//by marshmellow
//biphase decode
//take 01 or 10 = 0 and 11 or 00 = 1
-//takes 1 argument "offset" default = 0 if 1 it will shift the decode by one bit
+//takes 2 arguments "offset" default = 0 if 1 it will shift the decode by one bit
+// and "invert" default = 0 if 1 it will invert output
// since it is not like manchester and doesn't have an incorrect bit pattern we
// cannot determine if our decode is correct or if it should be shifted by one bit
// the argument offset allows us to manually shift if the output is incorrect
int errCnt=0;
size_t size=0;
int offset=0;
+ int invert=0;
int high=0, low=0;
- sscanf(Cmd, "%i", &offset);
+ sscanf(Cmd, "%i %i", &offset, &invert);
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
//get graphbuffer & high and low
for (;i<DemodBufferLen;++i){
return 0;
}
size=i;
- errCnt=BiphaseRawDecode(BitStream, &size, offset);
+ errCnt=BiphaseRawDecode(BitStream, &size, offset, invert);
if (errCnt>=20){
PrintAndLog("Too many errors attempting to decode: %d",errCnt);
return 0;
DemodBufferLen=64;
return 1;
}
+
+
+//by marshmellow
+//AWID Prox demod - FSK RF/50 with preamble of 00000001 (always a 96 bit data stream)
+//print full AWID Prox ID and some bit format details if found
+int CmdFSKdemodAWID(const char *Cmd)
+{
+
+ int verbose=1;
+ sscanf(Cmd, "%i", &verbose);
+
+ //raw fsk demod no manchester decoding no start bit finding just get binary from wave
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t size = getFromGraphBuf(BitStream);
+
+ //get binary from fsk wave
+ int idx = AWIDdemodFSK(BitStream, size);
+ if (idx<=0){
+ if (verbose){
+ if (idx == -1)
+ PrintAndLog("Error: not enough samples");
+ else if (idx == -2)
+ PrintAndLog("Error: only noise found - no waves");
+ else if (idx == -3)
+ PrintAndLog("Error: problem during FSK demod");
+ // else if (idx == -3)
+ // PrintAndLog("Error: thought we had a tag but the parity failed");
+ else if (idx == -4)
+ PrintAndLog("Error: AWID preamble not found");
+ }
+ return 0;
+ }
+
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+ // -----------------------------------------------------------------------------
+ // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+ // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+ // |---26 bit---| |-----117----||-------------142-------------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ //get raw ID before removing parities
+ uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32);
+ uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32);
+ uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32);
+ size = removeParity(BitStream, idx+8, 4, 1, 88);
+ if (size != 66){
+ if (verbose) PrintAndLog("Error: at parity check-tag size does not match AWID format");
+ return 0;
+ }
+ // ok valid card found!
+
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+ // -----------------------------------------------------------------------------
+ // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+ // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ // |26 bit| |-117--| |-----142------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ uint32_t code1 = 0;
+ uint32_t code2 = 0;
+ uint8_t fmtLen = bytebits_to_byte(BitStream,8);
+ if (fmtLen==26){
+ fc = bytebits_to_byte(BitStream+9, 8);
+ cardnum = bytebits_to_byte(BitStream+17, 16);
+ code1 = bytebits_to_byte(BitStream+8,fmtLen);
+ PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+ } else {
+ cardnum = bytebits_to_byte(BitStream+8+(fmtLen-17), 16);
+ if (fmtLen>32){
+ code1 = bytebits_to_byte(BitStream+8,fmtLen-32);
+ code2 = bytebits_to_byte(BitStream+8+(fmtLen-32),32);
+ PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ } else{
+ code1 = bytebits_to_byte(BitStream+8,fmtLen);
+ PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
+ }
+ }
+
+ //todo - convert hi2, hi, lo to demodbuffer for future sim/clone commands
+
+ return 1;
+}
+
+//by marshmellow
+//Pyramid Prox demod - FSK RF/50 with preamble of 0000000000000001 (always a 128 bit data stream)
+//print full Farpointe Data/Pyramid Prox ID and some bit format details if found
+int CmdFSKdemodPyramid(const char *Cmd)
+{
+
+ int verbose=1;
+ sscanf(Cmd, "%i", &verbose);
+
+ //raw fsk demod no manchester decoding no start bit finding just get binary from wave
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t size = getFromGraphBuf(BitStream);
+
+ //get binary from fsk wave
+ int idx = PyramiddemodFSK(BitStream, size);
+ if (idx < 0){
+ if (verbose){
+ if (idx == -5)
+ PrintAndLog("Error: not enough samples");
+ else if (idx == -1)
+ PrintAndLog("Error: only noise found - no waves");
+ else if (idx == -2)
+ PrintAndLog("Error: problem during FSK demod");
+ //else if (idx == -3)
+ // PrintAndLog("Error: thought we had a tag but the parity failed");
+ else if (idx == -4)
+ PrintAndLog("Error: AWID preamble not found");
+ }
+ PrintAndLog("idx: %d",idx);
+ return 0;
+ }
+ //PrintAndLog("DEBUG: idx: %d",idx);
+
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3
+ // -----------------------------------------------------------------------------
+ // 0000000 0 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1
+ // premable xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o
+
+ // 64 70 80 90 100 110 120
+ // | | | | | | |
+ // 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7
+ // -----------------------------------------------------------------------------
+ // 0000000 1 0000000 1 0000000 1 0110111 0 0011000 1 0000001 0 0001100 1 1001010 0
+ // xxxxxxx o xxxxxxx o xxxxxxx o xswffff o ffffccc o ccccccc o ccccccw o ppppppp o
+ // |---115---||---------71---------|
+ // s = format start bit, o = odd parity of last 7 bits
+ // f = facility code, c = card number
+ // w = wiegand parity, x = extra space for other formats
+ // p = unknown checksum
+ // (26 bit format shown)
+
+ //get raw ID before removing parities
+ uint32_t rawLo = bytebits_to_byte(BitStream+idx+96,32);
+ uint32_t rawHi = bytebits_to_byte(BitStream+idx+64,32);
+ uint32_t rawHi2 = bytebits_to_byte(BitStream+idx+32,32);
+ uint32_t rawHi3 = bytebits_to_byte(BitStream+idx,32);
+ size = removeParity(BitStream, idx+8, 8, 1, 120);
+ if (size != 105){
+ if (verbose) PrintAndLog("Error: at parity check-tag size does not match Pyramid format, SIZE: %d, IDX: %d, hi3: %x",size, idx, rawHi3);
+ return 0;
+ }
+
+ // ok valid card found!
+
+ // Index map
+ // 0 10 20 30 40 50 60 70
+ // | | | | | | | |
+ // 01234567890123456789012345678901234567890123456789012345678901234567890
+ // -----------------------------------------------------------------------
+ // 00000000000000000000000000000000000000000000000000000000000000000000000
+ // xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+
+ // 71 80 90 100
+ // | | | |
+ // 1 2 34567890 1234567890123456 7 8901234
+ // ---------------------------------------
+ // 1 1 01110011 0000000001000110 0 1001010
+ // s w ffffffff cccccccccccccccc w ppppppp
+ // |--115-| |------71------|
+ // s = format start bit, o = odd parity of last 7 bits
+ // f = facility code, c = card number
+ // w = wiegand parity, x = extra space for other formats
+ // p = unknown checksum
+ // (26 bit format shown)
+
+ //find start bit to get fmtLen
+ idx = 0;
+ int j;
+ for (j=0; j<size; j++){
+ if(BitStream[idx+j]) break;
+ }
+ uint8_t fmtLen = size-j-8;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ uint32_t code1 = 0;
+ //uint32_t code2 = 0;
+ if (fmtLen==26){
+ fc = bytebits_to_byte(BitStream+73, 8);
+ cardnum = bytebits_to_byte(BitStream+81, 16);
+ code1 = bytebits_to_byte(BitStream+72,fmtLen);
+ PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %x%08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi3, rawHi2, rawHi, rawLo);
+ } else if (fmtLen==45){
+ fmtLen=42; //end = 10 bits not 7 like 26 bit fmt
+ fc = bytebits_to_byte(BitStream+53, 10);
+ cardnum = bytebits_to_byte(BitStream+63, 32);
+ PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Raw: %x%08x%08x%08x", fmtLen, fc, cardnum, rawHi3, rawHi2, rawHi, rawLo);
+ } else {
+ cardnum = bytebits_to_byte(BitStream+81, 16);
+ if (fmtLen>32){
+ //code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen-32);
+ //code2 = bytebits_to_byte(BitStream+(size-32),32);
+ PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d), Raw: %x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
+ } else{
+ //code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen);
+ PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d), Raw: %x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
+ }
+ }
+ //todo - convert hi2, hi, lo to demodbuffer for future sim/clone commands
+
+ return 1;
+}
+
int CmdFSKdemod(const char *Cmd) //old CmdFSKdemod needs updating
{
static const int LowTone[] = {
return 0;
}
+int CmdFSKfcDetect(const char *Cmd)
+{
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t size = getFromGraphBuf(BitStream);
+
+
+ uint32_t ans = countFC(BitStream, size);
+ int fc1, fc2, rf1;
+ fc1 = (ans >> 8) & 0xFF;
+ fc2 = ans & 0xFF;
+ rf1 = (ans >>16) & 0xFF;
+ PrintAndLog("Detected Field Clocks: FC/%d, FC/%d - Bit Clock: RF/%d", fc1, fc2, rf1);
+ return 1;
+}
+
int CmdDetectNRZpskClockRate(const char *Cmd)
{
GetNRZpskClock("",0,0);
{"help", CmdHelp, 1, "This help"},
{"amp", CmdAmp, 1, "Amplify peaks"},
{"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"},
- {"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional[clock will try Auto-detect])"},
- {"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output binary (args optional[clock will try Auto-detect])"},
+ {"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional)"},
+ {"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output bin (args optional)"},
{"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
- {"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] Biphase decode binary stream already in graph buffer (offset = bit to start decode from)"},
+ {"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] [invert<0|1>] Biphase decode bin stream in demod buffer (offset = 0|1 bits to shift the decode start)"},
{"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
{"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "Detect ASK clock rate"},
{"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
- {"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK using raw"},
- {"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox FSK using raw"},
- {"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to binary (clock = 50)(invert = 1|0)(rchigh = 10)(rclow=8)"},
+ {"fskawiddemod", CmdFSKdemodAWID, 1, "Demodulate graph window as an AWID FSK tag using raw"},
+ {"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"},
+ {"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK tag using raw"},
+ {"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox tag FSK using raw"},
+ {"fskpyramiddemod",CmdFSKdemodPyramid,1, "Demodulate graph window as a Pyramid FSK tag using raw"},
+ {"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to bin (clock = 50)(invert = 1|0)(rchigh = 10)(rclow=8)"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
{"hide", CmdHide, 1, "Hide graph window"},
{"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
{"pskclean", CmdPskClean, 1, "Attempt to clean psk wave"},
{"pskdetectclock",CmdDetectNRZpskClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
- {"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk indala tags and output ID binary & hex (args optional[clock will try Auto-detect])"},
- {"psknrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk or nrz tags and output binary (args optional[clock will try Auto-detect])"},
+ {"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk indala tags and output ID binary & hex (args optional)"},
+ {"psknrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk or nrz tags and output binary (args optional)"},
{"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"},
{"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
-// Low frequency commands
+// Low frequency demod/decode commands
//-----------------------------------------------------------------------------
#include <stdlib.h>
#include <string.h>
#include "lfdemod.h"
+//by marshmellow
+//get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
+int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
+{
+ *high=0;
+ *low=255;
+ // get high and low thresholds
+ for (int i=0; i < size; i++){
+ if (BitStream[i] > *high) *high = BitStream[i];
+ if (BitStream[i] < *low) *low = BitStream[i];
+ }
+ if (*high < 123) return -1; // just noise
+ *high = (int)(((*high-128)*(((float)fuzzHi)/100))+128);
+ *low = (int)(((*low-128)*(((float)fuzzLo)/100))+128);
+ return 1;
+}
+
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
uint64_t Em410xDecode(uint8_t *BitStream, size_t size)
int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
{
int i;
- int high = 0, low = 255;
*clk=DetectASKClock(BinStream, *size, *clk); //clock default
if (*clk<8) *clk =64;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
- for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values
- {
- if (BinStream[i] > high)
- high = BinStream[i];
- else if (BinStream[i] < low)
- low = BinStream[i];
- }
- if ((high < 129) ){ //throw away static (anything < 1 graph)
- //PrintAndLog("no data found");
- return -2;
- }
- //25% fuzz in case highs and lows aren't clipped [marshmellow]
- high=(int)(((high-128)*.75)+128);
- low= (int)(((low-128)*.75)+128);
+ // 25% fuzz in case highs and lows aren't clipped [marshmellow]
+ int high, low, ans;
+ ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
+ if (ans<1) return -2; //just noise
- //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
+ // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
uint32_t bestStart = *size;
uint32_t bestErrCnt = (*size/1000);
uint32_t maxErr = (*size/1000);
- //PrintAndLog("DEBUG - lastbit - %d",lastBit);
- //loop to find first wave that works
+ // PrintAndLog("DEBUG - lastbit - %d",lastBit);
+ // loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){
lastBit=iii-*clk;
errCnt=0;
- //loop through to see if this start location works
+ // loop through to see if this start location works
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit+=*clk;
//by marshmellow
//take 01 or 10 = 0 and 11 or 00 = 1
-int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset)
+int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
{
uint8_t bitnum=0;
uint32_t errCnt =0;
- uint32_t i=1;
+ uint32_t i;
i=offset;
- for (;i<*size-2;i+=2){
+ for (;i<*size-2; i+=2){
if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
- BitStream[bitnum++]=1;
+ BitStream[bitnum++]=1^invert;
} else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
- BitStream[bitnum++]=0;
+ BitStream[bitnum++]=invert;
} else {
BitStream[bitnum++]=77;
errCnt++;
{
uint32_t i;
// int invert=0; //invert default
- int high = 0, low = 255;
+ int clk2 = *clk;
*clk=DetectASKClock(BinStream, *size, *clk); //clock default
- uint8_t BitStream[502] = {0};
+ //uint8_t BitStream[502] = {0};
+ //HACK: if clock not detected correctly - default
if (*clk<8) *clk =64;
- if (*clk<32) *clk=32;
+ if (*clk<32 && clk2==0) *clk=32;
if (*invert != 0 && *invert != 1) *invert =0;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
- for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values
- {
- if (BinStream[i] > high)
- high = BinStream[i];
- else if (BinStream[i] < low)
- low = BinStream[i];
- }
- if ((high < 129)){ //throw away static high has to be more than 0 on graph.
- //noise <= -10 here
- // PrintAndLog("no data found");
- return -2;
- }
//25% fuzz in case highs and lows aren't clipped [marshmellow]
- high=(int)(((high-128)*.75)+128);
- low= (int)(((low-128)*.75)+128);
+ int high, low, ans;
+ ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
+ if (ans<1) return -2; //just noise
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint8_t errCnt =0;
uint32_t bestStart = *size;
uint32_t bestErrCnt = (*size/1000);
+ uint32_t maxErr = bestErrCnt;
uint8_t midBit=0;
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
lastBit+=*clk;
- BitStream[bitnum] = *invert;
- bitnum++;
+ //BitStream[bitnum] = *invert;
+ //bitnum++;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
- BitStream[bitnum] = 1- *invert;
- bitnum++;
+ //BitStream[bitnum] = 1- *invert;
+ //bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
- BitStream[bitnum]= 1- *invert;
- bitnum++;
+ //BitStream[bitnum]= 1- *invert;
+ //bitnum++;
} else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
- BitStream[bitnum]= *invert;
- bitnum++;
+ //BitStream[bitnum]= *invert;
+ //bitnum++;
} else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
//no mid bar found
midBit=1;
- BitStream[bitnum]= BitStream[bitnum-1];
- bitnum++;
+ //BitStream[bitnum]= BitStream[bitnum-1];
+ //bitnum++;
} else {
//mid value found or no bar supposed to be here
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
- if (bitnum > 0){
- BitStream[bitnum]=77;
- bitnum++;
- }
+ //if (bitnum > 0){
+ // BitStream[bitnum]=77;
+ // bitnum++;
+ //}
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over
errCnt=0;
- bitnum=0;//start over
+ // bitnum=0;//start over
break;
}
}
}
- if (bitnum>500) break;
+ if ((i-iii)>(500 * *clk)) break; //got enough bits
}
//we got more than 64 good bits and not all errors
- if ((bitnum > (64+errCnt)) && (errCnt<(*size/1000))) {
+ if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<(*size/1000))) {
//possible good read
- if (errCnt==0) break; //great read - finish
- if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
+ if (errCnt==0){
+ bestStart=iii;
+ bestErrCnt=errCnt;
+ break; //great read - finish
+ }
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
- if (iii>=gLen){ //exhausted test
- //if there was a ok test go back to that one and re-run the best run (then dump after that run)
- if (bestErrCnt < (*size/1000)) iii=bestStart;
- }
}
- if (bitnum>16){
- for (i=0; i < bitnum; ++i){
- BinStream[i]=BitStream[i];
+ if (bestErrCnt<maxErr){
+ //best run is good enough - set to best run and overwrite BinStream
+ iii=bestStart;
+ lastBit = bestStart - *clk;
+ bitnum=0;
+ for (i = iii; i < *size; ++i) {
+ if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
+ lastBit += *clk;
+ BinStream[bitnum] = *invert;
+ bitnum++;
+ midBit=0;
+ } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
+ //low found and we are expecting a bar
+ lastBit+=*clk;
+ BinStream[bitnum] = 1-*invert;
+ bitnum++;
+ midBit=0;
+ } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
+ //mid bar?
+ midBit=1;
+ BinStream[bitnum] = 1 - *invert;
+ bitnum++;
+ } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
+ //mid bar?
+ midBit=1;
+ BinStream[bitnum] = *invert;
+ bitnum++;
+ } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
+ //no mid bar found
+ midBit=1;
+ if (bitnum!=0) BinStream[bitnum] = BinStream[bitnum-1];
+ bitnum++;
+
+ } else {
+ //mid value found or no bar supposed to be here
+ if ((i-lastBit)>(*clk+tol)){
+ //should have hit a high or low based on clock!!
+
+ //debug
+ //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
+ if (bitnum > 0){
+ BinStream[bitnum]=77;
+ bitnum++;
+ }
+
+ lastBit+=*clk;//skip over error
+ }
+ }
+ if (bitnum >=400) break;
}
*size=bitnum;
- } else return -1;
- return errCnt;
+ } else{
+ *invert=bestStart;
+ *clk=iii;
+ return -1;
+ }
+ return bestErrCnt;
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
return 0;
}
+// by marshmellow
+// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
+// returns 1 if passed
+int parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
+{
+ uint8_t ans = 0;
+ for (int i = 0; i < bitLen; i++){
+ ans ^= ((bits >> i) & 1);
+ }
+ //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
+ return (ans == pType);
+}
+
+// by marshmellow
+// takes a array of binary values, start position, length of bits per parity (includes parity bit),
+// Parity Type (1 for odd 0 for even), and binary Length (length to run)
+size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
+{
+ uint32_t parityWd = 0;
+ size_t j = 0, bitCnt = 0;
+ for (int word = 0; word < (bLen); word+=pLen){
+ for (int bit=0; bit < pLen; bit++){
+ parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
+ BitStream[j++] = (BitStream[startIdx+word+bit]);
+ }
+ j--;
+ // if parity fails then return 0
+ if (parityTest(parityWd, pLen, pType) == 0) return -1;
+ bitCnt+=(pLen-1);
+ parityWd = 0;
+ }
+ // if we got here then all the parities passed
+ //return ID start index and size
+ return bitCnt;
+}
+
+// by marshmellow
+// FSK Demod then try to locate an AWID ID
+int AWIDdemodFSK(uint8_t *dest, size_t size)
+{
+ static const uint8_t THRESHOLD = 123;
+ uint32_t idx=0;
+ //make sure buffer has data
+ if (size < 96*50) return -1;
+ //test samples are not just noise
+ uint8_t justNoise = 1;
+ for(idx=0; idx < size && justNoise ;idx++){
+ justNoise = dest[idx] < THRESHOLD;
+ }
+ if(justNoise) return -2;
+
+ // FSK demodulator
+ size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert
+ if (size < 96) return -3; //did we get a good demod?
+
+ uint8_t mask[] = {0,0,0,0,0,0,0,1};
+ for( idx=0; idx < (size - 96); idx++) {
+ if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
+ // frame marker found
+ //return ID start index and size
+ return idx;
+ //size should always be 96
+ }
+ }
+ //never found mask
+ return -4;
+}
+
+// by marshmellow
+// FSK Demod then try to locate an Farpointe Data (pyramid) ID
+int PyramiddemodFSK(uint8_t *dest, size_t size)
+{
+ static const uint8_t THRESHOLD = 123;
+ uint32_t idx=0;
+ // size_t size2 = size;
+ //make sure buffer has data
+ if (size < 128*50) return -5;
+ //test samples are not just noise
+ uint8_t justNoise = 1;
+ for(idx=0; idx < size && justNoise ;idx++){
+ justNoise = dest[idx] < THRESHOLD;
+ }
+ if(justNoise) return -1;
+
+ // FSK demodulator
+ size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert
+ if (size < 128) return -2; //did we get a good demod?
+
+ uint8_t mask[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
+ for( idx=0; idx < (size - 128); idx++) {
+ if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
+ // frame marker found
+ return idx;
+ }
+ }
+ //never found mask
+ return -4;
+}
+
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
// maybe somehow adjust peak trimming value based on samples to fix?
int DetectASKClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
- int peak=0;
- int low=255;
- int clk[]={16,32,40,50,64,100,128,256};
+ int clk[]={8,16,32,40,50,64,100,128,256};
int loopCnt = 256; //don't need to loop through entire array...
if (size<loopCnt) loopCnt = size;
//if we already have a valid clock quit
+
for (;i<8;++i)
if (clk[i] == clock) return clock;
//get high and low peak
- for (i=0; i < loopCnt; ++i){
- if(dest[i] > peak){
- peak = dest[i];
- }
- if(dest[i] < low){
- low = dest[i];
- }
- }
- peak=(int)(((peak-128)*.75)+128);
- low= (int)(((low-128)*.75)+128);
+ int peak, low;
+ getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+
int ii;
int clkCnt;
int tol = 0;
- int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
+ int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
int errCnt=0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 6; ++clkCnt){
}
int iii=0;
int best=0;
- for (iii=0; iii<7;++iii){
+ for (iii=0; iii<8;++iii){
if (bestErr[iii]<bestErr[best]){
// current best bit to error ratio vs new bit to error ratio
if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
- int peak=0;
- int low=255;
int clk[]={16,32,40,50,64,100,128,256};
int loopCnt = 2048; //don't need to loop through entire array...
if (size<loopCnt) loopCnt = size;
if (clk[i] == clock) return clock;
//get high and low peak
- for (i=0; i < loopCnt; ++i){
- if(dest[i] > peak){
- peak = dest[i];
- }
- if(dest[i] < low){
- low = dest[i];
- }
- }
- peak=(int)(((peak-128)*.75)+128);
- low= (int)(((low-128)*.75)+128);
+ int peak, low;
+ getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+
//PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
int ii;
uint8_t clkCnt;
int peaksdet[]={0,0,0,0,0,0,0,0,0};
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 6; ++clkCnt){
- if (clk[clkCnt] == 32){
+ if (clk[clkCnt] >= 32){
tol=1;
}else{
tol=0;
}
//by marshmellow (attempt to get rid of high immediately after a low)
-void pskCleanWave(uint8_t *bitStream, size_t size)
+void pskCleanWave(uint8_t *BitStream, size_t size)
{
int i;
- int low=255;
- int high=0;
int gap = 4;
- // int loopMax = 2048;
- int newLow=0;
+ int newLow=0;
int newHigh=0;
- for (i=0; i < size; ++i){
- if (bitStream[i] < low) low=bitStream[i];
- if (bitStream[i] > high) high=bitStream[i];
- }
- high = (int)(((high-128)*.80)+128);
- low = (int)(((low-128)*.90)+128);
- //low = (uint8_t)(((int)(low)-128)*.80)+128;
- for (i=0; i < size; ++i){
+ int high, low;
+ getHiLo(BitStream, size, &high, &low, 80, 90);
+
+ for (i=0; i < size; ++i){
if (newLow == 1){
- bitStream[i]=low+8;
- gap--;
+ if (BitStream[i]>low){
+ BitStream[i]=low+8;
+ gap--;
+ }
if (gap == 0){
newLow=0;
gap=4;
}
}else if (newHigh == 1){
- bitStream[i]=high-8;
- gap--;
+ if (BitStream[i]<high){
+ BitStream[i]=high-8;
+ gap--;
+ }
if (gap == 0){
newHigh=0;
gap=4;
}
}
- if (bitStream[i] <= low) newLow=1;
- if (bitStream[i] >= high) newHigh=1;
+ if (BitStream[i] <= low) newLow=1;
+ if (BitStream[i] >= high) newHigh=1;
}
return;
}
}
-//by marshmellow - demodulate PSK wave or NRZ wave (both similar enough)
+//by marshmellow - demodulate PSK1 wave or NRZ wave (both similar enough)
//peaks switch bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
{
int clk2 = DetectpskNRZClock(dest, *size, *clk);
*clk=clk2;
uint32_t i;
- uint8_t high=0, low=255;
+ int high, low, ans;
+ ans = getHiLo(dest, 1260, &high, &low, 75, 80); //25% fuzz on high 20% fuzz on low
+ if (ans<1) return -2; //just noise
uint32_t gLen = *size;
- if (gLen > 1280) gLen=1280;
- // get high
- for (i=0; i < gLen; ++i){
- if (dest[i] > high) high = dest[i];
- if (dest[i] < low) low = dest[i];
- }
- //fudge high/low bars by 25%
- high = (uint8_t)((((int)(high)-128)*.75)+128);
- low = (uint8_t)((((int)(low)-128)*.80)+128);
-
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
- uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+ uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk==32) tol = 2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint8_t errCnt =0;
bestErrCnt = errCnt;
break; //great read - finish
}
- if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
if (errCnt < bestErrCnt){ //set this as new best run
bestErrCnt = errCnt;
bestStart = iii;
return errCnt;
}
+
+//by marshmellow
+//countFC is to detect the field clock and bit clock rates.
+//for fsk or ask not psk or nrz
+uint32_t countFC(uint8_t *BitStream, size_t size)
+{
+ // get high/low thresholds
+ int high, low;
+ getHiLo(BitStream,10, &high, &low, 100, 100);
+ // get zero crossing
+ uint8_t zeroC = (high-low)/2+low;
+ uint8_t clk[]={8,16,32,40,50,64,100,128};
+ uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
+ uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0};
+ // uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t fcLensFnd = 0;
+ uint8_t rfLensFnd = 0;
+ uint8_t lastBit=0;
+ uint8_t curBit=0;
+ uint8_t lastFCcnt=0;
+ uint32_t errCnt=0;
+ uint32_t fcCounter = 0;
+ uint32_t rfCounter = 0;
+ uint8_t firstBitFnd = 0;
+ int i;
+
+ // prime i to first up transition
+ for (i = 1; i < size; i++)
+ if (BitStream[i]>=zeroC && BitStream[i-1]<zeroC)
+ break;
+
+ for (; i < size; i++){
+ curBit = BitStream[i];
+ lastBit = BitStream[i-1];
+ if (lastBit<zeroC && curBit >= zeroC){
+ // new up transition
+ fcCounter++;
+ rfCounter++;
+ if (fcCounter > 3 && fcCounter < 256){
+ //we've counted enough that it could be a valid field clock
+
+ //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
+ if (lastFCcnt==5 && fcCounter==9) fcCounter--;
+ //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
+ if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
+
+ //look for bit clock (rf/xx)
+ if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
+ //not the same size as the last wave - start of new bit sequence
+
+ if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
+ for (int ii=0; ii<10; ii++){
+ if (rfLens[ii]==rfCounter){
+ //rfCnts[ii]++;
+ rfCounter=0;
+ break;
+ }
+ }
+ if (rfCounter>0 && rfLensFnd<10){
+ //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
+ //rfCnts[rfLensFnd]++;
+ rfLens[rfLensFnd++]=rfCounter;
+ }
+ } else {
+ //PrintAndLog("DEBUG i: %d",i);
+ firstBitFnd++;
+ }
+ rfCounter=0;
+ lastFCcnt=fcCounter;
+ }
+
+ // save last field clock count (fc/xx)
+ // find which fcLens to save it to:
+ for (int ii=0; ii<10; ii++){
+ if (fcLens[ii]==fcCounter){
+ fcCnts[ii]++;
+ fcCounter=0;
+ break;
+ }
+ }
+ if (fcCounter>0 && fcLensFnd<10){
+ //add new fc length
+ //PrintAndLog("FCCntr %d",fcCounter);
+ fcCnts[fcLensFnd]++;
+ fcLens[fcLensFnd++]=fcCounter;
+ }
+ } else{
+ // hmmm this should not happen often - count them
+ errCnt++;
+ }
+ // reset counter
+ fcCounter=0;
+ } else {
+ // count sample
+ fcCounter++;
+ rfCounter++;
+ }
+ }
+ // if too many errors return errors as negative number (IS THIS NEEDED?)
+ if (errCnt>100) return -1*errCnt;
+
+ uint8_t maxCnt1=0, best1=9, best2=9, best3=9, rfHighest=10, rfHighest2=10, rfHighest3=10;
+
+ // go through fclens and find which ones are bigest 2
+ for (i=0; i<10; i++){
+ // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d, RF %d",fcLens[i],fcCnts[i],errCnt,rfLens[i]);
+
+ // get the 3 best FC values
+ if (fcCnts[i]>maxCnt1) {
+ best3=best2;
+ best2=best1;
+ maxCnt1=fcCnts[i];
+ best1=i;
+ } else if(fcCnts[i]>fcCnts[best2]){
+ best3=best2;
+ best2=i;
+ } else if(fcCnts[i]>fcCnts[best3]){
+ best3=i;
+ }
+ //get highest 2 RF values (might need to get more values to compare or compare all?)
+ if (rfLens[i]>rfLens[rfHighest]){
+ rfHighest3=rfHighest2;
+ rfHighest2=rfHighest;
+ rfHighest=i;
+ } else if(rfLens[i]>rfLens[rfHighest2]){
+ rfHighest3=rfHighest2;
+ rfHighest2=i;
+ } else if(rfLens[i]>rfLens[rfHighest3]){
+ rfHighest3=i;
+ }
+ }
+
+ // set allowed clock remainder tolerance to be 1 large field clock length
+ // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
+ int tol1 = (fcLens[best1]>fcLens[best2]) ? fcLens[best1] : fcLens[best2];
+
+ // loop to find the highest clock that has a remainder less than the tolerance
+ // compare samples counted divided by
+ int ii=7;
+ for (; ii>=0; ii--){
+ if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
+ if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
+ if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
+ break;
+ }
+ }
+ }
+ }
+
+ if (ii<0) ii=7; // oops we went too far
+
+ // TODO: take top 3 answers and compare to known Field clocks to get top 2
+
+ uint32_t fcs=0;
+ // PrintAndLog("DEBUG: Best %d best2 %d best3 %d, clk %d, clk2 %d",fcLens[best1],fcLens[best2],fcLens[best3],clk[i],clk[ii]);
+ //
+
+ if (fcLens[best1]>fcLens[best2]){
+ fcs = (((uint32_t)clk[ii])<<16) | (((uint32_t)fcLens[best1])<<8) | ((fcLens[best2]));
+ } else {
+ fcs = (((uint32_t)clk[ii])<<16) | (((uint32_t)fcLens[best2])<<8) | ((fcLens[best1]));
+ }
+
+ return fcs;
+}