# These are to be compiled in ARM mode
ARMSRC = fpgaloader.c \
legicrf.c \
+ legicrfsim.c \
+ legic_prng.c \
$(SRC_ISO14443a) \
$(SRC_ISO14443b) \
$(SRC_CRAPTO1) \
$(SRC_CRC) \
- legic_prng.c \
iclass.c \
BigBuf.c \
optimized_cipher.c \
#include "printf.h"
#include "string.h"
#include "legicrf.h"
+#include "legicrfsim.h"
#include "hitag2.h"
#include "hitagS.h"
#include "lfsampling.h"
#ifdef WITH_LEGICRF
case CMD_SIMULATE_TAG_LEGIC_RF:
- LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
+ LegicRfSimulate(c->arg[0]);
break;
case CMD_WRITER_LEGIC_RF:
//-----------------------------------------------------------------------------
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
// 2016 Iceman
-// 2018 AntiCat (rwd rewritten)
+// 2018 AntiCat
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
#include "legic.h"
#include "crc.h"
-static struct legic_frame {
- int bits;
- uint32_t data;
-} current_frame;
-
-static enum {
- STATE_DISCON,
- STATE_IV,
- STATE_CON,
-} legic_state;
-
-static crc_t legic_crc;
-static int legic_read_count;
-static uint32_t legic_prng_bc;
-static uint32_t legic_prng_iv;
-
-static int legic_phase_drift;
-static int legic_frame_drift;
-static int legic_reqresp_drift;
-
-AT91PS_TC timer;
-AT91PS_TC prng_timer;
-
static legic_card_select_t card;/* metadata of currently selected card */
+static crc_t legic_crc;
//-----------------------------------------------------------------------------
// Frame timing and pseudorandom number generator
#define TAG_BIT_PERIOD 150 /* 100us */
#define TAG_WRITE_TIMEOUT 60 /* 40 * 100us (write should take at most 3.6ms) */
-#define SIM_DIVISOR 586 /* prng_time/DIV count prng needs to be forwared */
-#define SIM_SHIFT 900 /* prng_time+SHIFT shift of delayed start */
-#define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector
- /+ hysteresis fuzz quite a bit */
-
#define LEGIC_READ 0x01 /* Read Command */
#define LEGIC_WRITE 0x00 /* Write Command */
#define INPUT_THRESHOLD 8 /* heuristically determined, lower values */
/* lead to detecting false ack during write */
-#define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
-
//-----------------------------------------------------------------------------
// I/O interface abstraction (FPGA -> ARM)
//-----------------------------------------------------------------------------
// also.
//
// The demedulated should be alligned to the bit periode by the caller. This is
-// done in rx_bit_as_reader and rx_ack_as_reader.
-static inline bool rx_bit_as_reader() {
+// done in rx_bit and rx_ack.
+static inline bool rx_bit() {
int32_t cq = 0;
int32_t ci = 0;
// be circumvented, but the adventage over bitbang would be little.
//-----------------------------------------------------------------------------
-static inline void tx_bit_as_reader(bool bit) {
+static inline void tx_bit(bool bit) {
// insert pause
LOW(GPIO_SSC_DOUT);
last_frame_end += RWD_TIME_PAUSE;
// present.
//-----------------------------------------------------------------------------
-static void tx_frame_as_reader(uint32_t frame, uint8_t len) {
+static void tx_frame(uint32_t frame, uint8_t len) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
// wait for next tx timeslot
// transmit frame, MSB first
for(uint8_t i = 0; i < len; ++i) {
bool bit = (frame >> i) & 0x01;
- tx_bit_as_reader(bit ^ legic_prng_get_bit());
+ tx_bit(bit ^ legic_prng_get_bit());
legic_prng_forward(1);
};
HIGH(GPIO_SSC_DOUT);
}
-static uint32_t rx_frame_as_reader(uint8_t len) {
+static uint32_t rx_frame(uint8_t len) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
while(GET_TICKS < last_frame_end) { };
uint32_t frame = 0;
- for(uint8_t i = 0; i < len; i++) {
- frame |= (rx_bit_as_reader() ^ legic_prng_get_bit()) << i;
+ for(uint8_t i = 0; i < len; ++i) {
+ frame |= (rx_bit() ^ legic_prng_get_bit()) << i;
legic_prng_forward(1);
- // rx_bit_as_reader runs only 95us, resync to TAG_BIT_PERIOD
+ // rx_bit runs only 95us, resync to TAG_BIT_PERIOD
last_frame_end += TAG_BIT_PERIOD;
while(GET_TICKS < last_frame_end) { };
}
return frame;
}
-static bool rx_ack_as_reader() {
+static bool rx_ack() {
// change fpga into rx mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
uint32_t ack = 0;
for(uint8_t i = 0; i < TAG_WRITE_TIMEOUT; ++i) {
// sample bit
- ack = rx_bit_as_reader();
+ ack = rx_bit();
legic_prng_forward(1);
- // rx_bit_as_reader runs only 95us, resync to TAG_BIT_PERIOD
+ // rx_bit runs only 95us, resync to TAG_BIT_PERIOD
last_frame_end += TAG_BIT_PERIOD;
while(GET_TICKS < last_frame_end) { };
// Legic Reader
//-----------------------------------------------------------------------------
-int init_card(uint8_t cardtype, legic_card_select_t *p_card) {
+static int init_card(uint8_t cardtype, legic_card_select_t *p_card) {
p_card->tagtype = cardtype;
switch(p_card->tagtype) {
// The setup consists of a three way handshake:
// - Transmit initialisation vector 7 bits
// - Receive card type 6 bits
-// - Acknowledge frame 6 bits
-static uint32_t setup_phase_reader(uint8_t iv) {
+// - Transmit Acknowledge 6 bits
+static uint32_t setup_phase(uint8_t iv) {
// init coordination timestamp
last_frame_end = GET_TICKS;
while(GET_TICKS < last_frame_end) { };
legic_prng_init(0);
- tx_frame_as_reader(iv, 7);
+ tx_frame(iv, 7);
- // configure iv
+ // configure prng
legic_prng_init(iv);
legic_prng_forward(2);
// receive card type
- int32_t card_type = rx_frame_as_reader(6);
+ int32_t card_type = rx_frame(6);
legic_prng_forward(3);
// send obsfuscated acknowledgment frame
switch (card_type) {
case 0x0D:
- tx_frame_as_reader(0x19, 6); // MIM22 | READCMD = 0x18 | 0x01
+ tx_frame(0x19, 6); // MIM22 | READCMD = 0x18 | 0x01
break;
case 0x1D:
case 0x3D:
- tx_frame_as_reader(0x39, 6); // MIM256 | READCMD = 0x38 | 0x01
+ tx_frame(0x39, 6); // MIM256 | READCMD = 0x38 | 0x01
break;
}
// read one byte
LED_B_ON();
legic_prng_forward(2);
- tx_frame_as_reader(cmd, cmd_sz);
+ tx_frame(cmd, cmd_sz);
legic_prng_forward(2);
- uint32_t frame = rx_frame_as_reader(12);
+ uint32_t frame = rx_frame(12);
LED_B_OFF();
// split frame into data and crc
// send write command
LED_C_ON();
legic_prng_forward(2);
- tx_frame_as_reader(cmd, addr_sz + 1 + 8 + 4); // sz = addr_sz + cmd + data + crc
+ tx_frame(cmd, addr_sz + 1 + 8 + 4); // sz = addr_sz + cmd + data + crc
legic_prng_forward(3);
LED_C_OFF();
// wait for ack
- return rx_ack_as_reader();
+ return rx_ack();
}
//-----------------------------------------------------------------------------
// establish shared secret and detect card type
DbpString("Reading card ...");
- uint8_t card_type = setup_phase_reader(SESSION_IV);
+ uint8_t card_type = setup_phase(SESSION_IV);
if(init_card(card_type, &card) != 0) {
Dbprintf("No or unknown card found, aborting");
goto OUT;
// establish shared secret and detect card type
Dbprintf("Writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes);
- uint8_t card_type = setup_phase_reader(SESSION_IV);
+ uint8_t card_type = setup_phase(SESSION_IV);
if(init_card(card_type, &card) != 0) {
Dbprintf("No or unknown card found, aborting");
goto OUT;
LED_D_OFF();
StopTicks();
}
-
-//-----------------------------------------------------------------------------
-// Legic Simulator
-//-----------------------------------------------------------------------------
-
-static void setup_timer(void)
-{
- /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
- * this it won't be terribly accurate but should be good enough.
- */
- AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
- timer = AT91C_BASE_TC1;
- timer->TC_CCR = AT91C_TC_CLKDIS;
- timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
- timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-
- /*
- * Set up Timer 2 to use for measuring time between frames in
- * tag simulation mode. Runs 4x faster as Timer 1
- */
- AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
- prng_timer = AT91C_BASE_TC2;
- prng_timer->TC_CCR = AT91C_TC_CLKDIS;
- prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
- prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-}
-
-/* Generate Keystream */
-static uint32_t get_key_stream(int skip, int count)
-{
- uint32_t key=0; int i;
-
- /* Use int to enlarge timer tc to 32bit */
- legic_prng_bc += prng_timer->TC_CV;
- prng_timer->TC_CCR = AT91C_TC_SWTRG;
-
- /* If skip == -1, forward prng time based */
- if(skip == -1) {
- i = (legic_prng_bc+SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
- i -= legic_prng_count(); /* substract cycles of finished frames */
- i -= count; /* substract current frame length, rewidn to bedinning */
- legic_prng_forward(i);
- } else {
- legic_prng_forward(skip);
- }
-
- /* Write Time Data into LOG */
- uint8_t *BigBuf = BigBuf_get_addr();
- if(count == 6) { i = -1; } else { i = legic_read_count; }
- BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
- BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff;
- BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
- BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
- BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
- BigBuf[OFFSET_LOG+384+i] = count;
-
- /* Generate KeyStream */
- for(i=0; i<count; i++) {
- key |= legic_prng_get_bit() << i;
- legic_prng_forward(1);
- }
- return key;
-}
-
-/* Send a frame in tag mode, the FPGA must have been set up by
- * LegicRfSimulate
- */
-static void frame_send_tag(uint16_t response, int bits, int crypt)
-{
- /* Bitbang the response */
- AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-
- /* Use time to crypt frame */
- if(crypt) {
- legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */
- int i; int key = 0;
- for(i=0; i<bits; i++) {
- key |= legic_prng_get_bit() << i;
- legic_prng_forward(1);
- }
- //Dbprintf("key = 0x%x", key);
- response = response ^ key;
- }
-
- /* Wait for the frame start */
- while(timer->TC_CV < (TAG_FRAME_WAIT - 30)) ;
-
- int i;
- for(i=0; i<bits; i++) {
- int nextbit = timer->TC_CV + TAG_BIT_PERIOD;
- int bit = response & 1;
- response = response >> 1;
- if(bit) {
- AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
- } else {
- AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
- }
- while(timer->TC_CV < nextbit) ;
- }
- AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-}
-
-static void frame_append_bit(struct legic_frame * const f, int bit)
-{
- if(f->bits >= 31) {
- return; /* Overflow, won't happen */
- }
- f->data |= (bit<<f->bits);
- f->bits++;
-}
-
-static void frame_clean(struct legic_frame * const f)
-{
- f->data = 0;
- f->bits = 0;
-}
-
-/* Handle (whether to respond) a frame in tag mode */
-static void frame_handle_tag(struct legic_frame const * const f)
-{
- uint8_t *BigBuf = BigBuf_get_addr();
-
- /* First Part of Handshake (IV) */
- if(f->bits == 7) {
- if(f->data == SESSION_IV) {
- LED_C_ON();
- prng_timer->TC_CCR = AT91C_TC_SWTRG;
- legic_prng_init(f->data);
- frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1b */
- legic_state = STATE_IV;
- legic_read_count = 0;
- legic_prng_bc = 0;
- legic_prng_iv = f->data;
-
- /* TIMEOUT */
- timer->TC_CCR = AT91C_TC_SWTRG;
- while(timer->TC_CV > 1);
- while(timer->TC_CV < 280);
- return;
- } else if((prng_timer->TC_CV % 50) > 40) {
- legic_prng_init(f->data);
- frame_send_tag(0x3d, 6, 1);
- SpinDelay(20);
- return;
- }
- }
-
- /* 0x19==??? */
- if(legic_state == STATE_IV) {
- if((f->bits == 6) && (f->data == (0x19 ^ get_key_stream(1, 6)))) {
- legic_state = STATE_CON;
-
- /* TIMEOUT */
- timer->TC_CCR = AT91C_TC_SWTRG;
- while(timer->TC_CV > 1);
- while(timer->TC_CV < 200);
- return;
- } else {
- legic_state = STATE_DISCON;
- LED_C_OFF();
- Dbprintf("0x19 - Frame: %03.3x", f->data);
- return;
- }
- }
-
- /* Read */
- if(f->bits == 11) {
- if(legic_state == STATE_CON) {
- int key = get_key_stream(-1, 11); //legic_phase_drift, 11);
- int addr = f->data ^ key; addr = addr >> 1;
- int data = BigBuf[addr];
- int hash = calc_crc4(addr, data, 11) << 8;
- BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr;
- legic_read_count++;
-
- //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
- legic_prng_forward(legic_reqresp_drift);
-
- frame_send_tag(hash | data, 12, 1);
-
- /* SHORT TIMEOUT */
- timer->TC_CCR = AT91C_TC_SWTRG;
- while(timer->TC_CV > 1);
- legic_prng_forward(legic_frame_drift);
- while(timer->TC_CV < 180);
- return;
- }
- }
-
- /* Write */
- if(f->bits == 23) {
- int key = get_key_stream(-1, 23); //legic_frame_drift, 23);
- int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff;
- int data = f->data ^ key; data = data >> 11; data = data & 0xff;
-
- /* write command */
- legic_state = STATE_DISCON;
- LED_C_OFF();
- Dbprintf("write - addr: %x, data: %x", addr, data);
- return;
- }
-
- if(legic_state != STATE_DISCON) {
- Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
- int i;
- Dbprintf("IV: %03.3x", legic_prng_iv);
- for(i = 0; i<legic_read_count; i++) {
- Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]);
- }
-
- for(i = -1; i<legic_read_count; i++) {
- uint32_t t;
- t = BigBuf[OFFSET_LOG+256+i*4];
- t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8;
- t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16;
- t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24;
-
- Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
- BigBuf[OFFSET_LOG+128+i],
- BigBuf[OFFSET_LOG+384+i],
- t);
- }
- }
- legic_state = STATE_DISCON;
- legic_read_count = 0;
- SpinDelay(10);
- LED_C_OFF();
- return;
-}
-
-/* Read bit by bit untill full frame is received
- * Call to process frame end answer
- */
-static void emit(int bit)
-{
- if(bit == -1) {
- if(current_frame.bits <= 4) {
- frame_clean(¤t_frame);
- } else {
- frame_handle_tag(¤t_frame);
- frame_clean(¤t_frame);
- }
- WDT_HIT();
- } else if(bit == 0) {
- frame_append_bit(¤t_frame, 0);
- } else if(bit == 1) {
- frame_append_bit(¤t_frame, 1);
- }
-}
-
-void LegicRfSimulate(int phase, int frame, int reqresp)
-{
- /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
- * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
- * envelope waveform on DIN and should send our response on DOUT.
- *
- * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
- * measure the time between two rising edges on DIN, and no encoding on the
- * subcarrier from card to reader, so we'll just shift out our verbatim data
- * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
- * seems to be 300us-ish.
- */
-
- if(phase < 0) {
- int i;
- for(i=0; i<=reqresp; i++) {
- legic_prng_init(SESSION_IV);
- Dbprintf("i=%u, key 0x%3.3x", i, get_key_stream(i, frame));
- }
- return;
- }
-
- legic_phase_drift = phase;
- legic_frame_drift = frame;
- legic_reqresp_drift = reqresp;
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
-
- /* Bitbang the receiver */
- AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
-
- setup_timer();
- crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
-
- int old_level = 0;
- int active = 0;
- legic_state = STATE_DISCON;
-
- LED_B_ON();
- DbpString("Starting Legic emulator, press button to end");
- while(!BUTTON_PRESS()) {
- int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
- int time = timer->TC_CV;
-
- if(level != old_level) {
- if(level == 1) {
- timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
- if(FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
- /* 1 bit */
- emit(1);
- active = 1;
- LED_A_ON();
- } else if(FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
- /* 0 bit */
- emit(0);
- active = 1;
- LED_A_ON();
- } else if(active) {
- /* invalid */
- emit(-1);
- active = 0;
- LED_A_OFF();
- }
- }
- }
-
- if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) {
- /* Frame end */
- emit(-1);
- active = 0;
- LED_A_OFF();
- }
-
- if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) {
- timer->TC_CCR = AT91C_TC_CLKDIS;
- }
-
- old_level = level;
- WDT_HIT();
- }
- DbpString("Stopped");
- LED_B_OFF();
- LED_A_OFF();
- LED_C_OFF();
-}
-
//-----------------------------------------------------------------------------
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
+// 2018 AntiCat
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
#ifndef __LEGICRF_H
#define __LEGICRF_H
-extern void LegicRfSimulate(int phase, int frame, int reqresp);
extern void LegicRfReader(int bytes, int offset);
extern void LegicRfWriter(int bytes, int offset);
--- /dev/null
+//-----------------------------------------------------------------------------
+// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
+// 2016 Iceman
+// 2018 AntiCat
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// LEGIC RF simulation code
+//-----------------------------------------------------------------------------
+
+#include "proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "string.h"
+
+#include "legicrfsim.h"
+#include "legic_prng.h"
+#include "legic.h"
+#include "crc.h"
+
+static uint8_t* legic_mem; /* card memory, used for sim */
+static legic_card_select_t card;/* metadata of currently selected card */
+static crc_t legic_crc;
+
+//-----------------------------------------------------------------------------
+// Frame timing and pseudorandom number generator
+//
+// The Prng is forwarded every 99.1us (TAG_BIT_PERIOD), except when the reader is
+// transmitting. In that case the prng has to be forwarded every bit transmitted:
+// - 31.3us for a 0 (RWD_TIME_0)
+// - 99.1us for a 1 (RWD_TIME_1)
+//
+// The data dependent timing makes writing comprehensible code significantly
+// harder. The current aproach forwards the prng data based if there is data on
+// air and time based, using GetCountSspClk(), during computational and wait
+// periodes. SSP Clock is clocked by the FPGA at 212 kHz (subcarrier frequency).
+//
+// To not have the necessity to calculate/guess exection time dependend timeouts
+// tx_frame and rx_frame use a shared timestamp to coordinate tx and rx timeslots.
+//-----------------------------------------------------------------------------
+
+static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */
+
+#define TAG_FRAME_WAIT 70 /* 330us from READER frame end to TAG frame start */
+#define TAG_ACK_WAIT 758 /* 3.57ms from READER frame end to TAG write ACK */
+#define TAG_BIT_PERIOD 21 /* 99.1us */
+
+#define RWD_TIME_PAUSE 4 /* 18.9us */
+#define RWD_TIME_1 21 /* RWD_TIME_PAUSE 18.9us off + 80.2us on = 99.1us */
+#define RWD_TIME_0 13 /* RWD_TIME_PAUSE 18.9us off + 42.4us on = 61.3us */
+#define RWD_CMD_TIMEOUT 40 /* 40 * 99.1us (arbitrary value) */
+#define RWD_MIN_FRAME_LEN 6 /* Shortest frame is 6 bits */
+#define RWD_MAX_FRAME_LEN 23 /* Longest frame is 23 bits */
+
+#define RWD_PULSE 1 /* Pulse is signaled with GPIO_SSC_DIN high */
+#define RWD_PAUSE 0 /* Pause is signaled with GPIO_SSC_DIN low */
+
+//-----------------------------------------------------------------------------
+// Demodulation
+//-----------------------------------------------------------------------------
+
+// Returns true if a pulse/pause is received within timeout
+static inline bool wait_for(bool value, const uint32_t timeout) {
+ while((bool)(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN) != value) {
+ if(GetCountSspClk() > timeout) {
+ return false;
+ }
+ }
+ return true;
+}
+
+// Returns a demedulated bit or -1 on code violation
+//
+// rx_bit decodes bits using a thresholds. rx_bit has to be called by as soon as
+// a frame starts (first pause is received). rx_bit checks for a pause up to
+// 18.9us followed by a pulse of 80.2us or 42.4us:
+// - A bit length <18.9us is a code violation
+// - A bit length >80.2us is a 1
+// - A bit length <80.2us is a 0
+// - A bit length >148.6us is a code violation
+static inline int8_t rx_bit() {
+ // backup ts for threshold calculation
+ uint32_t bit_start = last_frame_end;
+
+ // wait for pause to end
+ if(!wait_for(RWD_PULSE, bit_start + RWD_TIME_1*3/2)) {
+ return -1;
+ }
+
+ // wait for next pause
+ if(!wait_for(RWD_PAUSE, bit_start + RWD_TIME_1*3/2)) {
+ return -1;
+ }
+
+ // update bit and frame end
+ last_frame_end = GetCountSspClk();
+
+ // check for code violation (bit to short)
+ if(last_frame_end - bit_start < RWD_TIME_PAUSE) {
+ return -1;
+ }
+
+ // apply threshold (average of RWD_TIME_0 and )
+ return (last_frame_end - bit_start > (RWD_TIME_0 + RWD_TIME_1) / 2);
+}
+
+//-----------------------------------------------------------------------------
+// Modulation
+//
+// LEGIC RF uses a very basic load modulation from card to reader:
+// - Subcarrier on for a 1
+// - Subcarrier off for for a 0
+//
+// The 212kHz subcarrier is generated by the FPGA as well as a mathcing ssp clk.
+// Each bit is transfered in a 99.1us slot and the first timeslot starts 330us
+// after the final 20us pause generated by the reader.
+//-----------------------------------------------------------------------------
+
+// Transmits a bit
+//
+// Note: The Subcarrier is not disabled during bits to prevent glitches. This is
+// not mandatory but results in a cleaner signal. tx_frame will disable
+// the subcarrier when the frame is done.
+static inline void tx_bit(bool bit) {
+ LED_C_ON();
+
+ if(bit) {
+ // modulate subcarrier
+ HIGH(GPIO_SSC_DOUT);
+ } else {
+ // do not modulate subcarrier
+ LOW(GPIO_SSC_DOUT);
+ }
+
+ // wait for tx timeslot to end
+ last_frame_end += TAG_BIT_PERIOD;
+ while(GetCountSspClk() < last_frame_end) { };
+ LED_C_OFF();
+}
+
+//-----------------------------------------------------------------------------
+// Frame Handling
+//
+// The LEGIC RF protocol from reader to card does not include explicit frame
+// start/stop information or length information. The tag detects end of frame
+// trough an extended pulse (>99.1us) without a pause.
+// In reverse direction (card to reader) the number of bites is well known
+// and depends only the command received (IV, ACK, READ or WRITE).
+//-----------------------------------------------------------------------------
+
+static void tx_frame(uint32_t frame, uint8_t len) {
+ // wait for next tx timeslot
+ last_frame_end += TAG_FRAME_WAIT;
+ legic_prng_forward(TAG_FRAME_WAIT/TAG_BIT_PERIOD - 1);
+ while(GetCountSspClk() < last_frame_end) { };
+
+ // transmit frame, MSB first
+ for(uint8_t i = 0; i < len; ++i) {
+ bool bit = (frame >> i) & 0x01;
+ tx_bit(bit ^ legic_prng_get_bit());
+ legic_prng_forward(1);
+ };
+
+ // disable subcarrier
+ LOW(GPIO_SSC_DOUT);
+}
+
+static void tx_ack() {
+ // wait for ack timeslot
+ last_frame_end += TAG_ACK_WAIT;
+ legic_prng_forward(TAG_ACK_WAIT/TAG_BIT_PERIOD - 1);
+ while(GetCountSspClk() < last_frame_end) { };
+
+ // transmit ack (ack is not encrypted)
+ tx_bit(true);
+ legic_prng_forward(1);
+
+ // disable subcarrier
+ LOW(GPIO_SSC_DOUT);
+}
+
+// Returns a demedulated frame or -1 on code violation
+//
+// Since TX to RX delay is arbitrary rx_frame has to:
+// - detect start of frame (first pause)
+// - forward prng based on ts/TAG_BIT_PERIOD
+// - receive the frame
+// - detect end of frame (last pause)
+static int32_t rx_frame(uint8_t *len) {
+ int32_t frame = 0;
+
+ // add 2 SSP clock cycles (1 for tx and 1 for rx pipeline delay)
+ // those will be substracted at the end of the rx phase
+ last_frame_end -= 2;
+
+ // wait for first pause (start of frame)
+ for(uint8_t i = 0; true; ++i) {
+ // increment prng every TAG_BIT_PERIOD
+ last_frame_end += TAG_BIT_PERIOD;
+ legic_prng_forward(1);
+
+ // if start of frame was received exit delay loop
+ if(wait_for(RWD_PAUSE, last_frame_end)) {
+ last_frame_end = GetCountSspClk();
+ break;
+ }
+
+ // check for code violation
+ if(i > RWD_CMD_TIMEOUT) {
+ return -1;
+ }
+ }
+
+ // receive frame
+ for(*len = 0; true; ++(*len)) {
+ // receive next bit
+ LED_D_ON();
+ int8_t bit = rx_bit();
+ LED_D_OFF();
+
+ // check for code violation and to short / long frame
+ if((bit < 0) && ((*len < RWD_MIN_FRAME_LEN) || (*len > RWD_MAX_FRAME_LEN))) {
+ return -1;
+ }
+
+ // check for code violation caused by end of frame
+ if(bit < 0) {
+ break;
+ }
+
+ // append bit
+ frame |= (bit ^ legic_prng_get_bit()) << (*len);
+ legic_prng_forward(1);
+ }
+
+ // rx_bit sets coordination timestamp to start of pause, append pause duration
+ // and substract 2 SSP clock cycles (1 for rx and 1 for tx pipeline delay) to
+ // obtain exact end of frame.
+ last_frame_end += RWD_TIME_PAUSE - 2;
+
+ return frame;
+}
+
+//-----------------------------------------------------------------------------
+// Legic Simulator
+//-----------------------------------------------------------------------------
+
+static int32_t init_card(uint8_t cardtype, legic_card_select_t *p_card) {
+ p_card->tagtype = cardtype;
+
+ switch(p_card->tagtype) {
+ case 0:
+ p_card->cmdsize = 6;
+ p_card->addrsize = 5;
+ p_card->cardsize = 22;
+ break;
+ case 1:
+ p_card->cmdsize = 9;
+ p_card->addrsize = 8;
+ p_card->cardsize = 256;
+ break;
+ case 2:
+ p_card->cmdsize = 11;
+ p_card->addrsize = 10;
+ p_card->cardsize = 1024;
+ break;
+ default:
+ p_card->cmdsize = 0;
+ p_card->addrsize = 0;
+ p_card->cardsize = 0;
+ return 2;
+ }
+ return 0;
+}
+
+static void init_tag() {
+ // configure FPGA
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
+ | FPGA_HF_SIMULATOR_MODULATE_212K);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // configure SSC with defaults
+ FpgaSetupSsc();
+
+ // first pull output to low to prevent glitches then re-claim GPIO_SSC_DOUT
+ LOW(GPIO_SSC_DOUT);
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+
+ // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
+ legic_mem = BigBuf_get_addr();
+
+ // init crc calculator
+ crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0);
+
+ // start 212kHz timer (running from SSP Clock)
+ StartCountSspClk();
+}
+
+// Setup reader to card connection
+//
+// The setup consists of a three way handshake:
+// - Receive initialisation vector 7 bits
+// - Transmit card type 6 bits
+// - Receive Acknowledge 6 bits
+static int32_t setup_phase(legic_card_select_t *p_card) {
+ uint8_t len = 0;
+
+ // init coordination timestamp
+ last_frame_end = GetCountSspClk();
+
+ // reset prng
+ legic_prng_init(0);
+
+ // wait for iv
+ int32_t iv = rx_frame(&len);
+ if((len != 7) || (iv < 0)) {
+ return -1;
+ }
+
+ // configure prng
+ legic_prng_init(iv);
+
+ // reply with card type
+ switch(p_card->tagtype) {
+ case 0:
+ tx_frame(0x0D, 6);
+ break;
+ case 1:
+ tx_frame(0x1D, 6);
+ break;
+ case 2:
+ tx_frame(0x3D, 6);
+ break;
+ }
+
+ // wait for ack
+ int32_t ack = rx_frame(&len);
+ if((len != 6) || (ack < 0)) {
+ return -1;
+ }
+
+ // validate data
+ switch(p_card->tagtype) {
+ case 0:
+ if(ack != 0x19) return -1;
+ break;
+ case 1:
+ if(ack != 0x39) return -1;
+ break;
+ case 2:
+ if(ack != 0x39) return -1;
+ break;
+ }
+
+ // During rx the prng is clocked using the variable reader period.
+ // Since rx_frame detects end of frame by detecting a code violation,
+ // the prng is off by one bit period after each rx phase. Hence, tx
+ // code advances the prng by (TAG_FRAME_WAIT/TAG_BIT_PERIOD - 1).
+ // This is not possible for back to back rx, so this quirk reduces
+ // the gap by one period.
+ last_frame_end += TAG_BIT_PERIOD;
+
+ return 0;
+}
+
+static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) {
+ crc_clear(&legic_crc);
+ crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz);
+ return crc_finish(&legic_crc);
+}
+
+static int32_t connected_phase(legic_card_select_t *p_card) {
+ uint8_t len = 0;
+
+ // wait for command
+ int32_t cmd = rx_frame(&len);
+ if(cmd < 0) {
+ return -1;
+ }
+
+ // check if command is LEGIC_READ
+ if(len == p_card->cmdsize) {
+ // prepare data
+ uint8_t byte = legic_mem[cmd >> 1];
+ uint8_t crc = calc_crc4(cmd, p_card->cmdsize, byte);
+
+ // transmit data
+ tx_frame((crc << 8) | byte, 12);
+
+ return 0;
+ }
+
+ // check if command is LEGIC_WRITE
+ if(len == p_card->cmdsize + 8 + 4) {
+ // decode data
+ uint16_t mask = (1 << p_card->addrsize) - 1;
+ uint16_t addr = (cmd >> 1) & mask;
+ uint8_t byte = (cmd >> p_card->cmdsize) & 0xff;
+ uint8_t crc = (cmd >> (p_card->cmdsize + 8)) & 0xf;
+
+ // check received against calculated crc
+ uint8_t calc_crc = calc_crc4(addr << 1, p_card->cmdsize, byte);
+ if(calc_crc != crc) {
+ Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc);
+ return -1;
+ }
+
+ // store data
+ legic_mem[addr] = byte;
+
+ // transmit ack
+ tx_ack();
+
+ return 0;
+ }
+
+ return -1;
+}
+
+//-----------------------------------------------------------------------------
+// Command Line Interface
+//
+// Only this function is public / called from appmain.c
+//-----------------------------------------------------------------------------
+
+void LegicRfSimulate(uint8_t cardtype) {
+ // configure ARM and FPGA
+ init_tag();
+
+ // verify command line input
+ if(init_card(cardtype, &card) != 0) {
+ DbpString("Unknown tagtype.");
+ goto OUT;
+ }
+
+ LED_A_ON();
+ DbpString("Starting Legic emulator, press button to end");
+ while(!BUTTON_PRESS()) {
+ WDT_HIT();
+
+ // wait for carrier, restart after timeout
+ if(!wait_for(RWD_PULSE, GetCountSspClk() + TAG_BIT_PERIOD)) {
+ continue;
+ }
+
+ // wait for connection, restart on error
+ if(setup_phase(&card)) {
+ continue;
+ }
+
+ // conection is established, process commands until one fails
+ while(!connected_phase(&card)) {
+ WDT_HIT();
+ }
+ }
+
+OUT:
+ DbpString("Stopped");
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_A_OFF();
+ LED_C_OFF();
+ LED_D_OFF();
+ StopTicks();
+}
--- /dev/null
+//-----------------------------------------------------------------------------
+// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
+// 2018 AntiCat
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// LEGIC RF emulation public interface
+//-----------------------------------------------------------------------------
+
+#ifndef __LEGICRFSIM_H
+#define __LEGICRFSIM_H
+
+#include "proxmark3.h"
+
+extern void LegicRfSimulate(uint8_t tagtype);
+
+#endif /* __LEGICRFSIM_H */
{"reader", CmdLegicRFRead, 0, "[offset [length]] -- read bytes from a LEGIC card"},
{"save", CmdLegicSave, 0, "<filename> [<length>] -- Store samples"},
{"load", CmdLegicLoad, 0, "<filename> -- Restore samples"},
- {"sim", CmdLegicRfSim, 0, "[phase drift [frame drift [req/resp drift]]] Start tag simulator (use after load or read)"},
+ {"sim", CmdLegicRfSim, 0, "[tagtype, 0:MIM22, 1:MIM256, 2:MIM1024] Start tag simulator (use after load or read)"},
{"write", CmdLegicRfWrite,0, "<offset> <length> -- Write sample buffer (user after load or read)"},
{"fill", CmdLegicRfFill, 0, "<offset> <length> <value> -- Fill/Write tag with constant value"},
{NULL, NULL, 0, NULL}
int CmdLegicRfSim(const char *Cmd)
{
UsbCommand c={CMD_SIMULATE_TAG_LEGIC_RF};
- c.arg[0] = 6;
- c.arg[1] = 3;
- c.arg[2] = 0;
- sscanf(Cmd, " %" SCNi64 " %" SCNi64 " %" SCNi64, &c.arg[0], &c.arg[1], &c.arg[2]);
+ c.arg[0] = 1;
+ sscanf(Cmd, " %" SCNi64, &c.arg[0]);
SendCommand(&c);
return 0;
}
end
-// Divide 13.56 MHz by 32 to produce the SSP_CLK
-// The register is bigger to allow higher division factors of up to /128
+// Divide 13.56 MHz to produce various frequencies for SSP_CLK
+// and modulation. 11 bits allow for factors of up to /128.
reg [10:0] ssp_clk_divider;
always @(posedge adc_clk)
ssp_clk_divider <= (ssp_clk_divider + 1);
reg ssp_clk;
-reg ssp_frame;
+
always @(negedge adc_clk)
begin
- //If we're in 101, we only need a new bit every 8th carrier bit (53Hz). Otherwise, get next bit at 424Khz
if(mod_type == 3'b101)
- begin
- if(ssp_clk_divider[7:0] == 8'b00000000)
- ssp_clk <= 1'b0;
- if(ssp_clk_divider[7:0] == 8'b10000000)
- ssp_clk <= 1'b1;
-
- end
+ // Get bit every at 53KHz (every 8th carrier bit of 424kHz)
+ ssp_clk <= ssp_clk_divider[7];
+ else if(mod_type == 3'b010)
+ // Get next bit at 212kHz
+ ssp_clk <= ssp_clk_divider[5];
else
- begin
- if(ssp_clk_divider[4:0] == 5'd0)//[4:0] == 5'b00000)
- ssp_clk <= 1'b1;
- if(ssp_clk_divider[4:0] == 5'd16) //[4:0] == 5'b10000)
- ssp_clk <= 1'b0;
- end
+ // Get next bit at 424Khz
+ ssp_clk <= ssp_clk_divider[4];
end
-//assign ssp_clk = ssp_clk_divider[4];
-
// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of
// this is arbitrary, because it's just a bitstream.
// One nasty issue, though: I can't make it work with both rx and tx at
ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);
-
+reg ssp_frame;
always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)
if(mod_type == 3'b000) // not modulating, so listening, to ARM
ssp_frame = (ssp_frame_divider_to_arm == 3'b000);
else
- ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
+ ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
// Synchronize up the after-hysteresis signal, to produce DIN.
reg ssp_din;
always @(posedge ssp_clk)
ssp_din = after_hysteresis;
-// Modulating carrier frequency is fc/16, reuse ssp_clk divider for that
+// Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that.
reg modulating_carrier;
always @(mod_type or ssp_clk or ssp_dout)
if(mod_type == 3'b000)
else if(mod_type == 3'b001)
modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
else if(mod_type == 3'b010)
- modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
+ modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
else if(mod_type == 3'b100 || mod_type == 3'b101)
- modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
+ modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
else
modulating_carrier <= 1'b0; // yet unused
// This one is always on, so that we can watch the carrier.
assign pwr_oe3 = 1'b0;
-assign dbg = modulating_carrier;
-//reg dbg;
-//always @(ssp_dout)
-// dbg <= ssp_dout;
+assign dbg = ssp_din;
endmodule