-/*
- * LEGIC RF simulation code
- *
- * (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
- */
-
-#include <proxmark3.h>
-
-#include "apps.h"
+//-----------------------------------------------------------------------------
+// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
+// 2016 Iceman
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// LEGIC RF simulation code
+//-----------------------------------------------------------------------------
#include "legicrf.h"
static struct legic_frame {
- int num_bytes;
- int num_bits;
- char data[10];
+ uint8_t bits;
+ uint32_t data;
} current_frame;
-static char response = 0x2b; /* 1101 01 */
-static void frame_send(char *response, int num_bytes, int num_bits)
-{
-#if 0
- /* Use the SSC to send a response. 8-bit transfers, LSBit first, 100us per bit */
-#else
+static enum {
+ STATE_DISCON,
+ STATE_IV,
+ STATE_CON,
+} legic_state;
+
+static crc_t legic_crc;
+static int legic_read_count;
+static uint32_t legic_prng_bc;
+static uint32_t legic_prng_iv;
+
+static int legic_phase_drift;
+static int legic_frame_drift;
+static int legic_reqresp_drift;
+
+AT91PS_TC timer;
+AT91PS_TC prng_timer;
+
+/*
+static void setup_timer(void) {
+ // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
+ // this it won't be terribly accurate but should be good enough.
+ //
+ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
+ timer = AT91C_BASE_TC1;
+ timer->TC_CCR = AT91C_TC_CLKDIS;
+ timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
+ timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+
+ //
+ // Set up Timer 2 to use for measuring time between frames in
+ // tag simulation mode. Runs 4x faster as Timer 1
+ //
+ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
+ prng_timer = AT91C_BASE_TC2;
+ prng_timer->TC_CCR = AT91C_TC_CLKDIS;
+ prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
+ prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+}
+
+ AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
+ AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
+
+ // fast clock
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
+ AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
+ AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
+ AT91C_BASE_TC0->TC_RA = 1;
+ AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
+
+*/
+
+// At TIMER_CLOCK3 (MCK/32)
+// testing calculating in ticks. 1.5ticks = 1us
+#define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
+#define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
+#define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
+#define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks
+#define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
+
+#define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
+
+#define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
+#define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
+
+#define OFFSET_LOG 1024
+
+#define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
+
+#ifndef SHORT_COIL
+# define SHORT_COIL LOW(GPIO_SSC_DOUT);
+#endif
+#ifndef OPEN_COIL
+# define OPEN_COIL HIGH(GPIO_SSC_DOUT);
+#endif
+#ifndef LINE_IN
+# define LINE_IN AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+#endif
+// Pause pulse, off in 20us / 30ticks,
+// ONE / ZERO bit pulse,
+// one == 80us / 120ticks
+// zero == 40us / 60ticks
+#ifndef COIL_PULSE
+# define COIL_PULSE(x) \
+ do { \
+ SHORT_COIL; \
+ WaitTicks( (RWD_TIME_PAUSE) ); \
+ OPEN_COIL; \
+ WaitTicks((x)); \
+ } while (0);
+#endif
+
+// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
+// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
+#define LEGIC_CARD_MEMSIZE 1024
+static uint8_t* cardmem;
+
+static void frame_append_bit(struct legic_frame * const f, uint8_t bit) {
+ // Overflow, won't happen
+ if (f->bits >= 31) return;
+
+ f->data |= (bit << f->bits);
+ f->bits++;
+}
+
+static void frame_clean(struct legic_frame * const f) {
+ f->data = 0;
+ f->bits = 0;
+}
+
+// Prng works when waiting in 99.1us cycles.
+// and while sending/receiving in bit frames (100, 60)
+/*static void CalibratePrng( uint32_t time){
+ // Calculate Cycles based on timer 100us
+ uint32_t i = (time - sendFrameStop) / 100 ;
+
+ // substract cycles of finished frames
+ int k = i - legic_prng_count()+1;
+
+ // substract current frame length, rewind to beginning
+ if ( k > 0 )
+ legic_prng_forward(k);
+}
+*/
+
+/* Generate Keystream */
+uint32_t get_key_stream(int skip, int count) {
+
+ int i;
+
+ // Use int to enlarge timer tc to 32bit
+ legic_prng_bc += prng_timer->TC_CV;
+
+ // reset the prng timer.
+
+ /* If skip == -1, forward prng time based */
+ if(skip == -1) {
+ i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
+ i -= legic_prng_count(); /* substract cycles of finished frames */
+ i -= count; /* substract current frame length, rewind to beginning */
+ legic_prng_forward(i);
+ } else {
+ legic_prng_forward(skip);
+ }
+
+ i = (count == 6) ? -1 : legic_read_count;
+
+ /* Generate KeyStream */
+ return legic_prng_get_bits(count);
+}
+
+/* Send a frame in tag mode, the FPGA must have been set up by
+ * LegicRfSimulate
+ */
+void frame_send_tag(uint16_t response, uint8_t bits) {
+
+ uint16_t mask = 1;
+
/* Bitbang the response */
- AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
+ SHORT_COIL;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-
+
+ /* TAG_FRAME_WAIT -> shift by 2 */
+ legic_prng_forward(3);
+ response ^= legic_prng_get_bits(bits);
+
/* Wait for the frame start */
- while(AT91C_BASE_TC1->TC_CV < 490) ;
+ WaitTicks( TAG_FRAME_WAIT );
+
+ for (; mask < BITMASK(bits); mask <<= 1) {
+ if (response & mask)
+ OPEN_COIL
+ else
+ SHORT_COIL
+ WaitTicks(TAG_BIT_PERIOD);
+ }
+ SHORT_COIL;
+}
+
+/* Send a frame in reader mode, the FPGA must have been set up by
+ * LegicRfReader
+ */
+void frame_sendAsReader(uint32_t data, uint8_t bits){
+
+ uint32_t starttime = GET_TICKS, send = 0, mask = 1;
- int i;
- for(i=0; i<(num_bytes*8+num_bits); i++) {
- int nextbit = AT91C_BASE_TC1->TC_CV + 150;
- int bit = response[i/8] & (1<<(i%8));
- if(bit)
- AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
+ // xor lsfr onto data.
+ send = data ^ legic_prng_get_bits(bits);
+
+ for (; mask < BITMASK(bits); mask <<= 1) {
+ if (send & mask)
+ COIL_PULSE(RWD_TIME_1)
else
- AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
- while(AT91C_BASE_TC1->TC_CV < nextbit) ;
+ COIL_PULSE(RWD_TIME_0)
}
- AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-#endif
+
+ // Final pause to mark the end of the frame
+ COIL_PULSE(0);
+
+ // log
+ uint8_t cmdbytes[] = {bits, BYTEx(data,0), BYTEx(data,1), BYTEx(data,2), BYTEx(send,0), BYTEx(send,1), BYTEx(send,2)};
+ LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE);
}
-static void frame_respond(struct legic_frame *f)
-{
- LED_D_ON();
- if(f->num_bytes == 0 && f->num_bits == 7) {
- /* This seems to be the initial dialogue, just send 6 bits of static data */
- frame_send(&response, 0, 6);
+/* Receive a frame from the card in reader emulation mode, the FPGA and
+ * timer must have been set up by LegicRfReader and frame_sendAsReader.
+ *
+ * The LEGIC RF protocol from card to reader does not include explicit
+ * frame start/stop information or length information. The reader must
+ * know beforehand how many bits it wants to receive. (Notably: a card
+ * sending a stream of 0-bits is indistinguishable from no card present.)
+ *
+ * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
+ * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
+ * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
+ * for edges. Count the edges in each bit interval. If they are approximately
+ * 0 this was a 0-bit, if they are approximately equal to the number of edges
+ * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
+ * timer that's still running from frame_sendAsReader in order to get a synchronization
+ * with the frame that we just sent.
+ *
+ * FIXME: Because we're relying on the hysteresis to just do the right thing
+ * the range is severely reduced (and you'll probably also need a good antenna).
+ * So this should be fixed some time in the future for a proper receiver.
+ */
+static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
+
+ if ( bits > 32 ) return;
+
+ uint8_t i = bits, edges = 0;
+ uint32_t the_bit = 1, next_bit_at = 0, data = 0;
+ uint32_t old_level = 0;
+ volatile uint32_t level = 0;
+
+ frame_clean(f);
+
+ // calibrate the prng.
+ legic_prng_forward(2);
+ data = legic_prng_get_bits(bits);
+
+ //FIXED time between sending frame and now listening frame. 330us
+ uint32_t starttime = GET_TICKS;
+ // its about 9+9 ticks delay from end-send to here.
+ WaitTicks( 477 );
+
+ next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
+
+ while ( i-- ){
+ edges = 0;
+ while ( GET_TICKS < next_bit_at) {
+
+ level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+
+ if (level != old_level)
+ ++edges;
+
+ old_level = level;
+ }
+
+ next_bit_at += TAG_BIT_PERIOD;
+
+ // We expect 42 edges (ONE)
+ if ( edges > 20 )
+ data ^= the_bit;
+
+ the_bit <<= 1;
}
- LED_D_OFF();
+
+ // output
+ f->data = data;
+ f->bits = bits;
+
+ // log
+ uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
+ LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
}
-static void frame_append_bit(struct legic_frame *f, int bit)
-{
- if(f->num_bytes >= (int)sizeof(f->data))
- return; /* Overflow, won't happen */
- f->data[f->num_bytes] |= (bit<<f->num_bits);
- f->num_bits++;
- if(f->num_bits > 7) {
- f->num_bits = 0;
- f->num_bytes++;
+// Setup pm3 as a Legic Reader
+static uint32_t setup_phase_reader(uint8_t iv) {
+
+ // Switch on carrier and let the tag charge for 5ms
+ HIGH(GPIO_SSC_DOUT);
+ WaitUS(5000);
+
+ ResetTicks();
+
+ legic_prng_init(0);
+
+ // send IV handshake
+ frame_sendAsReader(iv, 7);
+
+ // tag and reader has same IV.
+ legic_prng_init(iv);
+
+ frame_receiveAsReader(¤t_frame, 6);
+
+ // 292us (438t) - fixed delay before sending ack.
+ // minus log and stuff 100tick?
+ WaitTicks(338);
+ legic_prng_forward(3);
+
+ // Send obsfuscated acknowledgment frame.
+ // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
+ // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
+ switch ( current_frame.data ) {
+ case 0x0D: frame_sendAsReader(0x19, 6); break;
+ case 0x1D:
+ case 0x3D: frame_sendAsReader(0x39, 6); break;
+ default: break;
}
+
+ legic_prng_forward(2);
+ return current_frame.data;
}
-static int frame_is_empty(struct legic_frame *f)
-{
- return( (f->num_bytes + f->num_bits) <= 4 );
+void LegicCommonInit(bool clear_mem) {
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ /* Bitbang the transmitter */
+ SHORT_COIL;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
+
+ // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
+ cardmem = BigBuf_get_EM_addr();
+ if ( clear_mem )
+ memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
+
+ clear_trace();
+ set_tracing(TRUE);
+ crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
+ StartTicks();
}
-static void frame_handle(struct legic_frame *f)
-{
- if( !frame_is_empty(f) ) {
- frame_respond(f);
+// Switch off carrier, make sure tag is reset
+static void switch_off_tag_rwd(void) {
+ SHORT_COIL;
+ WaitUS(20);
+ WDT_HIT();
+}
+
+// calculate crc4 for a legic READ command
+static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
+ crc_clear(&legic_crc);
+ uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd;
+ crc_update(&legic_crc, temp, cmd_sz + 8 );
+ return crc_finish(&legic_crc);
+}
+
+int legic_read_byte( uint16_t index, uint8_t cmd_sz) {
+
+ uint8_t byte, crc, calcCrc = 0;
+ uint32_t cmd = (index << 1) | LEGIC_READ;
+
+ // 90ticks = 60us (should be 100us but crc calc takes time.)
+ //WaitTicks(330); // 330ticks prng(4) - works
+ WaitTicks(240); // 240ticks prng(3) - works
+
+ frame_sendAsReader(cmd, cmd_sz);
+ frame_receiveAsReader(¤t_frame, 12);
+
+ // CRC check.
+ byte = BYTEx(current_frame.data, 0);
+ crc = BYTEx(current_frame.data, 1);
+ calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz);
+
+ if( calcCrc != crc ) {
+ Dbprintf("!!! crc mismatch: %x != %x !!!", calcCrc, crc);
+ return -1;
}
+
+ legic_prng_forward(3);
+ return byte;
}
-static void frame_clean(struct legic_frame *f)
-{
- if(!frame_is_empty(f))
- memset(f->data, 0, sizeof(f->data));
- f->num_bits = 0;
- f->num_bytes = 0;
+/*
+ * - assemble a write_cmd_frame with crc and send it
+ * - wait until the tag sends back an ACK ('1' bit unencrypted)
+ * - forward the prng based on the timing
+ */
+bool legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) {
+
+ bool isOK = false;
+ int8_t i = 40;
+ uint8_t edges = 0;
+ uint8_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd;
+ uint32_t steps = 0, next_bit_at, start, crc, old_level = 0;
+
+ crc = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1);
+
+ // send write command
+ uint32_t cmd = LEGIC_WRITE;
+ cmd |= index << 1; // index
+ cmd |= byte << (addr_sz+1); // Data
+ cmd |= (crc & 0xF ) << (addr_sz+1+8); // CRC
+
+ WaitTicks(240);
+
+ frame_sendAsReader(cmd, cmd_sz);
+
+ LINE_IN;
+
+ start = GET_TICKS;
+
+ // ACK, - one single "1" bit after 3.6ms
+ // 3.6ms = 3600us * 1.5 = 5400ticks.
+ WaitTicks(5400);
+
+ next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
+
+ while ( i-- ) {
+ WDT_HIT();
+ edges = 0;
+ while ( GET_TICKS < next_bit_at) {
+
+ volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+
+ if (level != old_level)
+ ++edges;
+
+ old_level = level;
+ }
+
+ next_bit_at += TAG_BIT_PERIOD;
+
+ // We expect 42 edges (ONE)
+ if(edges > 20 ) {
+ steps = ( (GET_TICKS - start) / TAG_BIT_PERIOD);
+ legic_prng_forward(steps);
+ isOK = true;
+ goto OUT;
+ }
+ }
+
+OUT: ;
+ legic_prng_forward(1);
+
+ uint8_t cmdbytes[] = {1, isOK, BYTEx(steps, 0), BYTEx(steps, 1) };
+ LogTrace(cmdbytes, sizeof(cmdbytes), start, GET_TICKS, NULL, FALSE);
+ return isOK;
}
-static void emit(int bit)
+int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
+
+ uint16_t i = 0;
+ uint8_t isOK = 1;
+ legic_card_select_t card;
+
+ LegicCommonInit(TRUE);
+
+ if ( legic_select_card_iv(&card, iv) ) {
+ isOK = 0;
+ goto OUT;
+ }
+
+ if (len + offset > card.cardsize)
+ len = card.cardsize - offset;
+
+ LED_B_ON();
+ while (i < len) {
+ int r = legic_read_byte(offset + i, card.cmdsize);
+
+ if (r == -1 || BUTTON_PRESS()) {
+ if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
+ isOK = 0;
+ goto OUT;
+ }
+ cardmem[i++] = r;
+ WDT_HIT();
+ }
+
+OUT:
+ WDT_HIT();
+ switch_off_tag_rwd();
+ LEDsoff();
+ cmd_send(CMD_ACK, isOK, len, 0, cardmem, len);
+ return 0;
+}
+
+void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
+
+ #define LOWERLIMIT 4
+ uint8_t isOK = 1, msg = 0;
+ legic_card_select_t card;
+
+ // uid NOT is writeable.
+ if ( offset <= LOWERLIMIT ) {
+ isOK = 0;
+ goto OUT;
+ }
+
+ LegicCommonInit(TRUE);
+
+ if ( legic_select_card_iv(&card, iv) ) {
+ isOK = 0;
+ msg = 1;
+ goto OUT;
+ }
+
+ if ( len + offset > card.cardsize)
+ len = card.cardsize - offset;
+
+ LED_B_ON();
+ while( len > 0 ) {
+ --len;
+ if ( !legic_write_byte( len + offset, data[len], card.addrsize) ) {
+ Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len] );
+ isOK = 0;
+ goto OUT;
+ }
+ WDT_HIT();
+ }
+OUT:
+ cmd_send(CMD_ACK, isOK, msg,0,0,0);
+ switch_off_tag_rwd();
+ LEDsoff();
+}
+
+int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){
+
+ if ( p_card == NULL ) return 1;
+
+ p_card->tagtype = setup_phase_reader(iv);
+
+ switch(p_card->tagtype) {
+ case 0x0d:
+ p_card->cmdsize = 6;
+ p_card->addrsize = 5;
+ p_card->cardsize = 22;
+ break;
+ case 0x1d:
+ p_card->cmdsize = 9;
+ p_card->addrsize = 8;
+ p_card->cardsize = 256;
+ break;
+ case 0x3d:
+ p_card->cmdsize = 11;
+ p_card->addrsize = 10;
+ p_card->cardsize = 1024;
+ break;
+ default:
+ p_card->cmdsize = 0;
+ p_card->addrsize = 0;
+ p_card->cardsize = 0;
+ return 2;
+ }
+ return 0;
+}
+int legic_select_card(legic_card_select_t *p_card){
+ return legic_select_card_iv(p_card, 0x01);
+}
+
+//-----------------------------------------------------------------------------
+// Work with emulator memory
+//
+// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
+// involved in dealing with emulator memory. But if it is called later, it might
+// destroy the Emulator Memory.
+//-----------------------------------------------------------------------------
+// arg0 = offset
+// arg1 = num of bytes
+void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) {
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ legic_emlset_mem(data, arg0, arg1);
+}
+// arg0 = offset
+// arg1 = num of bytes
+void LegicEMemGet(uint32_t arg0, uint32_t arg1) {
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ uint8_t buf[USB_CMD_DATA_SIZE] = {0x00};
+ legic_emlget_mem(buf, arg0, arg1);
+ LED_B_ON();
+ cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE);
+ LED_B_OFF();
+}
+void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) {
+ cardmem = BigBuf_get_EM_addr();
+ memcpy(cardmem + offset, data, numofbytes);
+}
+void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) {
+ cardmem = BigBuf_get_EM_addr();
+ memcpy(data, cardmem + offset, numofbytes);
+}
+
+void LegicRfInfo(void){
+
+ int r;
+
+ uint8_t buf[sizeof(legic_card_select_t)] = {0x00};
+ legic_card_select_t *card = (legic_card_select_t*) buf;
+
+ LegicCommonInit(FALSE);
+
+ if ( legic_select_card(card) ) {
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ goto OUT;
+ }
+
+ // read UID bytes
+ for ( uint8_t i = 0; i < sizeof(card->uid); ++i) {
+ r = legic_read_byte(i, card->cmdsize);
+ if ( r == -1 ) {
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ goto OUT;
+ }
+ card->uid[i] = r & 0xFF;
+ }
+
+ // MCC byte.
+ r = legic_read_byte(4, card->cmdsize);
+ uint32_t calc_mcc = CRC8Legic(card->uid, 4);;
+ if ( r != calc_mcc) {
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ goto OUT;
+ }
+
+ // OK
+ cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t));
+
+OUT:
+ switch_off_tag_rwd();
+ LEDsoff();
+}
+
+/* Handle (whether to respond) a frame in tag mode
+ * Only called when simulating a tag.
+ */
+static void frame_handle_tag(struct legic_frame const * const f)
{
- if(bit == -1) {
- frame_handle(¤t_frame);
- frame_clean(¤t_frame);
- } else if(bit == 0) {
- frame_append_bit(¤t_frame, 0);
- } else if(bit == 1) {
- frame_append_bit(¤t_frame, 1);
+ // log
+ //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
+ //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
+ //Dbprintf("ICE: enter frame_handle_tag: %02x ", f->bits);
+
+ /* First Part of Handshake (IV) */
+ if(f->bits == 7) {
+
+ LED_C_ON();
+
+ // Reset prng timer
+ //ResetTimer(prng_timer);
+ ResetTicks();
+
+ // IV from reader.
+ legic_prng_init(f->data);
+
+ Dbprintf("ICE: IV: %02x ", f->data);
+
+ // We should have three tagtypes with three different answers.
+ legic_prng_forward(2);
+ //frame_send_tag(0x3d, 6); /* MIM1024 0x3d^0x26 = 0x1B */
+ frame_send_tag(0x1d, 6); // MIM256
+
+ legic_state = STATE_IV;
+ legic_read_count = 0;
+ legic_prng_bc = 0;
+ legic_prng_iv = f->data;
+
+ //ResetTimer(timer);
+ //WaitUS(280);
+ WaitTicks(388);
+ return;
}
+
+ /* 0x19==??? */
+ if(legic_state == STATE_IV) {
+ uint32_t local_key = get_key_stream(3, 6);
+ int xored = 0x39 ^ local_key;
+ if((f->bits == 6) && (f->data == xored)) {
+ legic_state = STATE_CON;
+
+ ResetTimer(timer);
+ WaitTicks(300);
+ return;
+
+ } else {
+ legic_state = STATE_DISCON;
+ LED_C_OFF();
+ Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
+ return;
+ }
+ }
+
+ /* Read */
+ if(f->bits == 11) {
+ if(legic_state == STATE_CON) {
+ uint32_t key = get_key_stream(2, 11); //legic_phase_drift, 11);
+ uint16_t addr = f->data ^ key;
+ addr >>= 1;
+ uint8_t data = cardmem[addr];
+
+ uint32_t crc = legic4Crc(LEGIC_READ, addr, data, 11) << 8;
+
+ //legic_read_count++;
+ //legic_prng_forward(legic_reqresp_drift);
+
+ frame_send_tag(crc | data, 12);
+ //ResetTimer(timer);
+ legic_prng_forward(2);
+ WaitTicks(330);
+ return;
+ }
+ }
+
+ /* Write */
+ if (f->bits == 23 || f->bits == 21 ) {
+ uint32_t key = get_key_stream(-1, 23); //legic_frame_drift, 23);
+ uint16_t addr = f->data ^ key;
+ addr >>= 1;
+ addr &= 0x3ff;
+ uint32_t data = f->data ^ key;
+ data >>= 11;
+ data &= 0xff;
+
+ cardmem[addr] = data;
+ /* write command */
+ legic_state = STATE_DISCON;
+ LED_C_OFF();
+ Dbprintf("write - addr: %x, data: %x", addr, data);
+ // should send a ACK after 3.6ms
+ return;
+ }
+
+ if(legic_state != STATE_DISCON) {
+ Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
+ Dbprintf("IV: %03.3x", legic_prng_iv);
+ }
+
+ legic_state = STATE_DISCON;
+ legic_read_count = 0;
+ WaitMS(10);
+ LED_C_OFF();
+ return;
+}
+
+/* Read bit by bit untill full frame is received
+ * Call to process frame end answer
+ */
+static void emit(int bit) {
+
+ switch (bit) {
+ case 1:
+ frame_append_bit(¤t_frame, 1);
+ break;
+ case 0:
+ frame_append_bit(¤t_frame, 0);
+ break;
+ default:
+ if(current_frame.bits <= 4) {
+ frame_clean(¤t_frame);
+ } else {
+ frame_handle_tag(¤t_frame);
+ frame_clean(¤t_frame);
+ }
+ WDT_HIT();
+ break;
+ }
}
-void LegicRfSimulate(void)
+void LegicRfSimulate(int phase, int frame, int reqresp)
{
- /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
- * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
- * envelope waveform on DIN and should send our response on DOUT.
- *
- * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
- * measure the time between two rising edges on DIN, and no encoding on the
- * subcarrier from card to reader, so we'll just shift out our verbatim data
- * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
- * seems to be 300us-ish.
- */
+ /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
+ * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
+ * envelope waveform on DIN and should send our response on DOUT.
+ *
+ * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
+ * measure the time between two rising edges on DIN, and no encoding on the
+ * subcarrier from card to reader, so we'll just shift out our verbatim data
+ * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
+ * seems to be 330us.
+ */
+
+ int old_level = 0, active = 0;
+ volatile int32_t level = 0;
+
+ legic_state = STATE_DISCON;
+ legic_phase_drift = phase;
+ legic_frame_drift = frame;
+ legic_reqresp_drift = reqresp;
+
+
+ /* to get the stream of bits from FPGA in sim mode.*/
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ // Set up the synchronous serial port
+ //FpgaSetupSsc();
+ // connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
-
+ //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+
+ #define LEGIC_DMA_BUFFER 256
+ // The DMA buffer, used to stream samples from the FPGA
+ //uint8_t *dmaBuf = BigBuf_malloc(LEGIC_DMA_BUFFER);
+ //uint8_t *data = dmaBuf;
+ // Setup and start DMA.
+ // if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER) ){
+ // if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
+ // return;
+ // }
+
+ //StartCountSspClk();
/* Bitbang the receiver */
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+
+ // need a way to determine which tagtype we are simulating
+
+ // hook up emulator memory
+ cardmem = BigBuf_get_EM_addr();
+
+ clear_trace();
+ set_tracing(TRUE);
+
+ crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
+ StartTicks();
+
+ LED_B_ON();
+ DbpString("Starting Legic emulator, press button to end");
- /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
- * this it won't be terribly accurate but should be good enough.
+ /*
+ * The mode FPGA_HF_SIMULATOR_MODULATE_212K works like this.
+ * - A 1-bit input to the FPGA becomes 8 pulses on 212kHz (fc/64) (18.88us).
+ * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
+ *
+ * In this mode the SOF can be written as 00011101 = 0x1D
+ * The EOF can be written as 10111000 = 0xb8
+ * A logic 1 is 01
+ * A logic 0 is 10
+ volatile uint8_t b;
+ uint8_t i = 0;
+ while( !BUTTON_PRESS() ) {
+ WDT_HIT();
+
+ // not sending anything.
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ }
+
+ // receive
+ if ( AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY ) {
+ b = (uint8_t) AT91C_BASE_SSC->SSC_RHR;
+ bd[i] = b;
+ ++i;
+ // if(OutOfNDecoding(b & 0x0f))
+ // *len = Uart.byteCnt;
+ }
+
+ }
*/
- AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
- AT91C_BASE_TC1->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK3;
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
- int old_level = 0;
-
-/* At TIMER_CLOCK3 (MCK/32) */
-#define BIT_TIME_1 150
-#define BIT_TIME_0 90
-#define BIT_TIME_FUZZ 20
-
- int active = 0;
- while(!BUTTON_PRESS()) {
- int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
- int time = AT91C_BASE_TC1->TC_CV;
+
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
- if(level != old_level) {
- if(level == 1) {
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
- if(time > (BIT_TIME_1-BIT_TIME_FUZZ) && time < (BIT_TIME_1+BIT_TIME_FUZZ)) {
- /* 1 bit */
+ level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+
+ uint32_t time = GET_TICKS;
+
+ if (level != old_level) {
+ if (level == 1) {
+
+ //Dbprintf("start, %u ", time);
+ StartTicks();
+ // did we get a signal
+ if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
+ // 1 bit
emit(1);
active = 1;
- } else if(time > (BIT_TIME_0-BIT_TIME_FUZZ) && time < (BIT_TIME_0+BIT_TIME_FUZZ)) {
- /* 0 bit */
+ LED_A_ON();
+ } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
+ // 0 bit
emit(0);
- active = 0;
- } else {
- /* invalid */
+ active = 1;
+ LED_A_ON();
+ } else if (active) {
+ // invalid
emit(-1);
active = 0;
+ LED_A_OFF();
}
}
}
-
- if(time >= (BIT_TIME_1+2*BIT_TIME_FUZZ) && active) {
- /* Frame end */
+
+
+ /* Frame end */
+ if(time >= (RWD_TIME_1 + RWD_TIME_FUZZ) && active) {
emit(-1);
active = 0;
+ LED_A_OFF();
}
+
+ /*
+ * Disable the counter, Then wait for the clock to acknowledge the
+ * shutdown in its status register. Reading the SR has the
+ * side-effect of clearing any pending state in there.
+ */
+ //if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA))
+ if(time >= (20 * RWD_TIME_1) )
+ StopTicks();
+
+ old_level = level;
+ WDT_HIT();
+}
+
+ WDT_HIT();
+ DbpString("LEGIC Prime emulator stopped");
+ switch_off_tag_rwd();
+ FpgaDisableSscDma();
+ LEDsoff();
+ cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
+}
+
+
+//-----------------------------------------------------------------------------
+// Code up a string of octets at layer 2 (including CRC, we don't generate
+// that here) so that they can be transmitted to the reader. Doesn't transmit
+// them yet, just leaves them ready to send in ToSend[].
+//-----------------------------------------------------------------------------
+// static void CodeLegicAsTag(const uint8_t *cmd, int len)
+// {
+ // int i;
+
+ // ToSendReset();
+
+ // // Transmit a burst of ones, as the initial thing that lets the
+ // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
+ // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
+ // // so I will too.
+ // for(i = 0; i < 20; i++) {
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // }
+
+ // // Send SOF.
+ // for(i = 0; i < 10; i++) {
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // }
+ // for(i = 0; i < 2; i++) {
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // }
+
+ // for(i = 0; i < len; i++) {
+ // int j;
+ // uint8_t b = cmd[i];
+
+ // // Start bit
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+
+ // // Data bits
+ // for(j = 0; j < 8; j++) {
+ // if(b & 1) {
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // } else {
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // }
+ // b >>= 1;
+ // }
+
+ // // Stop bit
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // }
+
+ // // Send EOF.
+ // for(i = 0; i < 10; i++) {
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // ToSendStuffBit(0);
+ // }
+ // for(i = 0; i < 2; i++) {
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // ToSendStuffBit(1);
+ // }
+
+ // // Convert from last byte pos to length
+ // ToSendMax++;
+// }
+
+//-----------------------------------------------------------------------------
+// The software UART that receives commands from the reader, and its state
+// variables.
+//-----------------------------------------------------------------------------
+/*
+static struct {
+ enum {
+ STATE_UNSYNCD,
+ STATE_GOT_FALLING_EDGE_OF_SOF,
+ STATE_AWAITING_START_BIT,
+ STATE_RECEIVING_DATA
+ } state;
+ uint16_t shiftReg;
+ int bitCnt;
+ int byteCnt;
+ int byteCntMax;
+ int posCnt;
+ uint8_t *output;
+} Uart;
+*/
+/* Receive & handle a bit coming from the reader.
+ *
+ * This function is called 4 times per bit (every 2 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED A -> ON once we have received the SOF and are expecting the rest.
+ * LED A -> OFF once we have received EOF or are in error state or unsynced
+ *
+ * Returns: true if we received a EOF
+ * false if we are still waiting for some more
+ */
+// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
+// {
+ // switch(Uart.state) {
+ // case STATE_UNSYNCD:
+ // if(!bit) {
+ // // we went low, so this could be the beginning of an SOF
+ // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
+ // Uart.posCnt = 0;
+ // Uart.bitCnt = 0;
+ // }
+ // break;
+
+ // case STATE_GOT_FALLING_EDGE_OF_SOF:
+ // Uart.posCnt++;
+ // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
+ // if(bit) {
+ // if(Uart.bitCnt > 9) {
+ // // we've seen enough consecutive
+ // // zeros that it's a valid SOF
+ // Uart.posCnt = 0;
+ // Uart.byteCnt = 0;
+ // Uart.state = STATE_AWAITING_START_BIT;
+ // LED_A_ON(); // Indicate we got a valid SOF
+ // } else {
+ // // didn't stay down long enough
+ // // before going high, error
+ // Uart.state = STATE_UNSYNCD;
+ // }
+ // } else {
+ // // do nothing, keep waiting
+ // }
+ // Uart.bitCnt++;
+ // }
+ // if(Uart.posCnt >= 4) Uart.posCnt = 0;
+ // if(Uart.bitCnt > 12) {
+ // // Give up if we see too many zeros without
+ // // a one, too.
+ // LED_A_OFF();
+ // Uart.state = STATE_UNSYNCD;
+ // }
+ // break;
+
+ // case STATE_AWAITING_START_BIT:
+ // Uart.posCnt++;
+ // if(bit) {
+ // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
+ // // stayed high for too long between
+ // // characters, error
+ // Uart.state = STATE_UNSYNCD;
+ // }
+ // } else {
+ // // falling edge, this starts the data byte
+ // Uart.posCnt = 0;
+ // Uart.bitCnt = 0;
+ // Uart.shiftReg = 0;
+ // Uart.state = STATE_RECEIVING_DATA;
+ // }
+ // break;
+
+ // case STATE_RECEIVING_DATA:
+ // Uart.posCnt++;
+ // if(Uart.posCnt == 2) {
+ // // time to sample a bit
+ // Uart.shiftReg >>= 1;
+ // if(bit) {
+ // Uart.shiftReg |= 0x200;
+ // }
+ // Uart.bitCnt++;
+ // }
+ // if(Uart.posCnt >= 4) {
+ // Uart.posCnt = 0;
+ // }
+ // if(Uart.bitCnt == 10) {
+ // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
+ // {
+ // // this is a data byte, with correct
+ // // start and stop bits
+ // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
+ // Uart.byteCnt++;
+
+ // if(Uart.byteCnt >= Uart.byteCntMax) {
+ // // Buffer overflowed, give up
+ // LED_A_OFF();
+ // Uart.state = STATE_UNSYNCD;
+ // } else {
+ // // so get the next byte now
+ // Uart.posCnt = 0;
+ // Uart.state = STATE_AWAITING_START_BIT;
+ // }
+ // } else if (Uart.shiftReg == 0x000) {
+ // // this is an EOF byte
+ // LED_A_OFF(); // Finished receiving
+ // Uart.state = STATE_UNSYNCD;
+ // if (Uart.byteCnt != 0) {
+ // return TRUE;
+ // }
+ // } else {
+ // // this is an error
+ // LED_A_OFF();
+ // Uart.state = STATE_UNSYNCD;
+ // }
+ // }
+ // break;
+
+ // default:
+ // LED_A_OFF();
+ // Uart.state = STATE_UNSYNCD;
+ // break;
+ // }
+
+ // return FALSE;
+// }
+/*
+
+static void UartReset() {
+ Uart.byteCntMax = 3;
+ Uart.state = STATE_UNSYNCD;
+ Uart.byteCnt = 0;
+ Uart.bitCnt = 0;
+ Uart.posCnt = 0;
+ memset(Uart.output, 0x00, 3);
+}
+*/
+// static void UartInit(uint8_t *data) {
+ // Uart.output = data;
+ // UartReset();
+// }
+
+//=============================================================================
+// An LEGIC reader. We take layer two commands, code them
+// appropriately, and then send them to the tag. We then listen for the
+// tag's response, which we leave in the buffer to be demodulated on the
+// PC side.
+//=============================================================================
+/*
+static struct {
+ enum {
+ DEMOD_UNSYNCD,
+ DEMOD_PHASE_REF_TRAINING,
+ DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
+ DEMOD_GOT_FALLING_EDGE_OF_SOF,
+ DEMOD_AWAITING_START_BIT,
+ DEMOD_RECEIVING_DATA
+ } state;
+ int bitCount;
+ int posCount;
+ int thisBit;
+ uint16_t shiftReg;
+ uint8_t *output;
+ int len;
+ int sumI;
+ int sumQ;
+} Demod;
+*/
+/*
+ * Handles reception of a bit from the tag
+ *
+ * This function is called 2 times per bit (every 4 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED C -> ON once we have received the SOF and are expecting the rest.
+ * LED C -> OFF once we have received EOF or are unsynced
+ *
+ * Returns: true if we received a EOF
+ * false if we are still waiting for some more
+ *
+ */
+
+/*
+static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
+{
+ int v = 0;
+ int ai = ABS(ci);
+ int aq = ABS(cq);
+ int halfci = (ai >> 1);
+ int halfcq = (aq >> 1);
+
+ switch(Demod.state) {
+ case DEMOD_UNSYNCD:
+
+ CHECK_FOR_SUBCARRIER()
+
+ if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
+ Demod.state = DEMOD_PHASE_REF_TRAINING;
+ Demod.sumI = ci;
+ Demod.sumQ = cq;
+ Demod.posCount = 1;
+ }
+ break;
+
+ case DEMOD_PHASE_REF_TRAINING:
+ if(Demod.posCount < 8) {
+
+ CHECK_FOR_SUBCARRIER()
+
+ if (v > SUBCARRIER_DETECT_THRESHOLD) {
+ // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
+ // note: synchronization time > 80 1/fs
+ Demod.sumI += ci;
+ Demod.sumQ += cq;
+ ++Demod.posCount;
+ } else {
+ // subcarrier lost
+ Demod.state = DEMOD_UNSYNCD;
+ }
+ } else {
+ Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
+ }
+ break;
+
+ case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
+
+ MAKE_SOFT_DECISION()
+
+ //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
+ // logic '0' detected
+ if (v <= 0) {
+
+ Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
+
+ // start of SOF sequence
+ Demod.posCount = 0;
+ } else {
+ // maximum length of TR1 = 200 1/fs
+ if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
+ }
+ ++Demod.posCount;
+ break;
+
+ case DEMOD_GOT_FALLING_EDGE_OF_SOF:
+ ++Demod.posCount;
+
+ MAKE_SOFT_DECISION()
+
+ if(v > 0) {
+ // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
+ if(Demod.posCount < 10*2) {
+ Demod.state = DEMOD_UNSYNCD;
+ } else {
+ LED_C_ON(); // Got SOF
+ Demod.state = DEMOD_AWAITING_START_BIT;
+ Demod.posCount = 0;
+ Demod.len = 0;
+ }
+ } else {
+ // low phase of SOF too long (> 12 etu)
+ if(Demod.posCount > 13*2) {
+ Demod.state = DEMOD_UNSYNCD;
+ LED_C_OFF();
+ }
+ }
+ break;
+
+ case DEMOD_AWAITING_START_BIT:
+ ++Demod.posCount;
+
+ MAKE_SOFT_DECISION()
+
+ if(v > 0) {
+ // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
+ if(Demod.posCount > 3*2) {
+ Demod.state = DEMOD_UNSYNCD;
+ LED_C_OFF();
+ }
+ } else {
+ // start bit detected
+ Demod.bitCount = 0;
+ Demod.posCount = 1; // this was the first half
+ Demod.thisBit = v;
+ Demod.shiftReg = 0;
+ Demod.state = DEMOD_RECEIVING_DATA;
+ }
+ break;
+
+ case DEMOD_RECEIVING_DATA:
- if(time >= (20*BIT_TIME_1) && (AT91C_BASE_TC1->TC_SR & AT91C_TC_CLKSTA)) {
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
+ MAKE_SOFT_DECISION()
+
+ if(Demod.posCount == 0) {
+ // first half of bit
+ Demod.thisBit = v;
+ Demod.posCount = 1;
+ } else {
+ // second half of bit
+ Demod.thisBit += v;
+ Demod.shiftReg >>= 1;
+ // logic '1'
+ if(Demod.thisBit > 0)
+ Demod.shiftReg |= 0x200;
+
+ ++Demod.bitCount;
+
+ if(Demod.bitCount == 10) {
+
+ uint16_t s = Demod.shiftReg;
+
+ if((s & 0x200) && !(s & 0x001)) {
+ // stop bit == '1', start bit == '0'
+ uint8_t b = (s >> 1);
+ Demod.output[Demod.len] = b;
+ ++Demod.len;
+ Demod.state = DEMOD_AWAITING_START_BIT;
+ } else {
+ Demod.state = DEMOD_UNSYNCD;
+ LED_C_OFF();
+
+ if(s == 0x000) {
+ // This is EOF (start, stop and all data bits == '0'
+ return TRUE;
+ }
+ }
+ }
+ Demod.posCount = 0;
+ }
+ break;
+
+ default:
+ Demod.state = DEMOD_UNSYNCD;
+ LED_C_OFF();
+ break;
+ }
+ return FALSE;
+}
+*/
+/*
+// Clear out the state of the "UART" that receives from the tag.
+static void DemodReset() {
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
+ Demod.posCount = 0;
+ Demod.sumI = 0;
+ Demod.sumQ = 0;
+ Demod.bitCount = 0;
+ Demod.thisBit = 0;
+ Demod.shiftReg = 0;
+ memset(Demod.output, 0x00, 3);
+}
+
+static void DemodInit(uint8_t *data) {
+ Demod.output = data;
+ DemodReset();
+}
+*/
+
+/*
+ * Demodulate the samples we received from the tag, also log to tracebuffer
+ * quiet: set to 'TRUE' to disable debug output
+ */
+
+ /*
+ #define LEGIC_DMA_BUFFER_SIZE 256
+
+ static void GetSamplesForLegicDemod(int n, bool quiet)
+{
+ int max = 0;
+ bool gotFrame = FALSE;
+ int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+ int ci, cq, samples = 0;
+
+ BigBuf_free();
+
+ // And put the FPGA in the appropriate mode
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
+
+ // The response (tag -> reader) that we're receiving.
+ // Set up the demodulator for tag -> reader responses.
+ DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
+
+ // The DMA buffer, used to stream samples from the FPGA
+ int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
+ int8_t *upTo = dmaBuf;
+
+ // Setup and start DMA.
+ if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
+ if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
+ return;
+ }
+
+ // Signal field is ON with the appropriate LED:
+ LED_D_ON();
+ for(;;) {
+ int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
+ if(behindBy > max) max = behindBy;
+
+ while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
+ ci = upTo[0];
+ cq = upTo[1];
+ upTo += 2;
+ if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
+ upTo = dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
+ }
+ lastRxCounter -= 2;
+ if(lastRxCounter <= 0)
+ lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+
+ samples += 2;
+
+ gotFrame = HandleLegicSamplesDemod(ci , cq );
+ if ( gotFrame )
+ break;
+ }
+
+ if(samples > n || gotFrame)
+ break;
+ }
+
+ FpgaDisableSscDma();
+
+ if (!quiet && Demod.len == 0) {
+ Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
+ max,
+ samples,
+ gotFrame,
+ Demod.len,
+ Demod.sumI,
+ Demod.sumQ
+ );
+ }
+
+ //Tracing
+ if (Demod.len > 0) {
+ uint8_t parity[MAX_PARITY_SIZE] = {0x00};
+ LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
+ }
+}
+
+*/
+
+//-----------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+//-----------------------------------------------------------------------------
+/*
+static void TransmitForLegic(void)
+{
+ int c;
+
+ FpgaSetupSsc();
+
+ while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
+ AT91C_BASE_SSC->SSC_THR = 0xff;
+
+ // Signal field is ON with the appropriate Red LED
+ LED_D_ON();
+
+ // Signal we are transmitting with the Green LED
+ LED_B_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+
+ for(c = 0; c < 10;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0xff;
+ c++;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
}
-
-
- old_level = level;
WDT_HIT();
}
+
+ c = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = ToSend[c];
+ legic_prng_forward(1); // forward the lfsr
+ c++;
+ if(c >= ToSendMax) {
+ break;
+ }
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
+ }
+ WDT_HIT();
+ }
+ LED_B_OFF();
+}
+*/
+
+//-----------------------------------------------------------------------------
+// Code a layer 2 command (string of octets, including CRC) into ToSend[],
+// so that it is ready to transmit to the tag using TransmitForLegic().
+//-----------------------------------------------------------------------------
+/*
+static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+ int i, j;
+ uint8_t b;
+
+ ToSendReset();
+
+ // Send SOF
+ for(i = 0; i < 7; i++)
+ ToSendStuffBit(1);
+
+
+ for(i = 0; i < cmdlen; i++) {
+ // Start bit
+ ToSendStuffBit(0);
+
+ // Data bits
+ b = cmd[i];
+ for(j = 0; j < bits; j++) {
+ if(b & 1) {
+ ToSendStuffBit(1);
+ } else {
+ ToSendStuffBit(0);
+ }
+ b >>= 1;
+ }
+ }
+
+ // Convert from last character reference to length
+ ++ToSendMax;
+}
+*/
+/**
+ Convenience function to encode, transmit and trace Legic comms
+ **/
+/*
+ static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+ CodeLegicBitsAsReader(cmd, cmdlen, bits);
+ TransmitForLegic();
+ if (tracing) {
+ uint8_t parity[1] = {0x00};
+ LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
+ }
+}
+
+*/
+// Set up LEGIC communication
+/*
+void ice_legic_setup() {
+
+ // standard things.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ BigBuf_free(); BigBuf_Clear_ext(false);
+ clear_trace();
+ set_tracing(TRUE);
+ DemodReset();
+ UartReset();
+
+ // Set up the synchronous serial port
+ FpgaSetupSsc();
+
+ // connect Demodulated Signal to ADC:
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+ SpinDelay(20);
+ // Start the timer
+ //StartCountSspClk();
+
+ // initalize CRC
+ crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
+ // initalize prng
+ legic_prng_init(0);
}
+*/
\ No newline at end of file