legic_prng.c \
iclass.c \
BigBuf.c \
- cipher.c \
- cipherutils.c\
+ optimized_cipher.c
# stdint.h provided locally until GCC 4.5 becomes C99 compliant
APP_CFLAGS += -I.
+++ /dev/null
-/*****************************************************************************
- * WARNING
- *
- * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
- *
- * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
- * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
- * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
- *
- * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
- *
- *****************************************************************************
- *
- * This file is part of loclass. It is a reconstructon of the cipher engine
- * used in iClass, and RFID techology.
- *
- * The implementation is based on the work performed by
- * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
- * Milosch Meriac in the paper "Dismantling IClass".
- *
- * Copyright (C) 2014 Martin Holst Swende
- *
- * This is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as published
- * by the Free Software Foundation.
- *
- * This file is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with loclass. If not, see <http://www.gnu.org/licenses/>.
- *
- *
- *
- ****************************************************************************/
-
-
-#include "cipher.h"
-#include "cipherutils.h"
-#include <stdlib.h>
-#include <string.h>
-#include <stdbool.h>
-#include <stdint.h>
-#ifndef ON_DEVICE
-#include "fileutils.h"
-#endif
-
-
-/**
-* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
-* consisting of the following four components:
-* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
-* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
-* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
-* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
-**/
-typedef struct {
- uint8_t l;
- uint8_t r;
- uint8_t b;
- uint16_t t;
-} State;
-
-/**
-* Definition 2. The feedback function for the top register T : F 16/2 → F 2
-* is defined as
-* T (x 0 x 1 . . . . . . x 15 ) = x 0 ⊕ x 1 ⊕ x 5 ⊕ x 7 ⊕ x 10 ⊕ x 11 ⊕ x 14 ⊕ x 15 .
-**/
-bool T(State state)
-{
- bool x0 = state.t & 0x8000;
- bool x1 = state.t & 0x4000;
- bool x5 = state.t & 0x0400;
- bool x7 = state.t & 0x0100;
- bool x10 = state.t & 0x0020;
- bool x11 = state.t & 0x0010;
- bool x14 = state.t & 0x0002;
- bool x15 = state.t & 0x0001;
- return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15;
-}
-/**
-* Similarly, the feedback function for the bottom register B : F 8/2 → F 2 is defined as
-* B(x 0 x 1 . . . x 7 ) = x 1 ⊕ x 2 ⊕ x 3 ⊕ x 7 .
-**/
-bool B(State state)
-{
- bool x1 = state.b & 0x40;
- bool x2 = state.b & 0x20;
- bool x3 = state.b & 0x10;
- bool x7 = state.b & 0x01;
-
- return x1 ^ x2 ^ x3 ^ x7;
-
-}
-
-
-/**
-* Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
-* F 8/2 → F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
-* z 0 = (r 0 ∧ r 2 ) ⊕ (r 1 ∧ r 3 ) ⊕ (r 2 ∨ r 4 )
-* z 1 = (r 0 ∨ r 2 ) ⊕ (r 5 ∨ r 7 ) ⊕ r 1 ⊕ r 6 ⊕ x ⊕ y
-* z 2 = (r 3 ∧ r 5 ) ⊕ (r 4 ∧ r 6 ) ⊕ r 7 ⊕ x
-**/
-uint8_t _select(bool x, bool y, uint8_t r)
-{
- bool r0 = r >> 7 & 0x1;
- bool r1 = r >> 6 & 0x1;
- bool r2 = r >> 5 & 0x1;
- bool r3 = r >> 4 & 0x1;
- bool r4 = r >> 3 & 0x1;
- bool r5 = r >> 2 & 0x1;
- bool r6 = r >> 1 & 0x1;
- bool r7 = r & 0x1;
-
- bool z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4);
- bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y;
- bool z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x;
-
- // The three bitz z0.. z1 are packed into a uint8_t:
- // 00000ZZZ
- //Return value is a uint8_t
- uint8_t retval = 0;
- retval |= (z0 << 2) & 4;
- retval |= (z1 << 1) & 2;
- retval |= z2 & 1;
-
- // Return value 0 <= retval <= 7
- return retval;
-}
-
-/**
-* Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k ∈ (F 82 ) 8
-* be a key and y ∈ F 2 be the input bit. Then, the successor cipher state s ′ =
-* l ′ , r ′ , t ′ , b ′ is defined as
-* t ′ := (T (t) ⊕ r 0 ⊕ r 4 )t 0 . . . t 14 l ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l ⊞ r
-* b ′ := (B(b) ⊕ r 7 )b 0 . . . b 6 r ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l
-*
-* @param s - state
-* @param k - array containing 8 bytes
-**/
-State successor(uint8_t* k, State s, bool y)
-{
- bool r0 = s.r >> 7 & 0x1;
- bool r4 = s.r >> 3 & 0x1;
- bool r7 = s.r & 0x1;
-
- State successor = {0,0,0,0};
-
- successor.t = s.t >> 1;
- successor.t |= (T(s) ^ r0 ^ r4) << 15;
-
- successor.b = s.b >> 1;
- successor.b |= (B(s) ^ r7) << 7;
-
- bool Tt = T(s);
-
- successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF;
- successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF;
-
- return successor;
-}
-/**
-* We define the successor function suc which takes a key k ∈ (F 82 ) 8 , a state s and
-* an input y ∈ F 2 and outputs the successor state s ′ . We overload the function suc
-* to multiple bit input x ∈ F n 2 which we define as
-* @param k - array containing 8 bytes
-**/
-State suc(uint8_t* k,State s, BitstreamIn *bitstream)
-{
- if(bitsLeft(bitstream) == 0)
- {
- return s;
- }
- bool lastbit = tailBit(bitstream);
- return successor(k,suc(k,s,bitstream), lastbit);
-}
-
-/**
-* Definition 5 (Output). Define the function output which takes an internal
-* state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
-* on multiple bits input which takes a key k, a state s and an input x ∈ F n 2 as
-* output(k, s, ǫ) = ǫ
-* output(k, s, x 0 . . . x n ) = output(s) · output(k, s ′ , x 1 . . . x n )
-* where s ′ = suc(k, s, x 0 ).
-**/
-void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out)
-{
- if(bitsLeft(in) == 0)
- {
- return;
- }
- pushBit(out,(s.r >> 2) & 1);
- //Remove first bit
- uint8_t x0 = headBit(in);
- State ss = successor(k,s,x0);
- output(k,ss,in, out);
-}
-
-/**
-* Definition 6 (Initial state). Define the function init which takes as input a
-* key k ∈ (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
-**/
-
-State init(uint8_t* k)
-{
- State s = {
- ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
- ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
- 0x4c, // b
- 0xE012 // t
- };
- return s;
-}
-void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out)
-{
- uint8_t zeroes_32[] = {0,0,0,0};
- BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0};
- State initState = suc(k,init(k),&input);
- output(k,initState,&input_32_zeroes,&out);
-}
-
-void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
-{
- uint8_t cc_nr[13] = { 0 };
- uint8_t div_key[8];
- //cc_nr=(uint8_t*)malloc(length+1);
-
- memcpy(cc_nr,cc_nr_p,12);
- memcpy(div_key,div_key_p,8);
-
- reverse_arraybytes(cc_nr,12);
- BitstreamIn bitstream = {cc_nr,12 * 8,0};
- uint8_t dest []= {0,0,0,0,0,0,0,0};
- BitstreamOut out = { dest, sizeof(dest)*8, 0 };
- MAC(div_key,bitstream, out);
- //The output MAC must also be reversed
- reverse_arraybytes(dest, sizeof(dest));
- memcpy(mac, dest, 4);
- //free(cc_nr);
- return;
-}
-#ifndef ON_DEVICE
-int testMAC()
-{
- prnlog("[+] Testing MAC calculation...");
-
- //From the "dismantling.IClass" paper:
- uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0};
- //From the paper
- uint8_t div_key[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9};
- uint8_t correct_MAC[4] = {0x1d,0x49,0xC9,0xDA};
-
- uint8_t calculated_mac[4] = {0};
- doMAC(cc_nr,div_key, calculated_mac);
-
- if(memcmp(calculated_mac, correct_MAC,4) == 0)
- {
- prnlog("[+] MAC calculation OK!");
-
- }else
- {
- prnlog("[+] FAILED: MAC calculation failed:");
- printarr(" Calculated_MAC", calculated_mac, 4);
- printarr(" Correct_MAC ", correct_MAC, 4);
- return 1;
- }
-
- return 0;
-}
-#endif
+++ /dev/null
-/*****************************************************************************
- * WARNING
- *
- * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
- *
- * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
- * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
- * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
- *
- * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
- *
- *****************************************************************************
- *
- * This file is part of loclass. It is a reconstructon of the cipher engine
- * used in iClass, and RFID techology.
- *
- * The implementation is based on the work performed by
- * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
- * Milosch Meriac in the paper "Dismantling IClass".
- *
- * Copyright (C) 2014 Martin Holst Swende
- *
- * This is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as published
- * by the Free Software Foundation.
- *
- * This file is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with loclass. If not, see <http://www.gnu.org/licenses/>.
- *
- *
- *
- ****************************************************************************/
-
-
-#ifndef CIPHER_H
-#define CIPHER_H
-#include <stdint.h>
-
-void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]);
-#ifndef ON_DEVICE
-int testMAC();
-#endif
-
-#endif // CIPHER_H
+++ /dev/null
-/*****************************************************************************
- * WARNING
- *
- * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
- *
- * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
- * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
- * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
- *
- * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
- *
- *****************************************************************************
- *
- * This file is part of loclass. It is a reconstructon of the cipher engine
- * used in iClass, and RFID techology.
- *
- * The implementation is based on the work performed by
- * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
- * Milosch Meriac in the paper "Dismantling IClass".
- *
- * Copyright (C) 2014 Martin Holst Swende
- *
- * This is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as published
- * by the Free Software Foundation.
- *
- * This file is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with loclass. If not, see <http://www.gnu.org/licenses/>.
- *
- *
- *
- ****************************************************************************/
-
-#include <stdint.h>
-#include <stdio.h>
-#include <string.h>
-#include "cipherutils.h"
-#ifndef ON_DEVICE
-#include "fileutils.h"
-#endif
-/**
- *
- * @brief Return and remove the first bit (x0) in the stream : <x0 x1 x2 x3 ... xn >
- * @param stream
- * @return
- */
-bool headBit( BitstreamIn *stream)
-{
- int bytepos = stream->position >> 3; // divide by 8
- int bitpos = (stream->position++) & 7; // mask out 00000111
- return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
-}
-/**
- * @brief Return and remove the last bit (xn) in the stream: <x0 x1 x2 ... xn>
- * @param stream
- * @return
- */
-bool tailBit( BitstreamIn *stream)
-{
- int bitpos = stream->numbits -1 - (stream->position++);
-
- int bytepos= bitpos >> 3;
- bitpos &= 7;
- return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
-}
-/**
- * @brief Pushes bit onto the stream
- * @param stream
- * @param bit
- */
-void pushBit( BitstreamOut* stream, bool bit)
-{
- int bytepos = stream->position >> 3; // divide by 8
- int bitpos = stream->position & 7;
- *(stream->buffer+bytepos) |= (bit & 1) << (7 - bitpos);
- stream->position++;
- stream->numbits++;
-}
-
-/**
- * @brief Pushes the lower six bits onto the stream
- * as b0 b1 b2 b3 b4 b5 b6
- * @param stream
- * @param bits
- */
-void push6bits( BitstreamOut* stream, uint8_t bits)
-{
- pushBit(stream, bits & 0x20);
- pushBit(stream, bits & 0x10);
- pushBit(stream, bits & 0x08);
- pushBit(stream, bits & 0x04);
- pushBit(stream, bits & 0x02);
- pushBit(stream, bits & 0x01);
-}
-
-/**
- * @brief bitsLeft
- * @param stream
- * @return number of bits left in stream
- */
-int bitsLeft( BitstreamIn *stream)
-{
- return stream->numbits - stream->position;
-}
-/**
- * @brief numBits
- * @param stream
- * @return Number of bits stored in stream
- */
-int numBits(BitstreamOut *stream)
-{
- return stream->numbits;
-}
-
-void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
-{
- while (len--) {
- dest[len] = (uint8_t) n;
- n >>= 8;
- }
-}
-
-uint64_t x_bytes_to_num(uint8_t* src, size_t len)
-{
- uint64_t num = 0;
- while (len--)
- {
- num = (num << 8) | (*src);
- src++;
- }
- return num;
-}
-uint8_t reversebytes(uint8_t b) {
- b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
- b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
- b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
- return b;
-}
-void reverse_arraybytes(uint8_t* arr, size_t len)
-{
- uint8_t i;
- for( i =0; i< len ; i++)
- {
- arr[i] = reversebytes(arr[i]);
- }
-}
-void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len)
-{
- uint8_t i;
- for( i =0; i< len ; i++)
- {
- dest[i] = reversebytes(arr[i]);
- }
-}
-#ifndef ON_DEVICE
-void printarr(char * name, uint8_t* arr, int len)
-{
- int cx;
- size_t outsize = 40+strlen(name)+len*5;
- char* output = malloc(outsize);
- memset(output, 0,outsize);
-
- int i ;
- cx = snprintf(output,outsize, "uint8_t %s[] = {", name);
- for(i =0 ; i< len ; i++)
- {
- cx += snprintf(output+cx,outsize-cx,"0x%02x,",*(arr+i));//5 bytes per byte
- }
- cx += snprintf(output+cx,outsize-cx,"};");
- prnlog(output);
-}
-
-void printvar(char * name, uint8_t* arr, int len)
-{
- int cx;
- size_t outsize = 40+strlen(name)+len*2;
- char* output = malloc(outsize);
- memset(output, 0,outsize);
-
- int i ;
- cx = snprintf(output,outsize,"%s = ", name);
- for(i =0 ; i< len ; i++)
- {
- cx += snprintf(output+cx,outsize-cx,"%02x",*(arr+i));//2 bytes per byte
- }
-
- prnlog(output);
-}
-
-void printarr_human_readable(char * title, uint8_t* arr, int len)
-{
- int cx;
- size_t outsize = 100+strlen(title)+len*4;
- char* output = malloc(outsize);
- memset(output, 0,outsize);
-
-
- int i;
- cx = snprintf(output,outsize, "\n\t%s\n", title);
- for(i =0 ; i< len ; i++)
- {
- if(i % 16 == 0)
- cx += snprintf(output+cx,outsize-cx,"\n%02x| ", i );
- cx += snprintf(output+cx,outsize-cx, "%02x ",*(arr+i));
- }
- prnlog(output);
- free(output);
-}
-#endif
-//-----------------------------
-// Code for testing below
-//-----------------------------
-
-#ifndef ON_DEVICE
-int testBitStream()
-{
- uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
- uint8_t output [] = {0,0,0,0,0,0,0,0};
- BitstreamIn in = { input, sizeof(input) * 8,0};
- BitstreamOut out ={ output, 0,0}
- ;
- while(bitsLeft(&in) > 0)
- {
- pushBit(&out, headBit(&in));
- //printf("Bits left: %d\n", bitsLeft(&in));
- //printf("Bits out: %d\n", numBits(&out));
- }
- if(memcmp(input, output, sizeof(input)) == 0)
- {
- prnlog(" Bitstream test 1 ok");
- }else
- {
- prnlog(" Bitstream test 1 failed");
- uint8_t i;
- for(i = 0 ; i < sizeof(input) ; i++)
- {
- prnlog(" IN %02x, OUT %02x", input[i], output[i]);
- }
- return 1;
- }
- return 0;
-}
-
-int testReversedBitstream()
-{
- uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
- uint8_t reverse [] = {0,0,0,0,0,0,0,0};
- uint8_t output [] = {0,0,0,0,0,0,0,0};
- BitstreamIn in = { input, sizeof(input) * 8,0};
- BitstreamOut out ={ output, 0,0};
- BitstreamIn reversed_in ={ reverse, sizeof(input)*8,0};
- BitstreamOut reversed_out ={ reverse,0 ,0};
-
- while(bitsLeft(&in) > 0)
- {
- pushBit(&reversed_out, tailBit(&in));
- }
- while(bitsLeft(&reversed_in) > 0)
- {
- pushBit(&out, tailBit(&reversed_in));
- }
- if(memcmp(input, output, sizeof(input)) == 0)
- {
- prnlog(" Bitstream test 2 ok");
- }else
- {
- prnlog(" Bitstream test 2 failed");
- uint8_t i;
- for(i = 0 ; i < sizeof(input) ; i++)
- {
- prnlog(" IN %02x, MIDDLE: %02x, OUT %02x", input[i],reverse[i], output[i]);
- }
- return 1;
- }
- return 0;
-}
-
-
-int testCipherUtils(void)
-{
- prnlog("[+] Testing some internals...");
- int retval = 0;
- retval |= testBitStream();
- retval |= testReversedBitstream();
- return retval;
-}
-#endif
+++ /dev/null
-/*****************************************************************************
- * WARNING
- *
- * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
- *
- * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
- * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
- * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
- *
- * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
- *
- *****************************************************************************
- *
- * This file is part of loclass. It is a reconstructon of the cipher engine
- * used in iClass, and RFID techology.
- *
- * The implementation is based on the work performed by
- * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
- * Milosch Meriac in the paper "Dismantling IClass".
- *
- * Copyright (C) 2014 Martin Holst Swende
- *
- * This is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as published
- * by the Free Software Foundation.
- *
- * This file is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with loclass. If not, see <http://www.gnu.org/licenses/>.
- *
- *
- *
- ****************************************************************************/
-
-
-#ifndef CIPHERUTILS_H
-#define CIPHERUTILS_H
-#include <stdint.h>
-#include <stdbool.h>
-#include <stdlib.h>
-
-typedef struct {
- uint8_t * buffer;
- uint8_t numbits;
- uint8_t position;
-} BitstreamIn;
-
-typedef struct {
- uint8_t * buffer;
- uint8_t numbits;
- uint8_t position;
-}BitstreamOut;
-
-bool headBit( BitstreamIn *stream);
-bool tailBit( BitstreamIn *stream);
-void pushBit( BitstreamOut *stream, bool bit);
-int bitsLeft( BitstreamIn *stream);
-#ifndef ON_DEVICE
-int testCipherUtils(void);
-int testMAC();
-void printarr(char * name, uint8_t* arr, int len);
-void printvar(char * name, uint8_t* arr, int len);
-void printarr_human_readable(char * title, uint8_t* arr, int len);
-#endif
-void push6bits( BitstreamOut* stream, uint8_t bits);
-void EncryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose) ;
-void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest);
-uint64_t x_bytes_to_num(uint8_t* src, size_t len);
-uint8_t reversebytes(uint8_t b);
-void reverse_arraybytes(uint8_t* arr, size_t len);
-void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len);
-#endif // CIPHERUTILS_H
// different initial value (CRC_ICLASS)
#include "iso14443crc.h"
#include "iso15693tools.h"
-#include "cipher.h"
#include "protocols.h"
+#include "optimized_cipher.h"
+
static int timeout = 4096;
Dbprintf("Done...");
}
+void AppendCrc(uint8_t* data, int len)
+{
+ ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
+}
/**
* @brief Does the actual simulation
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
+ State cipher_state;
+// State cipher_state_reserve;
uint8_t *csn = BigBuf_get_EM_addr();
uint8_t *emulator = csn;
uint8_t sof_data[] = { 0x0F} ;
ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
+ uint8_t diversified_key[8] = { 0 };
// e-Purse
uint8_t card_challenge_data[8] = { 0x00 };
if(simulationMode == MODE_FULLSIM)
{
+ //The diversified key should be stored on block 3
+ //Get the diversified key from emulator memory
+ memcpy(diversified_key, emulator+(8*3),8);
+
//Card challenge, a.k.a e-purse is on block 2
memcpy(card_challenge_data,emulator + (8 * 2) , 8);
+ //Precalculate the cipher state, feeding it the CC
+ cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
+
}
int exitLoop = 0;
// Tag CSN
uint8_t *modulated_response;
- int modulated_response_size;
+ int modulated_response_size = 0;
uint8_t* trace_data = NULL;
int trace_data_size = 0;
CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
- //This is used for responding to READ-block commands
- uint8_t *data_response = BigBuf_malloc(8 * 2 + 2);
+ //This is used for responding to READ-block commands or other data which is dynamically generated
+ //First the 'trace'-data, not encoded for FPGA
+ uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
+ //Then storage for the modulated data
+ //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
+ uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
// Start from off (no field generated)
//FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_A_ON();
bool buttonPressed = false;
-
+ uint8_t response_delay = 1;
while(!exitLoop) {
-
+ response_delay = 1;
LED_B_OFF();
//Signal tracer
// Can be used to get a trigger for an oscilloscope..
} else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
// Reader random and reader MAC!!!
if(simulationMode == MODE_FULLSIM)
- { //This is what we must do..
- //Reader just sent us NR and MAC(k,cc * nr)
- //The diversified key should be stored on block 3
- //However, from a typical dump, the key will not be there
- uint8_t *diversified_key = { 0 };
- //Get the diversified key from emulator memory
- memcpy(diversified_key, emulator+(8*3),8);
- uint8_t ccnr[12] = { 0 };
- //Put our cc there (block 2)
- memcpy(ccnr, emulator + (8 * 2), 8);
- //Put nr there
- memcpy(ccnr+8, receivedCmd+1,4);
- //Now, calc MAC
- doMAC(ccnr,diversified_key, trace_data);
+ {
+ //NR, from reader, is in receivedCmd +1
+ opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
+
+ trace_data = data_generic_trace;
trace_data_size = 4;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
+ response_delay = 0;//We need to hurry here...
+ //exitLoop = true;
}else
{ //Not fullsim, we don't respond
// We do not know what to answer, so lets keep quiet
} else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
//Read block
uint16_t blk = receivedCmd[1];
- trace_data = emulator+(blk << 3);
- trace_data_size = 8;
+ //Take the data...
+ memcpy(data_generic_trace, emulator+(blk << 3),8);
+ //Add crc
+ AppendCrc(data_generic_trace, 8);
+ trace_data = data_generic_trace;
+ trace_data_size = 10;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
+ }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
+ {//Probably the reader wants to update the nonce. Let's just ignore that for now.
+ // OBS! If this is implemented, don't forget to regenerate the cipher_state
+ //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
+ //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
+
+ //Take the data...
+ memcpy(data_generic_trace, receivedCmd+2,8);
+ //Add crc
+ AppendCrc(data_generic_trace, 8);
+ trace_data = data_generic_trace;
+ trace_data_size = 10;
+ CodeIClassTagAnswer(trace_data , trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
+ }
+ else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
+ {//Pagesel
+ //Pagesel enables to select a page in the selected chip memory and return its configuration block
+ //Chips with a single page will not answer to this command
+ // It appears we're fine ignoring this.
+ //Otherwise, we should answer 8bytes (block) + 2bytes CRC
}
else {
//#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
A legit tag has about 380us delay between reader EOT and tag SOF.
**/
if(modulated_response_size > 0) {
- SendIClassAnswer(modulated_response, modulated_response_size, 1);
+ SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
t2r_time = GetCountSspClk();
}
#include "string.h"
#include "lfsampling.h"
-#include "cipherutils.h"
+
sample_config config = { 1, 8, 1, 95, 0 } ;
void printConfig()
{
return &config;
}
-/*
+
typedef struct {
uint8_t * buffer;
uint32_t numbits;
uint32_t position;
} BitstreamOut;
-*/
/**
* @brief Pushes bit onto the stream
* @param stream
* @param bit
*/
-/*void pushBit( BitstreamOut* stream, uint8_t bit)
+void pushBit( BitstreamOut* stream, uint8_t bit)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = stream->position & 7;
stream->position++;
stream->numbits++;
}
-*/
+
/**
* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
* if not already loaded, sets divisor and starts up the antenna.
--- /dev/null
+/*****************************************************************************
+ * WARNING
+ *
+ * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
+ *
+ * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
+ * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
+ * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
+ *
+ * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
+ *
+ *****************************************************************************
+ *
+ * This file is part of loclass. It is a reconstructon of the cipher engine
+ * used in iClass, and RFID techology.
+ *
+ * The implementation is based on the work performed by
+ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
+ * Milosch Meriac in the paper "Dismantling IClass".
+ *
+ * Copyright (C) 2014 Martin Holst Swende
+ *
+ * This is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with loclass. If not, see <http://www.gnu.org/licenses/>.
+ *
+ *
+ *
+ ****************************************************************************/
+
+/**
+
+ This file contains an optimized version of the MAC-calculation algorithm. Some measurements on
+ a std laptop showed it runs in about 1/3 of the time:
+
+ Std: 0.428962
+ Opt: 0.151609
+
+ Additionally, it is self-reliant, not requiring e.g. bitstreams from the cipherutils, thus can
+ be easily dropped into a code base.
+
+ The optimizations have been performed in the following steps:
+ * Parameters passed by reference instead of by value.
+ * Iteration instead of recursion, un-nesting recursive loops into for-loops.
+ * Handling of bytes instead of individual bits, for less shuffling and masking
+ * Less creation of "objects", structs, and instead reuse of alloc:ed memory
+ * Inlining some functions via #define:s
+
+ As a consequence, this implementation is less generic. Also, I haven't bothered documenting this.
+ For a thorough documentation, check out the MAC-calculation within cipher.c instead.
+
+ -- MHS 2015
+**/
+
+#include "optimized_cipher.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <time.h>
+
+
+#define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14)^ (s->t >> 10)^ (s->t >> 8)^ (s->t >> 5)^ (s->t >> 4)^ (s->t >> 1)^ s->t))
+
+#define opt_B(s) (((s->b >> 6) ^ (s->b >> 5) ^ (s->b >> 4) ^ (s->b)) & 0x1)
+
+#define opt__select(x,y,r) (4 & (((r & (r << 2)) >> 5) ^ ((r & ~(r << 2)) >> 4) ^ ( (r | r << 2) >> 3)))\
+ |(2 & (((r | r << 2) >> 6) ^ ( (r | r << 2) >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1)))\
+ |(1 & (((r & ~(r << 2)) >> 4) ^ ((r & (r << 2)) >> 3) ^ r ^ x))
+
+/*
+ * Some background on the expression above can be found here...
+uint8_t xopt__select(bool x, bool y, uint8_t r)
+{
+ uint8_t r_ls2 = r << 2;
+ uint8_t r_and_ls2 = r & r_ls2;
+ uint8_t r_or_ls2 = r | r_ls2;
+
+ //r: r0 r1 r2 r3 r4 r5 r6 r7
+ //r_ls2: r2 r3 r4 r5 r6 r7 0 0
+ // z0
+ // z1
+
+// uint8_t z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); // <-- original
+ uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3);
+
+// uint8_t z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; // <-- original
+ uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1);
+
+// uint8_t z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; // <-- original
+ uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r ^ x;
+
+ return (z0 & 4) | (z1 & 2) | (z2 & 1);
+}
+*/
+
+void opt_successor(const uint8_t* k, State *s, bool y, State* successor)
+{
+
+ uint8_t Tt = 1 & opt_T(s);
+
+ successor->t = (s->t >> 1);
+ successor->t |= (Tt ^ (s->r >> 7 & 0x1) ^ (s->r >> 3 & 0x1)) << 15;
+
+ successor->b = s->b >> 1;
+ successor->b |= (opt_B(s) ^ (s->r & 0x1)) << 7;
+
+ successor->r = (k[opt__select(Tt,y,s->r)] ^ successor->b) + s->l ;
+ successor->l = successor->r+s->r;
+
+}
+
+void opt_suc(const uint8_t* k,State* s, uint8_t *in, uint8_t length, bool add32Zeroes)
+{
+ State x2;
+ int i;
+ uint8_t head = 0;
+ for(i =0 ; i < length ; i++)
+ {
+ head = 1 & (in[i] >> 7);
+ opt_successor(k,s,head,&x2);
+
+ head = 1 & (in[i] >> 6);
+ opt_successor(k,&x2,head,s);
+
+ head = 1 & (in[i] >> 5);
+ opt_successor(k,s,head,&x2);
+
+ head = 1 & (in[i] >> 4);
+ opt_successor(k,&x2,head,s);
+
+ head = 1 & (in[i] >> 3);
+ opt_successor(k,s,head,&x2);
+
+ head = 1 & (in[i] >> 2);
+ opt_successor(k,&x2,head,s);
+
+ head = 1 & (in[i] >> 1);
+ opt_successor(k,s,head,&x2);
+
+ head = 1 & in[i];
+ opt_successor(k,&x2,head,s);
+
+ }
+ //For tag MAC, an additional 32 zeroes
+ if(add32Zeroes)
+ for(i =0 ; i < 16 ; i++)
+ {
+ opt_successor(k,s,0,&x2);
+ opt_successor(k,&x2,0,s);
+ }
+}
+
+void opt_output(const uint8_t* k,State* s, uint8_t *buffer)
+{
+ uint8_t times = 0;
+ uint8_t bout = 0;
+ State temp = {0,0,0,0};
+ for( ; times < 4 ; times++)
+ {
+ bout =0;
+ bout |= (s->r & 0x4) << 5;
+ opt_successor(k,s,0,&temp);
+ bout |= (temp.r & 0x4) << 4;
+ opt_successor(k,&temp,0,s);
+ bout |= (s->r & 0x4) << 3;
+ opt_successor(k,s,0,&temp);
+ bout |= (temp.r & 0x4) << 2;
+ opt_successor(k,&temp,0,s);
+ bout |= (s->r & 0x4) << 1;
+ opt_successor(k,s,0,&temp);
+ bout |= (temp.r & 0x4) ;
+ opt_successor(k,&temp,0,s);
+ bout |= (s->r & 0x4) >> 1;
+ opt_successor(k,s,0,&temp);
+ bout |= (temp.r & 0x4) >> 2;
+ opt_successor(k,&temp,0,s);
+ buffer[times] = bout;
+ }
+
+}
+
+void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out)
+{
+ State _init = {
+ ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+ ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
+ 0x4c, // b
+ 0xE012 // t
+ };
+
+ opt_suc(k,&_init,input,12, false);
+ //printf("\noutp ");
+ opt_output(k,&_init, out);
+}
+uint8_t rev_byte(uint8_t b) {
+ b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
+ b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
+ b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
+ return b;
+}
+void opt_reverse_arraybytecpy(uint8_t* dest, uint8_t *src, size_t len)
+{
+ uint8_t i;
+ for( i =0; i< len ; i++)
+ dest[i] = rev_byte(src[i]);
+}
+
+void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
+{
+ static uint8_t cc_nr[12];
+
+ opt_reverse_arraybytecpy(cc_nr, cc_nr_p,12);
+ uint8_t dest []= {0,0,0,0,0,0,0,0};
+ opt_MAC(div_key_p,cc_nr, dest);
+ //The output MAC must also be reversed
+ opt_reverse_arraybytecpy(mac, dest,4);
+ return;
+}
+void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4])
+{
+ static uint8_t cc_nr[8+4+4];
+ opt_reverse_arraybytecpy(cc_nr, cc_p,12);
+ State _init = {
+ ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+ ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
+ 0x4c, // b
+ 0xE012 // t
+ };
+ opt_suc(div_key_p,&_init,cc_nr, 12,true);
+ uint8_t dest []= {0,0,0,0};
+ opt_output(div_key_p,&_init, dest);
+ //The output MAC must also be reversed
+ opt_reverse_arraybytecpy(mac, dest,4);
+ return;
+
+}
+/**
+ * The tag MAC can be divided (both can, but no point in dividing the reader mac) into
+ * two functions, since the first 8 bytes are known, we can pre-calculate the state
+ * reached after feeding CC to the cipher.
+ * @param cc_p
+ * @param div_key_p
+ * @return the cipher state
+ */
+State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p)
+{
+ static uint8_t cc_nr[8];
+ opt_reverse_arraybytecpy(cc_nr, cc_p,8);
+ State _init = {
+ ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+ ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
+ 0x4c, // b
+ 0xE012 // t
+ };
+ opt_suc(div_key_p,&_init,cc_nr, 8,false);
+ return _init;
+}
+/**
+ * The second part of the tag MAC calculation, since the CC is already calculated into the state,
+ * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
+ * MAC response.
+ * @param _init - precalculated cipher state
+ * @param nr - the reader challenge
+ * @param mac - where to store the MAC
+ * @param div_key_p - the key to use
+ */
+void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p)
+{
+ static uint8_t _nr [4];
+ opt_reverse_arraybytecpy(_nr, nr, 4);
+ opt_suc(div_key_p,&_init,_nr, 4, true);
+ //opt_suc(div_key_p,&_init,nr, 4, false);
+ uint8_t dest []= {0,0,0,0};
+ opt_output(div_key_p,&_init, dest);
+ //The output MAC must also be reversed
+ opt_reverse_arraybytecpy(mac, dest,4);
+ return;
+}
--- /dev/null
+#ifndef OPTIMIZED_CIPHER_H
+#define OPTIMIZED_CIPHER_H
+#include <stdint.h>
+
+/**
+* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
+* consisting of the following four components:
+* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
+* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
+* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
+* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
+**/
+typedef struct {
+ uint8_t l;
+ uint8_t r;
+ uint8_t b;
+ uint16_t t;
+} State;
+
+/** The reader MAC is MAC(key, CC * NR )
+ **/
+void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]);
+/**
+ * The tag MAC is MAC(key, CC * NR * 32x0))
+ */
+void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]);
+
+/**
+ * The tag MAC can be divided (both can, but no point in dividing the reader mac) into
+ * two functions, since the first 8 bytes are known, we can pre-calculate the state
+ * reached after feeding CC to the cipher.
+ * @param cc_p
+ * @param div_key_p
+ * @return the cipher state
+ */
+State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p);
+/**
+ * The second part of the tag MAC calculation, since the CC is already calculated into the state,
+ * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
+ * MAC response.
+ * @param _init - precalculated cipher state
+ * @param nr - the reader challenge
+ * @param mac - where to store the MAC
+ * @param div_key_p - the key to use
+ */
+void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p);
+
+#endif // OPTIMIZED_CIPHER_H
uint8_t *parityBytes = trace + tracepos;
tracepos += parity_len;
+ //Check the CRC status
+ uint8_t crcStatus = 2;
+
+ if (data_len > 2) {
+ uint8_t b1, b2;
+ if(protocol == ICLASS)
+ {
+ crcStatus = iclass_CRC_check(isResponse, frame, data_len);
+
+ }else if (protocol == ISO_14443B)
+ {
+ crcStatus = iso14443B_CRC_check(isResponse, frame, data_len);
+ }
+ else if (protocol == ISO_14443A){//Iso 14443a
+
+ ComputeCrc14443(CRC_14443_A, frame, data_len-2, &b1, &b2);
+
+ if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) {
+ if(!(isResponse & (data_len < 6)))
+ {
+ crcStatus = 0;
+ }
+ }
+ }
+ }
+ //0 CRC-command, CRC not ok
+ //1 CRC-command, CRC ok
+ //2 Not crc-command
//--- Draw the data column
//char line[16][110];
for (k=0 ; k<8 ; k++) {
oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
}
-
uint8_t parityBits = parityBytes[j>>3];
if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) {
snprintf(line[j/16]+(( j % 16) * 4),110, "%02x! ", frame[j]);
} else {
snprintf(line[j/16]+(( j % 16) * 4),110, "%02x ", frame[j]);
}
+
+ }
+ if(crcStatus == 1)
+ {//CRC-command
+ char *pos1 = line[(data_len-2)/16]+(((data_len-2) % 16) * 4)-1;
+ (*pos1) = '[';
+ char *pos2 = line[(data_len)/16]+(((data_len) % 16) * 4)-2;
+ (*pos2) = ']';
}
if(data_len == 0)
{
}
}
//--- Draw the CRC column
- uint8_t crcStatus = 2;
-
- if (data_len > 2) {
- uint8_t b1, b2;
- if(protocol == ICLASS)
- {
- crcStatus = iclass_CRC_check(isResponse, frame, data_len);
-
- }else if (protocol == ISO_14443B)
- {
- crcStatus = iso14443B_CRC_check(isResponse, frame, data_len);
- }
- else if (protocol == ISO_14443A){//Iso 14443a
-
- ComputeCrc14443(CRC_14443_A, frame, data_len-2, &b1, &b2);
- if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) {
- if(!(isResponse & (data_len < 6)))
- {
- crcStatus = 0;
- }
- }
- }
- }
- //0 CRC-command, CRC not ok
- //1 CRC-command, CRC ok
- //2 Not crc-command
char *crc = (crcStatus == 0 ? "!crc" : (crcStatus == 1 ? " ok " : " "));
EndOfTransmissionTimestamp = timestamp + duration;