof(Uart
));
632 Uart
.output
= readerToTagCmd
;
633 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
634 Uart
.state
= STATE_UNSYNCD
;
636 // And put the FPGA in the appropriate mode
637 // Signal field is off with the appropriate LED
639 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
640 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
642 uint32_t time_0
= GetCountSspClk();
643 uint32_t time_start
= 0;
644 uint32_t time_stop
= 0;
651 // And now we loop, receiving samples.
655 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DMA_BUFFER_SIZE
-1);
656 if (behindBy
> maxBehindBy
) {
657 maxBehindBy
= behindBy
;
658 if (behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
659 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
663 if (behindBy
< 1) continue;
669 if (upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
670 upTo
-= DMA_BUFFER_SIZE
;
671 lastRxCounter
+= DMA_BUFFER_SIZE
;
672 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
673 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
680 decbyte
^= (1 << (3 - div
));
683 // FOR READER SIDE COMMUMICATION...
686 decbyter
^= (smpl
& 0x30);
690 if ((div
+ 1) % 2 == 0) {
692 if (OutOfNDecoding((smpl
& 0xF0) >> 4)) {
693 rsamples
= samples
- Uart
.samples
;
694 time_stop
= (GetCountSspClk()-time_0
) << 4;
697 //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
698 //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
699 uint8_t parity
[MAX_PARITY_SIZE
];
700 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
701 LogTrace(Uart
.output
, Uart
.byteCnt
, time_start
, time_stop
, parity
, true);
703 /* And ready to receive another command. */
704 Uart
.state
= STATE_UNSYNCD
;
705 /* And also reset the demod code, which might have been */
706 /* false-triggered by the commands from the reader. */
707 Demod
.state
= DEMOD_UNSYNCD
;
711 time_start
= (GetCountSspClk()-time_0
) << 4;
718 if (ManchesterDecoding(smpl
& 0x0F)) {
719 time_stop
= (GetCountSspClk()-time_0
) << 4;
721 rsamples
= samples
- Demod
.samples
;
724 uint8_t parity
[MAX_PARITY_SIZE
];
725 GetParity(Demod
.output
, Demod
.len
, parity
);
726 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, false);
728 // And ready to receive another response.
729 memset(&Demod
, 0, sizeof(Demod
));
730 Demod
.output
= tagToReaderResponse
;
731 Demod
.state
= DEMOD_UNSYNCD
;
734 time_start
= (GetCountSspClk()-time_0
) << 4;
741 if (BUTTON_PRESS()) {
742 DbpString("cancelled_a");
747 DbpString("COMMAND FINISHED");
749 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
750 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
753 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
754 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
755 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
759 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
761 for (i
= 0; i
< 8; i
++) {
762 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
767 static void CodeIClassTagSOF() {
769 ToSend
[++ToSendMax
] = 0x1D;
773 static void AppendCrc(uint8_t *data
, int len
) {
774 ComputeCrc14443(CRC_ICLASS
, data
, len
, data
+len
, data
+len
+1);
779 * @brief Does the actual simulation
781 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
) {
783 // free eventually allocated BigBuf memory
784 BigBuf_free_keep_EM();
786 uint16_t page_size
= 32 * 8;
787 uint8_t current_page
= 0;
789 // maintain cipher states for both credit and debit key for each page
790 State cipher_state_KC
[8];
791 State cipher_state_KD
[8];
792 State
*cipher_state
= &cipher_state_KD
[0];
794 uint8_t *emulator
= BigBuf_get_EM_addr();
795 uint8_t *csn
= emulator
;
797 // CSN followed by two CRC bytes
798 uint8_t anticoll_data
[10];
799 uint8_t csn_data
[10];
800 memcpy(csn_data
, csn
, sizeof(csn_data
));
801 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn
[0], csn
[1], csn
[2], csn
[3], csn
[4], csn
[5], csn
[6], csn
[7]);
803 // Construct anticollision-CSN
804 rotateCSN(csn_data
, anticoll_data
);
806 // Compute CRC on both CSNs
807 AppendCrc(anticoll_data
, 8);
808 AppendCrc(csn_data
, 8);
810 uint8_t diversified_key_d
[8] = { 0x00 };
811 uint8_t diversified_key_c
[8] = { 0x00 };
812 uint8_t *diversified_key
= diversified_key_d
;
814 // configuration block
815 uint8_t conf_block
[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
818 uint8_t card_challenge_data
[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
820 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
821 // initialize from page 0
822 memcpy(conf_block
, emulator
+ 8 * 1, 8);
823 memcpy(card_challenge_data
, emulator
+ 8 * 2, 8); // e-purse
824 memcpy(diversified_key_d
, emulator
+ 8 * 3, 8); // Kd
825 memcpy(diversified_key_c
, emulator
+ 8 * 4, 8); // Kc
828 AppendCrc(conf_block
, 8);
830 // save card challenge for sim2,4 attack
831 if (reader_mac_buf
!= NULL
) {
832 memcpy(reader_mac_buf
, card_challenge_data
, 8);
835 if (conf_block
[5] & 0x80) {
840 // When the page is in personalization mode this bit is equal to 1.
841 // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0:
842 // the page is then "in application mode".
843 bool personalization_mode
= conf_block
[7] & 0x80;
845 // chip memory may be divided in 8 pages
846 uint8_t max_page
= conf_block
[4] & 0x10 ? 0 : 7;
848 // Precalculate the cipher states, feeding it the CC
849 cipher_state_KD
[0] = opt_doTagMAC_1(card_challenge_data
, diversified_key_d
);
850 cipher_state_KC
[0] = opt_doTagMAC_1(card_challenge_data
, diversified_key_c
);
851 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
852 for (int i
= 1; i
< max_page
; i
++) {
853 uint8_t *epurse
= emulator
+ i
*page_size
+ 8*2;
854 uint8_t *Kd
= emulator
+ i
*page_size
+ 8*3;
855 uint8_t *Kc
= emulator
+ i
*page_size
+ 8*4;
856 cipher_state_KD
[i
] = opt_doTagMAC_1(epurse
, Kd
);
857 cipher_state_KC
[i
] = opt_doTagMAC_1(epurse
, Kc
);
866 // Reader 81 anticoll. CSN
869 uint8_t *modulated_response
;
870 int modulated_response_size
= 0;
871 uint8_t *trace_data
= NULL
;
872 int trace_data_size
= 0;
874 // Respond SOF -- takes 1 bytes
875 uint8_t *resp_sof
= BigBuf_malloc(1);
878 // Anticollision CSN (rotated CSN)
879 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
880 uint8_t *resp_anticoll
= BigBuf_malloc(22);
881 int resp_anticoll_len
;
884 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
885 uint8_t *resp_csn
= BigBuf_malloc(22);
888 // configuration (block 1) picopass 2ks
889 uint8_t *resp_conf
= BigBuf_malloc(22);
893 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
894 uint8_t *resp_cc
= BigBuf_malloc(18);
897 // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only
898 uint8_t *resp_ff
= BigBuf_malloc(22);
900 uint8_t ff_data
[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
901 AppendCrc(ff_data
, 8);
903 // Application Issuer Area (block 5)
904 uint8_t *resp_aia
= BigBuf_malloc(22);
906 uint8_t aia_data
[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
907 AppendCrc(aia_data
, 8);
909 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
912 // Prepare card messages
914 // First card answer: SOF only
916 memcpy(resp_sof
, ToSend
, ToSendMax
);
917 resp_sof_Len
= ToSendMax
;
920 CodeIso15693AsTag(anticoll_data
, sizeof(anticoll_data
));
921 memcpy(resp_anticoll
, ToSend
, ToSendMax
);
922 resp_anticoll_len
= ToSendMax
;
925 CodeIso15693AsTag(csn_data
, sizeof(csn_data
));
926 memcpy(resp_csn
, ToSend
, ToSendMax
);
927 resp_csn_len
= ToSendMax
;
929 // Configuration (block 1)
930 CodeIso15693AsTag(conf_block
, sizeof(conf_block
));
931 memcpy(resp_conf
, ToSend
, ToSendMax
);
932 resp_conf_len
= ToSendMax
;
935 CodeIso15693AsTag(card_challenge_data
, sizeof(card_challenge_data
));
936 memcpy(resp_cc
, ToSend
, ToSendMax
);
937 resp_cc_len
= ToSendMax
;
939 // Kd, Kc (blocks 3 and 4)
940 CodeIso15693AsTag(ff_data
, sizeof(ff_data
));
941 memcpy(resp_ff
, ToSend
, ToSendMax
);
942 resp_ff_len
= ToSendMax
;
944 // Application Issuer Area (block 5)
945 CodeIso15693AsTag(aia_data
, sizeof(aia_data
));
946 memcpy(resp_aia
, ToSend
, ToSendMax
);
947 resp_aia_len
= ToSendMax
;
949 //This is used for responding to READ-block commands or other data which is dynamically generated
950 uint8_t *data_generic_trace
= BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
951 uint8_t *data_response
= BigBuf_malloc( (32 + 2) * 2 + 2);
953 bool buttonPressed
= false;
954 enum { IDLE
, ACTIVATED
, SELECTED
, HALTED
} chip_state
= IDLE
;
959 uint32_t reader_eof_time
= 0;
960 len
= GetIso15693CommandFromReader(receivedCmd
, MAX_FRAME_SIZE
, &reader_eof_time
);
962 buttonPressed
= true;
966 // Now look at the reader command and provide appropriate responses
967 // default is no response:
968 modulated_response
= NULL
;
969 modulated_response_size
= 0;
973 if (receivedCmd
[0] == ICLASS_CMD_ACTALL
&& len
== 1) {
974 // Reader in anticollision phase
975 if (chip_state
!= HALTED
) {
976 modulated_response
= resp_sof
;
977 modulated_response_size
= resp_sof_Len
;
978 chip_state
= ACTIVATED
;
981 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) { // identify
982 // Reader asks for anticollision CSN
983 if (chip_state
== SELECTED
|| chip_state
== ACTIVATED
) {
984 modulated_response
= resp_anticoll
;
985 modulated_response_size
= resp_anticoll_len
;
986 trace_data
= anticoll_data
;
987 trace_data_size
= sizeof(anticoll_data
);
990 } else if (receivedCmd
[0] == ICLASS_CMD_SELECT
&& len
== 9) {
991 // Reader selects anticollision CSN.
992 // Tag sends the corresponding real CSN
993 if (chip_state
== ACTIVATED
|| chip_state
== SELECTED
) {
994 if (!memcmp(receivedCmd
+1, anticoll_data
, 8)) {
995 modulated_response
= resp_csn
;
996 modulated_response_size
= resp_csn_len
;
997 trace_data
= csn_data
;
998 trace_data_size
= sizeof(csn_data
);
999 chip_state
= SELECTED
;
1003 } else if (chip_state
== HALTED
) {
1004 // RESELECT with CSN
1005 if (!memcmp(receivedCmd
+1, csn_data
, 8)) {
1006 modulated_response
= resp_csn
;
1007 modulated_response_size
= resp_csn_len
;
1008 trace_data
= csn_data
;
1009 trace_data_size
= sizeof(csn_data
);
1010 chip_state
= SELECTED
;
1014 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4) { // read block
1015 uint16_t blockNo
= receivedCmd
[1];
1016 if (chip_state
== SELECTED
) {
1017 if (simulationMode
== ICLASS_SIM_MODE_EXIT_AFTER_MAC
) {
1018 // provide defaults for blocks 0 ... 5
1020 case 0: // csn (block 00)
1021 modulated_response
= resp_csn
;
1022 modulated_response_size
= resp_csn_len
;
1023 trace_data
= csn_data
;
1024 trace_data_size
= sizeof(csn_data
);
1026 case 1: // configuration (block 01)
1027 modulated_response
= resp_conf
;
1028 modulated_response_size
= resp_conf_len
;
1029 trace_data
= conf_block
;
1030 trace_data_size
= sizeof(conf_block
);
1032 case 2: // e-purse (block 02)
1033 modulated_response
= resp_cc
;
1034 modulated_response_size
= resp_cc_len
;
1035 trace_data
= card_challenge_data
;
1036 trace_data_size
= sizeof(card_challenge_data
);
1037 // set epurse of sim2,4 attack
1038 if (reader_mac_buf
!= NULL
) {
1039 memcpy(reader_mac_buf
, card_challenge_data
, 8);
1043 case 4: // Kd, Kc, always respond with 0xff bytes
1044 modulated_response
= resp_ff
;
1045 modulated_response_size
= resp_ff_len
;
1046 trace_data
= ff_data
;
1047 trace_data_size
= sizeof(ff_data
);
1049 case 5: // Application Issuer Area (block 05)
1050 modulated_response
= resp_aia
;
1051 modulated_response_size
= resp_aia_len
;
1052 trace_data
= aia_data
;
1053 trace_data_size
= sizeof(aia_data
);
1055 // default: don't respond
1057 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1058 if (blockNo
== 3 || blockNo
== 4) { // Kd, Kc, always respond with 0xff bytes
1059 modulated_response
= resp_ff
;
1060 modulated_response_size
= resp_ff_len
;
1061 trace_data
= ff_data
;
1062 trace_data_size
= sizeof(ff_data
);
1063 } else { // use data from emulator memory
1064 memcpy(data_generic_trace
, emulator
+ current_page
*page_size
+ 8*blockNo
, 8);
1065 AppendCrc(data_generic_trace
, 8);
1066 trace_data
= data_generic_trace
;
1067 trace_data_size
= 10;
1068 CodeIso15693AsTag(trace_data
, trace_data_size
);
1069 memcpy(data_response
, ToSend
, ToSendMax
);
1070 modulated_response
= data_response
;
1071 modulated_response_size
= ToSendMax
;
1076 } else if ((receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
1077 || receivedCmd
[0] == ICLASS_CMD_READCHECK_KC
) && receivedCmd
[1] == 0x02 && len
== 2) {
1078 // Read e-purse (88 02 || 18 02)
1079 if (chip_state
== SELECTED
) {
1080 if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
){
1081 cipher_state
= &cipher_state_KD
[current_page
];
1082 diversified_key
= diversified_key_d
;
1084 cipher_state
= &cipher_state_KC
[current_page
];
1085 diversified_key
= diversified_key_c
;
1087 modulated_response
= resp_cc
;
1088 modulated_response_size
= resp_cc_len
;
1089 trace_data
= card_challenge_data
;
1090 trace_data_size
= sizeof(card_challenge_data
);
1093 } else if ((receivedCmd
[0] == ICLASS_CMD_CHECK_KC
1094 || receivedCmd
[0] == ICLASS_CMD_CHECK_KD
) && len
== 9) {
1095 // Reader random and reader MAC!!!
1096 if (chip_state
== SELECTED
) {
1097 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1098 //NR, from reader, is in receivedCmd+1
1099 opt_doTagMAC_2(*cipher_state
, receivedCmd
+1, data_generic_trace
, diversified_key
);
1100 trace_data
= data_generic_trace
;
1101 trace_data_size
= 4;
1102 CodeIso15693AsTag(trace_data
, trace_data_size
);
1103 memcpy(data_response
, ToSend
, ToSendMax
);
1104 modulated_response
= data_response
;
1105 modulated_response_size
= ToSendMax
;
1107 } else { // Not fullsim, we don't respond
1108 // We do not know what to answer, so lets keep quiet
1109 if (simulationMode
== ICLASS_SIM_MODE_EXIT_AFTER_MAC
) {
1110 if (reader_mac_buf
!= NULL
) {
1111 // save NR and MAC for sim 2,4
1112 memcpy(reader_mac_buf
+ 8, receivedCmd
+ 1, 8);
1119 } else if (receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1120 if (chip_state
== SELECTED
) {
1121 // Reader ends the session
1122 modulated_response
= resp_sof
;
1123 modulated_response_size
= resp_sof_Len
;
1124 chip_state
= HALTED
;
1127 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
&& receivedCmd
[0] == ICLASS_CMD_READ4
&& len
== 4) { // 0x06
1129 if (chip_state
== SELECTED
) {
1130 uint8_t blockNo
= receivedCmd
[1];
1131 memcpy(data_generic_trace
, emulator
+ current_page
*page_size
+ blockNo
*8, 8 * 4);
1132 AppendCrc(data_generic_trace
, 8 * 4);
1133 trace_data
= data_generic_trace
;
1134 trace_data_size
= 8 * 4 + 2;
1135 CodeIso15693AsTag(trace_data
, trace_data_size
);
1136 memcpy(data_response
, ToSend
, ToSendMax
);
1137 modulated_response
= data_response
;
1138 modulated_response_size
= ToSendMax
;
1141 } else if (receivedCmd
[0] == ICLASS_CMD_UPDATE
&& (len
== 12 || len
== 14)) {
1142 // We're expected to respond with the data+crc, exactly what's already in the receivedCmd
1143 // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
1144 if (chip_state
== SELECTED
) {
1145 uint8_t blockNo
= receivedCmd
[1];
1146 if (blockNo
== 2) { // update e-purse
1147 memcpy(card_challenge_data
, receivedCmd
+2, 8);
1148 CodeIso15693AsTag(card_challenge_data
, sizeof(card_challenge_data
));
1149 memcpy(resp_cc
, ToSend
, ToSendMax
);
1150 resp_cc_len
= ToSendMax
;
1151 cipher_state_KD
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_d
);
1152 cipher_state_KC
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_c
);
1153 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1154 memcpy(emulator
+ current_page
*page_size
+ 8*2, card_challenge_data
, 8);
1156 } else if (blockNo
== 3) { // update Kd
1157 for (int i
= 0; i
< 8; i
++) {
1158 if (personalization_mode
) {
1159 diversified_key_d
[i
] = receivedCmd
[2 + i
];
1161 diversified_key_d
[i
] ^= receivedCmd
[2 + i
];
1164 cipher_state_KD
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_d
);
1165 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1166 memcpy(emulator
+ current_page
*page_size
+ 8*3, diversified_key_d
, 8);
1168 } else if (blockNo
== 4) { // update Kc
1169 for (int i
= 0; i
< 8; i
++) {
1170 if (personalization_mode
) {
1171 diversified_key_c
[i
] = receivedCmd
[2 + i
];
1173 diversified_key_c
[i
] ^= receivedCmd
[2 + i
];
1176 cipher_state_KC
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_c
);
1177 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1178 memcpy(emulator
+ current_page
*page_size
+ 8*4, diversified_key_c
, 8);
1180 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
) { // update any other data block
1181 memcpy(emulator
+ current_page
*page_size
+ 8*blockNo
, receivedCmd
+2, 8);
1183 memcpy(data_generic_trace
, receivedCmd
+ 2, 8);
1184 AppendCrc(data_generic_trace
, 8);
1185 trace_data
= data_generic_trace
;
1186 trace_data_size
= 10;
1187 CodeIso15693AsTag(trace_data
, trace_data_size
);
1188 memcpy(data_response
, ToSend
, ToSendMax
);
1189 modulated_response
= data_response
;
1190 modulated_response_size
= ToSendMax
;
1193 } else if (receivedCmd
[0] == ICLASS_CMD_PAGESEL
&& len
== 4) {
1195 // Chips with a single page will not answer to this command
1196 // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
1197 if (chip_state
== SELECTED
) {
1198 if (simulationMode
== ICLASS_SIM_MODE_FULL
&& max_page
> 0) {
1199 current_page
= receivedCmd
[1];
1200 memcpy(data_generic_trace
, emulator
+ current_page
*page_size
+ 8*1, 8);
1201 memcpy(diversified_key_d
, emulator
+ current_page
*page_size
+ 8*3, 8);
1202 memcpy(diversified_key_c
, emulator
+ current_page
*page_size
+ 8*4, 8);
1203 cipher_state
= &cipher_state_KD
[current_page
];
1204 personalization_mode
= data_generic_trace
[7] & 0x80;
1205 AppendCrc(data_generic_trace
, 8);
1206 trace_data
= data_generic_trace
;
1207 trace_data_size
= 10;
1208 CodeIso15693AsTag(trace_data
, trace_data_size
);
1209 memcpy(data_response
, ToSend
, ToSendMax
);
1210 modulated_response
= data_response
;
1211 modulated_response_size
= ToSendMax
;
1215 } else if (receivedCmd
[0] == 0x26 && len
== 5) {
1216 // standard ISO15693 INVENTORY command. Ignore.
1219 // don't know how to handle this command
1220 char debug_message
[250]; // should be enough
1221 sprintf(debug_message
, "Unhandled command (len = %d) received from reader:", len
);
1222 for (int i
= 0; i
< len
&& strlen(debug_message
) < sizeof(debug_message
) - 3 - 1; i
++) {
1223 sprintf(debug_message
+ strlen(debug_message
), " %02x", receivedCmd
[i
]);
1225 Dbprintf("%s", debug_message
);
1230 A legit tag has about 273,4us delay between reader EOT and tag SOF.
1232 if (modulated_response_size
> 0) {
1233 uint32_t response_time
= reader_eof_time
+ DELAY_ICLASS_VCD_TO_VICC_SIM
- TAG_SOF_UNMODULATED
- DELAY_ARM_TO_READER_SIM
;
1234 TransmitTo15693Reader(modulated_response
, modulated_response_size
, &response_time
, 0, false);
1235 LogTrace(trace_data
, trace_data_size
, response_time
+ DELAY_ARM_TO_READER_SIM
, response_time
+ (modulated_response_size
<< 6) + DELAY_ARM_TO_READER_SIM
, NULL
, false);
1242 DbpString("Button pressed");
1244 return buttonPressed
;
1248 * @brief SimulateIClass simulates an iClass card.
1249 * @param arg0 type of simulation
1250 * - 0 uses the first 8 bytes in usb data as CSN
1251 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
1252 * in the usb data. This mode collects MAC from the reader, in order to do an offline
1253 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
1254 * - Other : Uses the default CSN (031fec8af7ff12e0)
1255 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
1259 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
) {
1263 uint32_t simType
= arg0
;
1264 uint32_t numberOfCSNS
= arg1
;
1266 // setup hardware for simulation:
1267 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1268 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1269 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1271 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1274 // Enable and clear the trace
1277 //Use the emulator memory for SIM
1278 uint8_t *emulator
= BigBuf_get_EM_addr();
1280 if (simType
== ICLASS_SIM_MODE_CSN
) {
1281 // Use the CSN from commandline
1282 memcpy(emulator
, datain
, 8);
1283 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1284 } else if (simType
== ICLASS_SIM_MODE_CSN_DEFAULT
) {
1286 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1287 // Use the CSN from commandline
1288 memcpy(emulator
, csn_crc
, 8);
1289 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1290 } else if (simType
== ICLASS_SIM_MODE_READER_ATTACK
) {
1291 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1292 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1293 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1294 // in order to collect MAC's from the reader. This can later be used in an offline-attack
1295 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1297 for (i
= 0; i
< numberOfCSNS
&& i
*16+16 <= USB_CMD_DATA_SIZE
; i
++) {
1298 // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response).
1299 memcpy(emulator
, datain
+(i
*8), 8);
1300 if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC
, mac_responses
+i
*16)) {
1304 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1305 datain
[i
*8+0], datain
[i
*8+1], datain
[i
*8+2], datain
[i
*8+3],
1306 datain
[i
*8+4], datain
[i
*8+5], datain
[i
*8+6], datain
[i
*8+7]);
1307 Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x",
1308 mac_responses
[i
*16+ 8], mac_responses
[i
*16+ 9], mac_responses
[i
*16+10], mac_responses
[i
*16+11],
1309 mac_responses
[i
*16+12], mac_responses
[i
*16+13], mac_responses
[i
*16+14], mac_responses
[i
*16+15]);
1310 SpinDelay(100); // give the reader some time to prepare for next CSN
1312 cmd_send(CMD_ACK
, CMD_SIMULATE_TAG_ICLASS
, i
, 0, mac_responses
, i
*16);
1313 } else if (simType
== ICLASS_SIM_MODE_FULL
) {
1314 //This is 'full sim' mode, where we use the emulator storage for data.
1315 doIClassSimulation(ICLASS_SIM_MODE_FULL
, NULL
);
1317 // We may want a mode here where we hardcode the csns to use (from proxclone).
1318 // That will speed things up a little, but not required just yet.
1319 Dbprintf("The mode is not implemented, reserved for future use");
1322 Dbprintf("Done...");
1330 //-----------------------------------------------------------------------------
1331 // Transmit the command (to the tag) that was placed in ToSend[].
1332 //-----------------------------------------------------------------------------
1333 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
) {
1335 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1336 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1337 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1340 if (*wait
< 10) *wait
= 10;
1342 for (c
= 0; c
< *wait
;) {
1343 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1344 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1347 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1348 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1356 bool firstpart
= true;
1359 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1361 // DOUBLE THE SAMPLES!
1363 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1365 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1368 if (sendbyte
== 0xff) {
1371 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1372 firstpart
= !firstpart
;
1378 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1379 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1384 if (samples
&& wait
) *samples
= (c
+ *wait
) << 3;
1388 //-----------------------------------------------------------------------------
1389 // Prepare iClass reader command to send to FPGA
1390 //-----------------------------------------------------------------------------
1391 void CodeIClassCommand(const uint8_t *cmd
, int len
) {
1396 // Start of Communication: 1 out of 4
1397 ToSend
[++ToSendMax
] = 0xf0;
1398 ToSend
[++ToSendMax
] = 0x00;
1399 ToSend
[++ToSendMax
] = 0x0f;
1400 ToSend
[++ToSendMax
] = 0x00;
1402 // Modulate the bytes
1403 for (i
= 0; i
< len
; i
++) {
1405 for (j
= 0; j
< 4; j
++) {
1406 for (k
= 0; k
< 4; k
++) {
1408 ToSend
[++ToSendMax
] = 0x0f;
1410 ToSend
[++ToSendMax
] = 0x00;
1417 // End of Communication
1418 ToSend
[++ToSendMax
] = 0x00;
1419 ToSend
[++ToSendMax
] = 0x00;
1420 ToSend
[++ToSendMax
] = 0xf0;
1421 ToSend
[++ToSendMax
] = 0x00;
1423 // Convert from last character reference to length
1427 static void ReaderTransmitIClass(uint8_t *frame
, int len
) {
1431 // This is tied to other size changes
1432 CodeIClassCommand(frame
, len
);
1435 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1439 // Store reader command in buffer
1440 uint8_t par
[MAX_PARITY_SIZE
];
1441 GetParity(frame
, len
, par
);
1442 LogTrace(frame
, len
, rsamples
, rsamples
, par
, true);
1445 //-----------------------------------------------------------------------------
1446 // Wait a certain time for tag response
1447 // If a response is captured return true
1448 // If it takes too long return false
1449 //-----------------------------------------------------------------------------
1450 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) {
1452 // buffer needs to be 512 bytes
1455 // Set FPGA mode to "reader listen mode", no modulation (listen
1456 // only, since we are receiving, not transmitting).
1457 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1459 // Now get the answer from the card
1460 Demod
.output
= receivedResponse
;
1462 Demod
.state
= DEMOD_UNSYNCD
;
1465 if (elapsed
) *elapsed
= 0;
1473 if (BUTTON_PRESS()) return false;
1475 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1476 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1477 if (elapsed
) (*elapsed
)++;
1479 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1485 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1489 if (ManchesterDecoding(b
& 0x0f)) {
1497 static int ReaderReceiveIClass(uint8_t *receivedAnswer
) {
1499 if (!GetIClassAnswer(receivedAnswer
, 160, &samples
, 0)) {
1502 rsamples
+= samples
;
1503 uint8_t parity
[MAX_PARITY_SIZE
];
1504 GetParity(receivedAnswer
, Demod
.len
, parity
);
1505 LogTrace(receivedAnswer
, Demod
.len
, rsamples
, rsamples
, parity
, false);
1506 if (samples
== 0) return false;
1510 static void setupIclassReader() {
1511 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1512 // Reset trace buffer
1517 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1518 // Start from off (no field generated)
1519 // Signal field is off with the appropriate LED
1521 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1524 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1526 // Now give it time to spin up.
1527 // Signal field is on with the appropriate LED
1528 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1534 static bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
) {
1535 while (retries
-- > 0) {
1536 ReaderTransmitIClass(command
, cmdsize
);
1537 if (expected_size
== ReaderReceiveIClass(resp
)) {
1541 return false;//Error
1545 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1546 * @param card_data where the CSN and CC are stored for return
1549 * 2 = Got CSN and CC
1551 static uint8_t handshakeIclassTag_ext(uint8_t *card_data
, bool use_credit_key
) {
1552 static uint8_t act_all
[] = { 0x0a };
1553 //static uint8_t identify[] = { 0x0c };
1554 static uint8_t identify
[] = { 0x0c, 0x00, 0x73, 0x33 };
1555 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1556 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1558 readcheck_cc
[0] = 0x18;
1560 readcheck_cc
[0] = 0x88;
1562 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1564 uint8_t read_status
= 0;
1567 ReaderTransmitIClass(act_all
, 1);
1569 if (!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1572 ReaderTransmitIClass(identify
, 1);
1573 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1574 uint8_t len
= ReaderReceiveIClass(resp
);
1575 if (len
!= 10) return read_status
;//Fail
1577 //Copy the Anti-collision CSN to our select-packet
1578 memcpy(&select
[1], resp
, 8);
1580 ReaderTransmitIClass(select
, sizeof(select
));
1581 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1582 len
= ReaderReceiveIClass(resp
);
1583 if (len
!= 10) return read_status
;//Fail
1585 //Success - level 1, we got CSN
1586 //Save CSN in response data
1587 memcpy(card_data
, resp
, 8);
1589 //Flag that we got to at least stage 1, read CSN
1592 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1593 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1594 if (ReaderReceiveIClass(resp
) == 8) {
1595 //Save CC (e-purse) in response data
1596 memcpy(card_data
+8, resp
, 8);
1603 static uint8_t handshakeIclassTag(uint8_t *card_data
) {
1604 return handshakeIclassTag_ext(card_data
, false);
1608 // Reader iClass Anticollission
1609 void ReaderIClass(uint8_t arg0
) {
1611 uint8_t card_data
[6 * 8] = {0};
1612 memset(card_data
, 0xFF, sizeof(card_data
));
1613 uint8_t last_csn
[8] = {0,0,0,0,0,0,0,0};
1614 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1615 memset(resp
, 0xFF, sizeof(resp
));
1616 //Read conf block CRC(0x01) => 0xfa 0x22
1617 uint8_t readConf
[] = { ICLASS_CMD_READ_OR_IDENTIFY
, 0x01, 0xfa, 0x22};
1618 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1619 uint8_t readAA
[] = { ICLASS_CMD_READ_OR_IDENTIFY
, 0x05, 0xde, 0x64};
1622 uint8_t result_status
= 0;
1623 // flag to read until one tag is found successfully
1624 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1625 // flag to only try 5 times to find one tag then return
1626 bool try_once
= arg0
& FLAG_ICLASS_READER_ONE_TRY
;
1627 // if neither abort_after_read nor try_once then continue reading until button pressed.
1629 bool use_credit_key
= arg0
& FLAG_ICLASS_READER_CEDITKEY
;
1630 // test flags for what blocks to be sure to read
1631 uint8_t flagReadConfig
= arg0
& FLAG_ICLASS_READER_CONF
;
1632 uint8_t flagReadCC
= arg0
& FLAG_ICLASS_READER_CC
;
1633 uint8_t flagReadAA
= arg0
& FLAG_ICLASS_READER_AA
;
1636 setupIclassReader();
1638 uint16_t tryCnt
= 0;
1639 bool userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1640 while (!userCancelled
) {
1641 // if only looking for one card try 2 times if we missed it the first time
1642 if (try_once
&& tryCnt
> 2) {
1646 if (!get_tracing()) {
1647 DbpString("Trace full");
1652 read_status
= handshakeIclassTag_ext(card_data
, use_credit_key
);
1654 if (read_status
== 0) continue;
1655 if (read_status
== 1) result_status
= FLAG_ICLASS_READER_CSN
;
1656 if (read_status
== 2) result_status
= FLAG_ICLASS_READER_CSN
| FLAG_ICLASS_READER_CC
;
1658 // handshakeIclass returns CSN|CC, but the actual block
1659 // layout is CSN|CONFIG|CC, so here we reorder the data,
1660 // moving CC forward 8 bytes
1661 memcpy(card_data
+16, card_data
+8, 8);
1662 //Read block 1, config
1663 if (flagReadConfig
) {
1664 if (sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, 10, 10)) {
1665 result_status
|= FLAG_ICLASS_READER_CONF
;
1666 memcpy(card_data
+8, resp
, 8);
1668 Dbprintf("Failed to dump config block");
1674 if (sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, 10, 10)) {
1675 result_status
|= FLAG_ICLASS_READER_AA
;
1676 memcpy(card_data
+ (8*5), resp
, 8);
1678 //Dbprintf("Failed to dump AA block");
1683 // 1 : Configuration
1685 // 3 : kd / debit / aa2 (write-only)
1686 // 4 : kc / credit / aa1 (write-only)
1687 // 5 : AIA, Application issuer area
1688 //Then we can 'ship' back the 6 * 8 bytes of data,
1689 // with 0xFF:s in block 3 and 4.
1692 //Send back to client, but don't bother if we already sent this -
1693 // only useful if looping in arm (not try_once && not abort_after_read)
1694 if (memcmp(last_csn
, card_data
, 8) != 0) {
1695 // If caller requires that we get Conf, CC, AA, continue until we got it
1696 if ( (result_status
^ FLAG_ICLASS_READER_CSN
^ flagReadConfig
^ flagReadCC
^ flagReadAA
) == 0) {
1697 cmd_send(CMD_ACK
, result_status
, 0, 0, card_data
, sizeof(card_data
));
1698 if (abort_after_read
) {
1699 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1704 //Save that we already sent this....
1705 memcpy(last_csn
, card_data
, 8);
1710 userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1712 if (userCancelled
) {
1713 cmd_send(CMD_ACK
, 0xFF, 0, 0, card_data
, 0);
1715 cmd_send(CMD_ACK
, 0, 0, 0, card_data
, 0);
1720 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1722 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1723 uint16_t block_crc_LUT
[255] = {0};
1725 //Generate a lookup table for block crc
1726 for (int block
= 0; block
< 255; block
++){
1728 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1730 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1732 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1733 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1736 uint8_t cardsize
= 0;
1739 static struct memory_t
{
1747 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1749 setupIclassReader();
1752 while (!BUTTON_PRESS()) {
1756 if (!get_tracing()) {
1757 DbpString("Trace full");
1761 uint8_t read_status
= handshakeIclassTag(card_data
);
1762 if (read_status
< 2) continue;
1764 //for now replay captured auth (as cc not updated)
1765 memcpy(check
+5, MAC
, 4);
1767 if (!sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 5)) {
1768 Dbprintf("Error: Authentication Fail!");
1772 //first get configuration block (block 1)
1773 crc
= block_crc_LUT
[1];
1776 read
[3] = crc
& 0xff;
1778 if (!sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10)) {
1779 Dbprintf("Dump config (block 1) failed");
1784 memory
.k16
= (mem
& 0x80);
1785 memory
.book
= (mem
& 0x20);
1786 memory
.k2
= (mem
& 0x8);
1787 memory
.lockauth
= (mem
& 0x2);
1788 memory
.keyaccess
= (mem
& 0x1);
1790 cardsize
= memory
.k16
? 255 : 32;
1792 //Set card_data to all zeroes, we'll fill it with data
1793 memset(card_data
, 0x0, USB_CMD_DATA_SIZE
);
1794 uint8_t failedRead
= 0;
1795 uint32_t stored_data_length
= 0;
1796 //then loop around remaining blocks
1797 for (int block
= 0; block
< cardsize
; block
++) {
1799 crc
= block_crc_LUT
[block
];
1801 read
[3] = crc
& 0xff;
1803 if (sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10)) {
1804 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1805 block
, resp
[0], resp
[1], resp
[2],
1806 resp
[3], resp
[4], resp
[5],
1809 //Fill up the buffer
1810 memcpy(card_data
+stored_data_length
, resp
, 8);
1811 stored_data_length
+= 8;
1812 if (stored_data_length
+8 > USB_CMD_DATA_SIZE
) {
1813 //Time to send this off and start afresh
1815 stored_data_length
,//data length
1816 failedRead
,//Failed blocks?
1818 card_data
, stored_data_length
);
1820 stored_data_length
= 0;
1826 stored_data_length
+= 8;//Otherwise, data becomes misaligned
1827 Dbprintf("Failed to dump block %d", block
);
1831 //Send off any remaining data
1832 if (stored_data_length
> 0) {
1834 stored_data_length
,//data length
1835 failedRead
,//Failed blocks?
1838 stored_data_length
);
1840 //If we got here, let's break
1843 //Signal end of transmission
1851 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1855 void iClass_Authentication(uint8_t *MAC
) {
1856 uint8_t check
[] = { ICLASS_CMD_CHECK_KD
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1857 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1858 memcpy(check
+5, MAC
, 4);
1860 isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 6);
1861 cmd_send(CMD_ACK
,isOK
, 0, 0, 0, 0);
1864 static bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1865 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1867 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1868 readcmd
[2] = rdCrc
>> 8;
1869 readcmd
[3] = rdCrc
& 0xff;
1870 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1873 //readcmd[1] = blockNo;
1874 isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, 10, 10);
1875 memcpy(readdata
, resp
, sizeof(resp
));
1880 void iClass_ReadBlk(uint8_t blockno
) {
1881 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1883 isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1884 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1885 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1888 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) {
1889 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1894 uint8_t *dataout
= BigBuf_malloc(255*8);
1895 if (dataout
== NULL
) {
1896 Dbprintf("out of memory");
1897 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1899 cmd_send(CMD_ACK
, 0, 1, 0, 0, 0);
1903 memset(dataout
, 0xFF, 255*8);
1905 for ( ; blkCnt
< numblks
; blkCnt
++) {
1906 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1907 if (!isOK
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again
1908 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1910 Dbprintf("Block %02X failed to read", blkCnt
+blockno
);
1914 memcpy(dataout
+ (blkCnt
*8), readblockdata
, 8);
1916 //return pointer to dump memory in arg3
1917 cmd_send(CMD_ACK
, isOK
, blkCnt
, BigBuf_max_traceLen(), 0, 0);
1918 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1923 static bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
1924 uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1925 //uint8_t readblockdata[10];
1926 //write[1] = blockNo;
1927 memcpy(write
+2, data
, 12); // data + mac
1928 char *wrCmd
= (char *)(write
+1);
1929 uint16_t wrCrc
= iclass_crc16(wrCmd
, 13);
1930 write
[14] = wrCrc
>> 8;
1931 write
[15] = wrCrc
& 0xff;
1932 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1935 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10);
1936 if (isOK
) { //if reader responded correctly
1937 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
1938 if (memcmp(write
+2, resp
, 8)) { //if response is not equal to write values
1939 if (blockNo
!= 3 && blockNo
!= 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
1941 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10);
1948 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
1949 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
1951 Dbprintf("Write block [%02x] successful", blockNo
);
1953 Dbprintf("Write block [%02x] failed", blockNo
);
1955 cmd_send(CMD_ACK
, isOK
, 0, 0, 0, 0);
1956 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1959 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
1962 int total_block
= (endblock
- startblock
) + 1;
1963 for (i
= 0; i
< total_block
; i
++) {
1965 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1966 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1969 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1970 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1973 Dbprintf("Write block [%02x] failed", i
+ startblock
);
1977 if (written
== total_block
)
1978 Dbprintf("Clone complete");
1980 Dbprintf("Clone incomplete");
1982 cmd_send(CMD_ACK
, 1, 0, 0, 0, 0);
1983 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);