return true;
}
+
+//////////////// 4050 / 4450 commands
+int usage_lf_em4x50_dump(void) {
+ PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x50dump [h] <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x50dump");
+ PrintAndLog(" lf em 4x50dump 11223344");
+ return 0;
+}
+int usage_lf_em4x50_read(void) {
+ PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x50read [h] <address> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" address - memory address to read. (0-15)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x50read 1");
+ PrintAndLog(" lf em 4x50read 1 11223344");
+ return 0;
+}
+int usage_lf_em4x50_write(void) {
+ PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x50write [h] <address> <data> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" address - memory address to write to. (0-15)");
+ PrintAndLog(" data - data to write (hex)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x50write 1 deadc0de");
+ PrintAndLog(" lf em 4x50write 1 deadc0de 11223344");
+ return 0;
+}
+
uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
{
if (size<45) return 0;
}
return code;
}
+
+
/* Read the transmitted data of an EM4x50 tag from the graphbuffer
* Format:
*
* Word Read values. UID is stored in block 32.
*/
//completed by Marshmellow
-int EM4x50Read(const char *Cmd, bool verbose)
-{
+int EM4x50Read(const char *Cmd, bool verbose) {
uint8_t fndClk[] = {8,16,32,40,50,64,128};
int clk = 0;
int invert = 0;
}
int CmdEM4x50Read(const char *Cmd) {
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read();
return EM4x50Read(Cmd, true);
}
-int usage_lf_em_read(void) {
- PrintAndLog("Read EM 4x05/4x50/EM4x69. Tag must be on antenna. ");
- PrintAndLog("");
- PrintAndLog("Usage: lf em readword [h] <address> <pwd>");
- PrintAndLog("Options:");
- PrintAndLog(" h - this help");
- PrintAndLog(" address - memory address to read. (0-15)");
- PrintAndLog(" pwd - password (hex) (optional)");
- PrintAndLog("samples:");
- PrintAndLog(" lf em readword 1");
- PrintAndLog(" lf em readword 1 11223344");
+int CmdEM4x50Write(const char *Cmd){
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write();
+ PrintAndLog("no implemented yet");
return 0;
}
-
-int usage_lf_em_write(void) {
- PrintAndLog("Write EM 4x05/4x50/4x69. Tag must be on antenna. ");
- PrintAndLog("");
- PrintAndLog("Usage: lf em writeword [h] <address> <data> <pwd>");
- PrintAndLog("Options:");
- PrintAndLog(" h - this help");
- PrintAndLog(" address - memory address to write to. (0-15)");
- PrintAndLog(" data - data to write (hex)");
- PrintAndLog(" pwd - password (hex) (optional)");
- PrintAndLog("samples:");
- PrintAndLog(" lf em writeword 1");
- PrintAndLog(" lf em writeword 1 deadc0de 11223344");
+int CmdEM4x50Dump(const char *Cmd){
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump();
+ PrintAndLog("no implemented yet");
return 0;
}
// skip first two 0 bits as they might have been missed in the demod
uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0};
- // set size to 10 to only test first 4 positions for the preamble
- size_t size = (10 > DemodBufferLen) ? DemodBufferLen : 10;
+ // set size to 15 to only test first 4 positions for the preamble
+ size_t size = (15 > DemodBufferLen) ? DemodBufferLen : 15;
*startIdx = 0;
uint8_t found = 0;
bool detectFSK(){
// detect fsk clock
if (!GetFskClock("", FALSE, FALSE)) {
- if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK clock failed");
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed");
return FALSE;
}
// demod
int ans = FSKrawDemod("0 0", FALSE);
if (!ans) {
- if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed");
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed");
return FALSE;
}
return TRUE;
bool detectPSK(){
int ans = GetPskClock("", FALSE, FALSE);
if (ans <= 0) {
- if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK clock failed");
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed");
return FALSE;
}
- PrintAndLog("PSK response possibly found, run `data rawd p1` to attempt to demod");
+ //demod
+ //try psk1 -- 0 0 6 (six errors?!?)
+ ans = PSKDemod("0 0 6", FALSE);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed");
+
+ //try psk1 inverted
+ ans = PSKDemod("0 1 6", FALSE);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed");
+ return FALSE;
+ }
+ }
+ // either PSK1 or PSK1 inverted is ok from here.
+ // lets check PSK2 later.
return TRUE;
}
// try manchester - NOTE: ST only applies to T55x7 tags.
bool stcheck = FALSE;
int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck);
if (!ans) {
- if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed");
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed");
return FALSE;
}
return TRUE;
bool detectASK_BI(){
int ans = ASKbiphaseDemod("0 0 1", FALSE);
if (!ans) {
- if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase normal demod failed");
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed");
ans = ASKbiphaseDemod("0 1 1", FALSE);
if (!ans) {
- if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase inverted demod failed");
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed");
return FALSE;
}
}
}
// param: idx - start index in demoded data.
-int setDemodBufferEM(uint8_t bitsNeeded, size_t idx){
- if ( bitsNeeded < DemodBufferLen) {
- setDemodBuf(DemodBuffer + idx + EM_PREAMBLE_LEN, bitsNeeded, 0);
- CmdPrintDemodBuff("x");
- return 1;
+bool setDemodBufferEM(uint32_t *word, size_t idx){
+
+ //test for even parity bits.
+ size_t size = removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 44);
+ if (!size) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error -EM Parity not detected");
+ return FALSE;
}
- return -1;
+
+ //todo test last 8 bits for even parity || (xor)
+ setDemodBuf(DemodBuffer, 40, 0);
+
+ *word = bytebits_to_byteLSBF(DemodBuffer, 32);
+
+ uint8_t lo = (uint8_t) bytebits_to_byteLSBF(DemodBuffer , 8);
+ uint8_t lo2 = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 8, 8);
+ uint8_t hi = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 16, 8);
+ uint8_t hi2 = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 24, 8);
+ uint8_t cs = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 32, 8);
+ uint8_t cs2 = lo ^ lo2 ^ hi ^ hi2;
+ if (g_debugMode) PrintAndLog("EM4x05/4x69 : %08X CS: %02X %s"
+ , *word
+ , cs
+ , (cs2==cs) ? "Passed" : "Failed"
+ );
+
+ return (cs2==cs);
}
// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
// should cover 90% of known used configs
// the rest will need to be manually demoded for now...
-int demodEM4x05resp(uint8_t bitsNeeded) {
- size_t startIdx = 0;
+bool demodEM4x05resp(uint32_t *word) {
+ size_t idx = 0;
+
+ if (detectASK_MAN() && doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
- if (detectASK_MAN() && doPreambleSearch( &startIdx ))
- return setDemodBufferEM(bitsNeeded, startIdx);
+ if (detectASK_BI() && doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
- if (detectASK_BI() && doPreambleSearch( &startIdx ))
- return setDemodBufferEM(bitsNeeded, startIdx);
+ if (detectFSK() && doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
- if (detectFSK() && doPreambleSearch( &startIdx ))
- return setDemodBufferEM(bitsNeeded, startIdx);
+ if (detectPSK()) {
+ if (doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
+
+ psk1TOpsk2(DemodBuffer, DemodBufferLen);
+ if (doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
+ }
+ return FALSE;
+}
+
+//////////////// 4205 / 4305 commands
+int usage_lf_em4x05_dump(void) {
+ PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05dump");
+ PrintAndLog(" lf em 4x05dump 11223344");
+ return 0;
+}
+int usage_lf_em4x05_read(void) {
+ PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05read [h] <address> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" address - memory address to read. (0-15)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05read 1");
+ PrintAndLog(" lf em 4x05read 1 11223344");
+ return 0;
+}
+int usage_lf_em4x05_write(void) {
+ PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05write [h] <address> <data> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" address - memory address to write to. (0-15)");
+ PrintAndLog(" data - data to write (hex)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05write 1 deadc0de");
+ PrintAndLog(" lf em 4x05write 1 deadc0de 11223344");
+ return 0;
+}
+
+int CmdEM4x05Dump(const char *Cmd) {
+ uint8_t addr = 0;
+ uint32_t pwd;
+ bool usePwd = false;
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump();
+
+ // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+ pwd = param_get32ex(Cmd, 0, 1, 16);
- if (detectPSK() && doPreambleSearch( &startIdx ))
- return setDemodBufferEM(bitsNeeded, startIdx);
+ if ( pwd != 1 ) {
+ usePwd = true;
+ }
+ int success = 1;
+ for (; addr < 16; addr++) {
+ if (addr == 2) {
+ if (usePwd) {
+ PrintAndLog("PWD Address %02u | %08X",addr,pwd);
+ } else {
+ PrintAndLog("PWD Address 02 | cannot read");
+ }
+ } else {
+ //success &= EM4x05Read(addr, pwd, usePwd);
+ }
+ }
- return -1;
+ return success;
}
-int CmdReadWord(const char *Cmd) {
+int CmdEM4x05Read(const char *Cmd) {
int addr, pwd;
bool usePwd = false;
uint8_t ctmp = param_getchar(Cmd, 0);
- if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
+ if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read();
addr = param_get8ex(Cmd, 0, -1, 10);
pwd = param_get32ex(Cmd, 1, -1, 16);
return -1;
}
- //attempt demod:
- //need 32 bits from a read word
- int result = demodEM4x05resp(44);
- if (result == -1)
+ //attempt demod
+ uint32_t word = 0;
+ int isOk = demodEM4x05resp(&word);
+ if (isOk)
+ PrintAndLog("Got Address %02d | %08X",addr, word);
+ else
PrintAndLog("Read failed");
- return result;
+ return isOk;
}
-int CmdWriteWord(const char *Cmd) {
+int CmdEM4x05Write(const char *Cmd) {
uint8_t ctmp = param_getchar(Cmd, 0);
- if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write();
+ if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write();
bool usePwd = false;
int addr = 16; // default to invalid address
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 1000)){
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
PrintAndLog("Error occurred, device did not respond during write operation.");
return -1;
}
//attempt demod:
//need 0 bits demoded (after preamble) to verify write cmd
- int result = demodEM4x05resp(0);
- if (result == 1)
+ uint32_t dummy = 0;
+ int isOk = demodEM4x05resp(&dummy);
+ if (isOk)
PrintAndLog("Write Verified");
- return result;
+ return isOk;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
- {"em410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
- {"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
- {"em410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
- {"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
- {"em410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
- {"em410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
- {"em4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graphbuffer"},
- {"readword", CmdReadWord, 1, "read EM4x05/4x69 data"},
- {"writeword", CmdWriteWord, 1, "write EM405/4x69 data"},
+ {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
+ {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
+ {"410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
+ {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
+ {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
+ {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
+ {"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"},
+ {"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"},
+ {"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"},
+ {"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"},
+ {"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"},
+ {"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"},
{NULL, NULL, 0, NULL}
};
for (uint8_t i = 0; i < bitLen; i++){
ans ^= ((bits >> i) & 1);
}
- //prnt("DEBUG: ans: %d, ptype: %d",ans,pType);
+ if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits);
return (ans == pType);
}
parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
BitStream[j++] = (BitStream[startIdx+word+bit]);
}
+ if (word+pLen >= bLen) break;
+
j--; // overwrite parity with next data
// if parity fails then return 0
switch (pType) {
size_t preLastSample = 0;
size_t LastSample = 0;
size_t currSample = 0;
- // sync to first lo-hi transition, and threshold
+ if ( size < 1024 ) return 0; // not enough samples
+
+ // jump to modulating data by finding the first 4 threshold crossings (or first 2 waves)
+ // in case you have junk or noise at the beginning of the trace...
+ uint8_t thresholdCnt = 0;
+ size_t waveSizeCnt = 0;
+ bool isAboveThreshold = dest[idx++] >= threshold_value;
+ for (; idx < size-20; idx++ ) {
+ if(dest[idx] < threshold_value && isAboveThreshold) {
+ thresholdCnt++;
+ if (thresholdCnt > 2 && waveSizeCnt < fchigh+1) break;
+ isAboveThreshold = false;
+ waveSizeCnt = 0;
+ } else if (dest[idx] >= threshold_value && !isAboveThreshold) {
+ thresholdCnt++;
+ if (thresholdCnt > 2 && waveSizeCnt < fchigh+1) break;
+ isAboveThreshold = true;
+ waveSizeCnt = 0;
+ } else {
+ waveSizeCnt++;
+ }
+ if (thresholdCnt > 10) break;
+ }
+ if (g_debugMode == 2) prnt("threshold Count reached at %u",idx);
// Need to threshold first sample
- // skip 160 samples to allow antenna/samples to settle
- if(dest[160] < threshold_value) dest[0] = 0;
+ if(dest[idx] < threshold_value) dest[0] = 0;
else dest[0] = 1;
+ idx++;
size_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
// (could also be fc/5 && fc/7 for fsk1 = 4-9)
- for(idx = 161; idx < size-20; idx++) {
+ for(; idx < size-20; idx++) {
// threshold current value
if (dest[idx] < threshold_value) dest[idx] = 0;
//do nothing with extra garbage
} else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
//correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
- if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
+ if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){
dest[numBits-1]=1;
}
dest[numBits++]=1;
- } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage
- //do nothing with beginning garbage
+ } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage
+ //do nothing with beginning garbage and reset.. should be rare..
+ numBits = 0;
} else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
dest[numBits++]=1;
} else { //9+ = 10 sample waves (or 6+ = 7)
// by marshmellow
// convert psk1 demod to psk2 demod
// only transition waves are 1s
-void psk1TOpsk2(uint8_t *BitStream, size_t size)
-{
- size_t i=1;
- uint8_t lastBit=BitStream[0];
- for (; i<size; i++){
- if (BitStream[i]==7){
- //ignore errors
- } else if (lastBit!=BitStream[i]){
- lastBit=BitStream[i];
- BitStream[i]=1;
+void psk1TOpsk2(uint8_t *bits, size_t size) {
+ uint8_t lastBit = bits[0];
+ for (size_t i = 1; i < size; i++){
+ //ignore errors
+ if (bits[i] == 7) continue;
+
+ if (lastBit != bits[i]){
+ lastBit = bits[i];
+ bits[i] = 1;
} else {
- BitStream[i]=0;
+ bits[i] = 0;
}
}
- return;
}
// by marshmellow
// convert psk2 demod to psk1 demod
// from only transition waves are 1s to phase shifts change bit
-void psk2TOpsk1(uint8_t *BitStream, size_t size)
-{
- uint8_t phase=0;
- for (size_t i=0; i<size; i++){
- if (BitStream[i]==1){
- phase ^=1;
+void psk2TOpsk1(uint8_t *bits, size_t size) {
+ uint8_t phase = 0;
+ for (size_t i = 0; i < size; i++){
+ if (bits[i] == 1){
+ phase ^= 1;
}
- BitStream[i]=phase;
+ bits[i] = phase;
}
- return;
}
// redesigned by marshmellow adjusted from existing decode functions
size_t numBits=0;
uint8_t curPhase = *invert;
- size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
+ size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint8_t fc=0, fullWaveLen=0, tol=1;
uint16_t errCnt=0, waveLenCnt=0;
fc = countFC(dest, *size, 0);
//prnt("DEBUG: FC: %d",fc);
*clock = DetectPSKClock(dest, *size, *clock);
if (*clock == 0) return -1;
+ // jump to modulating data by finding the first 2 threshold crossings (or first 1 waves)
+ // in case you have junk or noise at the beginning of the trace...
+ uint8_t thresholdCnt = 0;
+ size_t waveSizeCnt = 0;
+ uint8_t threshold_value = 123; //-5
+ bool isAboveThreshold = dest[i++] >= threshold_value;
+ for (; i < *size-20; i++ ) {
+ if(dest[i] < threshold_value && isAboveThreshold) {
+ thresholdCnt++;
+ if (thresholdCnt > 2 && waveSizeCnt < fc+1) break;
+ isAboveThreshold = false;
+ waveSizeCnt = 0;
+ } else if (dest[i] >= threshold_value && !isAboveThreshold) {
+ thresholdCnt++;
+ if (thresholdCnt > 2 && waveSizeCnt < fc+1) break;
+ isAboveThreshold = true;
+ waveSizeCnt = 0;
+ } else {
+ waveSizeCnt++;
+ }
+ if (thresholdCnt > 10) break;
+ }
+ if (g_debugMode == 2) prnt("DEBUG PSK: threshold Count reached at %u, count: %u",i, thresholdCnt);
+
+
int avgWaveVal=0, lastAvgWaveVal=0;
+ waveStart = i+1;
//find first phase shift
- for (i=0; i<loopCnt; i++){
+ for (; i<loopCnt; i++){
if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
waveEnd = i+1;
- //prnt("DEBUG: waveEnd: %d",waveEnd);
+ if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart);
waveLenCnt = waveEnd-waveStart;
- if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
+ if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack
lastAvgWaveVal = avgWaveVal/(waveLenCnt);
firstFullWave = waveStart;
fullWaveLen=waveLenCnt;
//if average wave value is > graph 0 then it is an up wave or a 1
- if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
+ if (lastAvgWaveVal > threshold_value) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
break;
}
waveStart = i+1;