- Added Home (Pos1) and End key bindings to the plot GUI (based on @mcd1992)
- Added downlink reference mode option r <mode> [ 0 - (or missing) default/fixed bit, 1 - long leading, 2 - leading 0 and 3 - 1 of 4 ] to `lf t55xx detect`, `lf t55xx read`, `lf t55xx write`, and `lf t55xx bruteforce`
- Added special option `r 4` to bruteforce, to try all downlink modes (0,1,2 and 3) for each password
+- `hf mfu info` now checks the NXP Originality Signature if availabe (piwi)
## [v3.1.0][2018-10-10]
&buf[1], 65, // user public key
NULL, 0);
//PrintAndLog("--xbuf(%d)[%d]: %s", res, xbuflen, sprint_hex(xbuf, xbuflen));
- res = ecdsa_signature_verify(public_key, xbuf, xbuflen, &buf[hashp], len - hashp);
+ res = ecdsa_signature_verify(MBEDTLS_ECP_DP_SECP256R1, public_key, xbuf, xbuflen, &buf[hashp], len - hashp, true);
if (res) {
- if (res == -0x4e00) {
+ if (res == MBEDTLS_ERR_ECP_VERIFY_FAILED) {
PrintAndLog("Signature is NOT VALID.");
} else {
PrintAndLog("Other signature check error: %x %s", (res<0)?-res:res, ecdsa_get_error(res));
data, 32, // challenge parameter
NULL, 0);
//PrintAndLog("--xbuf(%d)[%d]: %s", res, xbuflen, sprint_hex(xbuf, xbuflen));
- res = ecdsa_signature_verify(public_key, xbuf, xbuflen, &buf[5], len - 5);
+ res = ecdsa_signature_verify(MBEDTLS_ECP_DP_SECP256R1, public_key, xbuf, xbuflen, &buf[5], len - 5, true);
if (res) {
- if (res == -0x4e00) {
+ if (res == MBEDTLS_ERR_ECP_VERIFY_FAILED) {
PrintAndLog("Signature is NOT VALID.");
} else {
PrintAndLog("Other signature check error: %x %s", (res<0)?-res:res, ecdsa_get_error(res));
#include "util_posix.h"
#include "protocols.h"
#include "taginfo.h"
+#include "crypto/libpcrypto.h"
typedef enum TAGTYPE_UL {
UNKNOWN = 0x000000,
#define MAX_MY_D_MOVE 0x25
#define MAX_MY_D_MOVE_LEAN 0x0f
-#define PUBLIC_ECDA_KEYLEN 33
-static uint8_t public_ecda_key[PUBLIC_ECDA_KEYLEN] = {
- 0x04, 0x49, 0x4e, 0x1a, 0x38, 0x6d, 0x3d, 0x3c,
- 0xfe, 0x3d, 0xc1, 0x0e, 0x5d, 0xe6, 0x8a, 0x49,
- 0x9b, 0x1c, 0x20, 0x2d, 0xb5, 0xb1, 0x32, 0x39,
- 0x3e, 0x89, 0xed, 0x19, 0xfe, 0x5b, 0xe8, 0xbc,
- 0x61
-};
-
#define KEYS_3DES_COUNT 7
static uint8_t default_3des_keys[KEYS_3DES_COUNT][16] = {
{ 0x42,0x52,0x45,0x41,0x4b,0x4d,0x45,0x49,0x46,0x59,0x4f,0x55,0x43,0x41,0x4e,0x21 },// 3des std key
{0x35,0x1C,0xD0,0x19}, // PACK 0x9A,0x5a -- italian bus (sniffed)
};
+// known public keys for the originality check (source: https://github.com/alexbatalov/node-nxp-originality-verifier)
+uint8_t public_keys[2][33] = {{0x04,0x49,0x4e,0x1a,0x38,0x6d,0x3d,0x3c,0xfe,0x3d,0xc1,0x0e,0x5d,0xe6,0x8a,0x49,0x9b, // UL and NDEF
+ 0x1c,0x20,0x2d,0xb5,0xb1,0x32,0x39,0x3e,0x89,0xed,0x19,0xfe,0x5b,0xe8,0xbc,0x61},
+ {0x04,0x90,0x93,0x3b,0xdc,0xd6,0xe9,0x9b,0x4e,0x25,0x5e,0x3d,0xa5,0x53,0x89,0xa8,0x27, // UL EV1
+ 0x56,0x4e,0x11,0x71,0x8e,0x01,0x72,0x92,0xfa,0xf2,0x32,0x26,0xa9,0x66,0x14,0xb8}
+};
+
#define MAX_UL_TYPES 17
static uint32_t UL_TYPES_ARRAY[MAX_UL_TYPES] = {UNKNOWN, UL, UL_C, UL_EV1_48, UL_EV1_128, NTAG, NTAG_203,
NTAG_210, NTAG_212, NTAG_213, NTAG_215, NTAG_216, MY_D, MY_D_NFC, MY_D_MOVE, MY_D_MOVE_LEAN, FUDAN_UL};
}
-static int ulev1_print_signature( uint8_t *data, uint8_t len){
- PrintAndLogEx(NORMAL, "\n--- Tag Signature");
- PrintAndLogEx(NORMAL, "IC signature public key name : NXP NTAG21x (2013)");
- PrintAndLogEx(NORMAL, "IC signature public key value : %s", sprint_hex(public_ecda_key, PUBLIC_ECDA_KEYLEN));
+static int ulev1_print_signature(TagTypeUL_t tagtype, uint8_t *uid, uint8_t *signature, size_t signature_len){
+ uint8_t public_key = 0;
+ if (tagtype == UL_EV1_48 || tagtype == UL_EV1_128) {
+ public_key = 1;
+ }
+ int res = ecdsa_signature_r_s_verify(MBEDTLS_ECP_DP_SECP128R1, public_keys[public_key], uid, 7, signature, signature_len, false);
+ bool signature_valid = (res == 0);
+
+ PrintAndLogEx(NORMAL, "\n--- Tag Originality Signature");
+ //PrintAndLogEx(NORMAL, "IC signature public key name : NXP NTAG21x 2013"); // don't know if there is other NXP public keys.. :(
+ PrintAndLogEx(NORMAL, " Signature public key : %s", sprint_hex(public_keys[public_key]+1, sizeof(public_keys[public_key])-1));
PrintAndLogEx(NORMAL, " Elliptic curve parameters : secp128r1");
- PrintAndLogEx(NORMAL, " Tag ECC Signature : %s", sprint_hex(data, len));
- //to do: verify if signature is valid
- //PrintAndLogEx(NORMAL, "IC signature status: %s valid", (iseccvalid() )?"":"not");
+ PrintAndLogEx(NORMAL, " Tag ECC Signature : %s", sprint_hex(signature, signature_len));
+ PrintAndLogEx(NORMAL, " Originality signature check : signature is %svalid", signature_valid?"":"NOT ");
return 0;
}
uint8_t authlim = 0xff;
iso14a_card_select_t card;
+ uint8_t uid[7];
bool errors = false;
uint8_t keybytes[16] = {0x00};
uint8_t *authenticationkey = keybytes;
PrintAndLogEx(WARNING, "Error: tag didn't answer to READ");
return -1;
} else if (len == 16) {
+ memcpy(uid, data, 3);
+ memcpy(uid+3, data+4, 4);
ul_print_default(data);
ndef_print_CC(data+12);
} else {
return -1;
}
if (len == 32) {
- ulev1_print_signature( ulev1_signature, sizeof(ulev1_signature));
+ ulev1_print_signature(tagtype, uid, ulev1_signature, sizeof(ulev1_signature));
} else {
// re-select
if (!ul_auth_select( &card, tagtype, hasAuthKey, authenticationkey, pack, sizeof(pack))) {
#include <crypto/asn1utils.h>
#include <util.h>
+
// NIST Special Publication 800-38A — Recommendation for block cipher modes of operation: methods and techniques, 2001.
int aes_encode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length){
uint8_t iiv[16] = {0};
if (iv)
memcpy(iiv, iv, 16);
-
+
mbedtls_aes_context aes;
mbedtls_aes_init(&aes);
if (mbedtls_aes_setkey_enc(&aes, key, 128))
return 0;
}
+
int aes_decode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length){
uint8_t iiv[16] = {0};
if (iv)
memcpy(iiv, iv, 16);
-
+
mbedtls_aes_context aes;
mbedtls_aes_init(&aes);
if (mbedtls_aes_setkey_dec(&aes, key, 128))
return 0;
}
+
// NIST Special Publication 800-38B — Recommendation for block cipher modes of operation: The CMAC mode for authentication.
// https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/AES_CMAC.pdf
int aes_cmac(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length) {
memset(mac, 0x00, 16);
-
- // NIST 800-38B
+
+ // NIST 800-38B
return mbedtls_aes_cmac_prf_128(key, MBEDTLS_AES_BLOCK_SIZE, input, length, mac);
}
+
int aes_cmac8(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length) {
uint8_t cmac[16] = {0};
memset(mac, 0x00, 8);
-
+
int res = aes_cmac(iv, key, input, cmac, length);
if (res)
return res;
-
- for(int i = 0; i < 8; i++)
+
+ for(int i = 0; i < 8; i++)
mac[i] = cmac[i * 2 + 1];
return 0;
}
+
static uint8_t fixed_rand_value[250] = {0};
+
static int fixed_rand(void *rng_state, unsigned char *output, size_t len) {
if (len <= 250) {
memcpy(output, fixed_rand_value, len);
} else {
memset(output, 0x00, len);
}
-
+
return 0;
}
+
int sha256hash(uint8_t *input, int length, uint8_t *hash) {
if (!hash || !input)
return 1;
-
+
mbedtls_sha256_context sctx;
mbedtls_sha256_init(&sctx);
- mbedtls_sha256_starts(&sctx, 0); // SHA-256, not 224
+ mbedtls_sha256_starts(&sctx, 0); // SHA-256, not 224
mbedtls_sha256_update(&sctx, input, length);
- mbedtls_sha256_finish(&sctx, hash);
+ mbedtls_sha256_finish(&sctx, hash);
mbedtls_sha256_free(&sctx);
-
+
return 0;
}
+
int sha512hash(uint8_t *input, int length, uint8_t *hash) {
if (!hash || !input)
return 1;
-
+
mbedtls_sha512_context sctx;
mbedtls_sha512_init(&sctx);
mbedtls_sha512_starts(&sctx, 0); //SHA-512, not 384
mbedtls_sha512_update(&sctx, input, length);
- mbedtls_sha512_finish(&sctx, hash);
+ mbedtls_sha512_finish(&sctx, hash);
mbedtls_sha512_free(&sctx);
-
+
return 0;
}
-int ecdsa_init_str(mbedtls_ecdsa_context *ctx, char * key_d, char *key_x, char *key_y) {
+
+int ecdsa_init_str(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id curveID, char *key_d, char *key_x, char *key_y) {
if (!ctx)
return 1;
-
+
int res;
mbedtls_ecdsa_init(ctx);
- res = mbedtls_ecp_group_load(&ctx->grp, MBEDTLS_ECP_DP_SECP256R1); // secp256r1
- if (res)
+ res = mbedtls_ecp_group_load(&ctx->grp, curveID);
+ if (res)
return res;
-
+
if (key_d) {
res = mbedtls_mpi_read_string(&ctx->d, 16, key_d);
- if (res)
+ if (res)
return res;
}
-
+
if (key_x && key_y) {
res = mbedtls_ecp_point_read_string(&ctx->Q, 16, key_x, key_y);
- if (res)
+ if (res)
return res;
}
-
+
return 0;
}
-int ecdsa_init(mbedtls_ecdsa_context *ctx, uint8_t * key_d, uint8_t *key_xy) {
+
+int ecdsa_init(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id curveID, uint8_t *key_d, uint8_t *key_xy) {
if (!ctx)
return 1;
-
+
int res;
mbedtls_ecdsa_init(ctx);
- res = mbedtls_ecp_group_load(&ctx->grp, MBEDTLS_ECP_DP_SECP256R1); // secp256r1
- if (res)
+ res = mbedtls_ecp_group_load(&ctx->grp, curveID);
+ if (res)
return res;
-
+
+ size_t keylen = (ctx->grp.nbits + 7 ) / 8;
if (key_d) {
- res = mbedtls_mpi_read_binary(&ctx->d, key_d, 32);
- if (res)
+ res = mbedtls_mpi_read_binary(&ctx->d, key_d, keylen);
+ if (res)
return res;
}
-
+
if (key_xy) {
- res = mbedtls_ecp_point_read_binary(&ctx->grp, &ctx->Q, key_xy, 32 * 2 + 1);
- if (res)
+ res = mbedtls_ecp_point_read_binary(&ctx->grp, &ctx->Q, key_xy, keylen * 2 + 1);
+ if (res)
return res;
}
-
+
return 0;
}
-int ecdsa_key_create(uint8_t * key_d, uint8_t *key_xy) {
+
+int ecdsa_key_create(mbedtls_ecp_group_id curveID, uint8_t *key_d, uint8_t *key_xy) {
int res;
mbedtls_ecdsa_context ctx;
- ecdsa_init(&ctx, NULL, NULL);
+ ecdsa_init(&ctx, curveID, NULL, NULL);
- mbedtls_entropy_context entropy;
- mbedtls_ctr_drbg_context ctr_drbg;
+ mbedtls_entropy_context entropy;
+ mbedtls_ctr_drbg_context ctr_drbg;
const char *pers = "ecdsaproxmark";
- mbedtls_entropy_init(&entropy);
- mbedtls_ctr_drbg_init(&ctr_drbg);
+ mbedtls_entropy_init(&entropy);
+ mbedtls_ctr_drbg_init(&ctr_drbg);
- res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers));
+ res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers));
if (res)
- goto exit;
+ goto exit;
- res = mbedtls_ecdsa_genkey(&ctx, MBEDTLS_ECP_DP_SECP256R1, mbedtls_ctr_drbg_random, &ctr_drbg);
+ res = mbedtls_ecdsa_genkey(&ctx, curveID, mbedtls_ctr_drbg_random, &ctr_drbg);
if (res)
goto exit;
- res = mbedtls_mpi_write_binary(&ctx.d, key_d, 32);
+ size_t keylen = (ctx.grp.nbits + 7) / 8;
+ res = mbedtls_mpi_write_binary(&ctx.d, key_d, keylen);
if (res)
goto exit;
- size_t keylen = 0;
+ size_t public_keylen = 0;
uint8_t public_key[200] = {0};
- res = mbedtls_ecp_point_write_binary(&ctx.grp, &ctx.Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &keylen, public_key, sizeof(public_key));
+ res = mbedtls_ecp_point_write_binary(&ctx.grp, &ctx.Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &public_keylen, public_key, sizeof(public_key));
if (res)
goto exit;
-
- if (keylen != 65) { // 0x04 <key x 32b><key y 32b>
+
+ if (public_keylen != 1 + 2 * keylen) { // 0x04 <key x><key y>
res = 1;
goto exit;
}
- memcpy(key_xy, public_key, 65);
+ memcpy(key_xy, public_key, public_keylen);
exit:
- mbedtls_entropy_free(&entropy);
- mbedtls_ctr_drbg_free(&ctr_drbg);
+ mbedtls_entropy_free(&entropy);
+ mbedtls_ctr_drbg_free(&ctr_drbg);
mbedtls_ecdsa_free(&ctx);
return res;
}
+
char *ecdsa_get_error(int ret) {
static char retstr[300];
memset(retstr, 0x00, sizeof(retstr));
return retstr;
}
-int ecdsa_public_key_from_pk(mbedtls_pk_context *pk, uint8_t *key, size_t keylen) {
+
+int ecdsa_public_key_from_pk(mbedtls_pk_context *pk, mbedtls_ecp_group_id curveID, uint8_t *key, size_t keylen) {
int res = 0;
size_t realkeylen = 0;
- if (keylen < 65)
- return 1;
-
+
mbedtls_ecdsa_context ctx;
mbedtls_ecdsa_init(&ctx);
-
- res = mbedtls_ecp_group_load(&ctx.grp, MBEDTLS_ECP_DP_SECP256R1); // secp256r1
+
+ res = mbedtls_ecp_group_load(&ctx.grp, curveID);
if (res)
goto exit;
-
+
+ size_t private_keylen = (ctx.grp.nbits + 7) / 8;
+ if (keylen < 1 + 2 * private_keylen) {
+ res = 1;
+ goto exit;
+ }
+
res = mbedtls_ecdsa_from_keypair(&ctx, mbedtls_pk_ec(*pk) );
if (res)
goto exit;
-
+
res = mbedtls_ecp_point_write_binary(&ctx.grp, &ctx.Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &realkeylen, key, keylen);
- if (realkeylen != 65)
+ if (realkeylen != 1 + 2 * private_keylen)
res = 2;
exit:
mbedtls_ecdsa_free(&ctx);
return res;
}
-int ecdsa_signature_create(uint8_t *key_d, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen) {
+
+int ecdsa_signature_create(mbedtls_ecp_group_id curveID, uint8_t *key_d, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen, bool hash) {
int res;
*signaturelen = 0;
-
- uint8_t shahash[32] = {0};
+
+ uint8_t shahash[32] = {0};
res = sha256hash(input, length, shahash);
if (res)
return res;
- mbedtls_entropy_context entropy;
- mbedtls_ctr_drbg_context ctr_drbg;
+ mbedtls_entropy_context entropy;
+ mbedtls_ctr_drbg_context ctr_drbg;
const char *pers = "ecdsaproxmark";
- mbedtls_entropy_init(&entropy);
- mbedtls_ctr_drbg_init(&ctr_drbg);
+ mbedtls_entropy_init(&entropy);
+ mbedtls_ctr_drbg_init(&ctr_drbg);
- res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers));
+ res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers));
if (res)
- goto exit;
+ goto exit;
+
+ mbedtls_ecdsa_context ctx;
+ ecdsa_init(&ctx, curveID, key_d, key_xy);
+ res = mbedtls_ecdsa_write_signature(&ctx, MBEDTLS_MD_SHA256, hash?shahash:input, hash?sizeof(shahash):length, signature, signaturelen, mbedtls_ctr_drbg_random, &ctr_drbg);
- mbedtls_ecdsa_context ctx;
- ecdsa_init(&ctx, key_d, key_xy);
- res = mbedtls_ecdsa_write_signature(&ctx, MBEDTLS_MD_SHA256, shahash, sizeof(shahash), signature, signaturelen, mbedtls_ctr_drbg_random, &ctr_drbg);
-
exit:
- mbedtls_ctr_drbg_free(&ctr_drbg);
+ mbedtls_ctr_drbg_free(&ctr_drbg);
mbedtls_ecdsa_free(&ctx);
return res;
}
-int ecdsa_signature_create_test(char * key_d, char *key_x, char *key_y, char *random, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen) {
+
+int ecdsa_signature_create_test(mbedtls_ecp_group_id curveID, char *key_d, char *key_x, char *key_y, char *random, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen) {
int res;
*signaturelen = 0;
-
- uint8_t shahash[32] = {0};
+
+ uint8_t shahash[32] = {0};
res = sha256hash(input, length, shahash);
if (res)
return res;
int rndlen = 0;
param_gethex_to_eol(random, 0, fixed_rand_value, sizeof(fixed_rand_value), &rndlen);
-
- mbedtls_ecdsa_context ctx;
- ecdsa_init_str(&ctx, key_d, key_x, key_y);
+
+ mbedtls_ecdsa_context ctx;
+ ecdsa_init_str(&ctx, curveID, key_d, key_x, key_y);
res = mbedtls_ecdsa_write_signature(&ctx, MBEDTLS_MD_SHA256, shahash, sizeof(shahash), signature, signaturelen, fixed_rand, NULL);
-
+
mbedtls_ecdsa_free(&ctx);
return res;
}
-int ecdsa_signature_verify_keystr(char *key_x, char *key_y, uint8_t *input, int length, uint8_t *signature, size_t signaturelen) {
+
+int ecdsa_signature_verify_keystr(mbedtls_ecp_group_id curveID, char *key_x, char *key_y, uint8_t *input, int length, uint8_t *signature, size_t signaturelen, bool hash) {
int res;
- uint8_t shahash[32] = {0};
+ uint8_t shahash[32] = {0};
res = sha256hash(input, length, shahash);
if (res)
return res;
- mbedtls_ecdsa_context ctx;
- ecdsa_init_str(&ctx, NULL, key_x, key_y);
- res = mbedtls_ecdsa_read_signature(&ctx, shahash, sizeof(shahash), signature, signaturelen);
-
+ mbedtls_ecdsa_context ctx;
+ ecdsa_init_str(&ctx, curveID, NULL, key_x, key_y);
+ res = mbedtls_ecdsa_read_signature(&ctx, hash?shahash:input, hash?sizeof(shahash):length, signature, signaturelen);
+
mbedtls_ecdsa_free(&ctx);
return res;
}
-int ecdsa_signature_verify(uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t signaturelen) {
+
+int ecdsa_signature_verify(mbedtls_ecp_group_id curveID, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t signaturelen, bool hash) {
int res;
- uint8_t shahash[32] = {0};
- res = sha256hash(input, length, shahash);
- if (res)
- return res;
+ uint8_t shahash[32] = {0};
+ if (hash) {
+ res = sha256hash(input, length, shahash);
+ if (res)
+ return res;
+ }
+
+ mbedtls_ecdsa_context ctx;
+ res = ecdsa_init(&ctx, curveID, NULL, key_xy);
+ res = mbedtls_ecdsa_read_signature(&ctx, hash?shahash:input, hash?sizeof(shahash):length, signature, signaturelen);
- mbedtls_ecdsa_context ctx;
- ecdsa_init(&ctx, NULL, key_xy);
- res = mbedtls_ecdsa_read_signature(&ctx, shahash, sizeof(shahash), signature, signaturelen);
-
mbedtls_ecdsa_free(&ctx);
return res;
}
+
+int ecdsa_signature_r_s_verify(mbedtls_ecp_group_id curveID, uint8_t *key_xy, uint8_t *input, int length, uint8_t *r_s, size_t r_s_len, bool hash) {
+ int res;
+ uint8_t signature[MBEDTLS_ECDSA_MAX_LEN];
+ size_t signature_len;
+
+ // convert r & s to ASN.1 signature
+ mbedtls_mpi r, s;
+ mbedtls_mpi_init(&r);
+ mbedtls_mpi_init(&s);
+ mbedtls_mpi_read_binary(&r, r_s, r_s_len/2);
+ mbedtls_mpi_read_binary(&s, r_s + r_s_len/2, r_s_len/2);
+
+ res = ecdsa_signature_to_asn1(&r, &s, signature, &signature_len);
+ if (res < 0) {
+ return res;
+ }
+
+ res = ecdsa_signature_verify(curveID, key_xy, input, length, signature, signature_len, hash);
+
+ mbedtls_mpi_free(&r);
+ mbedtls_mpi_free(&s);
+
+ return res;
+}
+
+
#define T_PRIVATE_KEY "C477F9F65C22CCE20657FAA5B2D1D8122336F851A508A1ED04E479C34985BF96"
#define T_Q_X "B7E08AFDFE94BAD3F1DC8C734798BA1C62B3A0AD1E9EA2A38201CD0889BC7A19"
#define T_Q_Y "3603F747959DBF7A4BB226E41928729063ADC7AE43529E61B563BBC606CC5E09"
int ecdsa_nist_test(bool verbose) {
int res;
uint8_t input[] = "Example of ECDSA with P-256";
+ mbedtls_ecp_group_id curveID = MBEDTLS_ECP_DP_SECP256R1;
int length = strlen((char *)input);
- uint8_t signature[300] = {0};
- size_t siglen = 0;
+ uint8_t signature[300] = {0};
+ size_t siglen = 0;
// NIST ecdsa test
if (verbose)
printf(" ECDSA NIST test: ");
// make signature
- res = ecdsa_signature_create_test(T_PRIVATE_KEY, T_Q_X, T_Q_Y, T_K, input, length, signature, &siglen);
+ res = ecdsa_signature_create_test(curveID, T_PRIVATE_KEY, T_Q_X, T_Q_Y, T_K, input, length, signature, &siglen);
// printf("res: %x signature[%x]: %s\n", (res<0)?-res:res, siglen, sprint_hex(signature, siglen));
- if (res)
+ if (res)
goto exit;
// check vectors
- uint8_t rval[300] = {0};
- uint8_t sval[300] = {0};
+ uint8_t rval[300] = {0};
+ uint8_t sval[300] = {0};
res = ecdsa_asn1_get_signature(signature, siglen, rval, sval);
if (res)
goto exit;
-
+
int slen = 0;
uint8_t rval_s[33] = {0};
param_gethex_to_eol(T_R, 0, rval_s, sizeof(rval_s), &slen);
- uint8_t sval_s[33] = {0};
+ uint8_t sval_s[33] = {0};
param_gethex_to_eol(T_S, 0, sval_s, sizeof(sval_s), &slen);
if (strncmp((char *)rval, (char *)rval_s, 32) || strncmp((char *)sval, (char *)sval_s, 32)) {
printf("R or S check error\n");
res = 100;
goto exit;
}
-
+
// verify signature
- res = ecdsa_signature_verify_keystr(T_Q_X, T_Q_Y, input, length, signature, siglen);
- if (res)
+ res = ecdsa_signature_verify_keystr(curveID, T_Q_X, T_Q_Y, input, length, signature, siglen, true);
+ if (res)
goto exit;
-
+
// verify wrong signature
input[0] ^= 0xFF;
- res = ecdsa_signature_verify_keystr(T_Q_X, T_Q_Y, input, length, signature, siglen);
+ res = ecdsa_signature_verify_keystr(curveID, T_Q_X, T_Q_Y, input, length, signature, siglen, true);
if (!res) {
res = 1;
goto exit;
uint8_t key_xy[32 * 2 + 2] = {0};
memset(signature, 0x00, sizeof(signature));
siglen = 0;
-
- res = ecdsa_key_create(key_d, key_xy);
- if (res)
+
+ res = ecdsa_key_create(curveID, key_d, key_xy);
+ if (res)
goto exit;
- res = ecdsa_signature_create(key_d, key_xy, input, length, signature, &siglen);
- if (res)
+ res = ecdsa_signature_create(curveID, key_d, key_xy, input, length, signature, &siglen, true);
+ if (res)
goto exit;
- res = ecdsa_signature_verify(key_xy, input, length, signature, siglen);
- if (res)
+ res = ecdsa_signature_verify(curveID, key_xy, input, length, signature, siglen, true);
+ if (res)
goto exit;
input[0] ^= 0xFF;
- res = ecdsa_signature_verify(key_xy, input, length, signature, siglen);
- if (!res)
+ res = ecdsa_signature_verify(curveID, key_xy, input, length, signature, siglen, true);
+ if (!res)
goto exit;
-
+
if (verbose)
printf("passed\n\n");
-
+
return 0;
exit:
if (verbose)
extern int sha256hash(uint8_t *input, int length, uint8_t *hash);
extern int sha512hash(uint8_t *input, int length, uint8_t *hash);
-extern int ecdsa_key_create(uint8_t * key_d, uint8_t *key_xy);
-extern int ecdsa_public_key_from_pk(mbedtls_pk_context *pk, uint8_t *key, size_t keylen);
-extern int ecdsa_signature_create(uint8_t *key_d, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen);
-extern int ecdsa_signature_verify(uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t signaturelen);
+extern int ecdsa_key_create(mbedtls_ecp_group_id curveID, uint8_t * key_d, uint8_t *key_xy);
+extern int ecdsa_public_key_from_pk(mbedtls_pk_context *pk, mbedtls_ecp_group_id curveID, uint8_t *key, size_t keylen);
+extern int ecdsa_signature_create(mbedtls_ecp_group_id curveID, uint8_t *key_d, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen, bool hash);
+extern int ecdsa_signature_verify(mbedtls_ecp_group_id curveID, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t signaturelen, bool hash);
+extern int ecdsa_signature_r_s_verify(mbedtls_ecp_group_id curveID, uint8_t *key_xy, uint8_t *input, int length, uint8_t *r_s, size_t r_s_len, bool hash);
extern char *ecdsa_get_error(int ret);
extern int ecdsa_nist_test(bool verbose);
}
// get public key
- res = ecdsa_public_key_from_pk(&cert.pk, publicKey, publicKeyMaxLen);
+ res = ecdsa_public_key_from_pk(&cert.pk, MBEDTLS_ECP_DP_SECP256R1, publicKey, publicKeyMaxLen);
if (res) {
PrintAndLog("ERROR: getting public key from certificate 0x%x - %s", (res<0)?-res:res, ecdsa_get_error(res));
} else {
clientDataHash, 32, // Hash of the serialized client data. "$.ClientDataHash" from json
NULL, 0);
//PrintAndLog("--xbuf(%d)[%d]: %s", res, xbuflen, sprint_hex(xbuf, xbuflen));
- res = ecdsa_signature_verify(publickey, xbuf, xbuflen, sign, signLen);
+ res = ecdsa_signature_verify(MBEDTLS_ECP_DP_SECP256R1, publickey, xbuf, xbuflen, sign, signLen, true);
if (res) {
- if (res == -0x4e00) {
+ if (res == MBEDTLS_ERR_ECP_VERIFY_FAILED) {
PrintAndLog("Signature is NOT VALID.");
} else {
PrintAndLog("Other signature check error: %x %s", (res<0)?-res:res, ecdsa_get_error(res));
#endif
#if defined(MBEDTLS_ECP_C) && ( !defined(MBEDTLS_BIGNUM_C) || ( \
+ !defined(MBEDTLS_ECP_DP_SECP128R1_ENABLED) && \
!defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) && \
!defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) && \
!defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) && \
*
* Comment macros to disable the curve and functions for it
*/
+#define MBEDTLS_ECP_DP_SECP128R1_ENABLED
#define MBEDTLS_ECP_DP_SECP192R1_ENABLED
#define MBEDTLS_ECP_DP_SECP224R1_ENABLED
#define MBEDTLS_ECP_DP_SECP256R1_ENABLED
/*
* Convert a signature (given by context) to ASN.1
*/
-static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
+int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
unsigned char *sig, size_t *slen )
{
int ret;
*/
void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx );
+int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s, unsigned char *sig, size_t *slen );
+
#ifdef __cplusplus
}
#endif
static unsigned long add_count, dbl_count, mul_count;
#endif
-#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
+#if defined(MBEDTLS_ECP_DP_SECP128R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
static const mbedtls_ecp_curve_info ecp_supported_curves[] =
{
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
+ { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
#endif
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
- { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
+ { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
+ { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
#endif
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
- { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
+ { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
+ { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
- { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
+ { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
#endif
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
- { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
+ { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
+ { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
- { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
+ { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
+ { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
- { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
+ { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
#endif
- { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
+#if defined(MBEDTLS_ECP_DP_SECP128R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP128R1, 0xFE00, 128, "secp128r1" },
+#endif
+ { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
};
#define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
MBEDTLS_ECP_DP_SECP224K1, /*!< Domain parameters for 224-bit "Koblitz" curve. */
MBEDTLS_ECP_DP_SECP256K1, /*!< Domain parameters for 256-bit "Koblitz" curve. */
MBEDTLS_ECP_DP_CURVE448, /*!< Domain parameters for Curve448. */
+ MBEDTLS_ECP_DP_SECP128R1, /*!< Domain parameters for the 128-bit curve used for NXP originality check. */
} mbedtls_ecp_group_id;
/**
* to be directly usable in MPIs
*/
+/*
+ * Domain parameters for secp128r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP128R1_ENABLED)
+static const mbedtls_mpi_uint secp128r1_p[] = {
+ // 2^128 - 2^97 - 1 // TODO
+ BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+ BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF ),
+};
+static const mbedtls_mpi_uint secp128r1_a[] = {
+ // FFFFFFFDFFFFFFFF FFFFFFFFFFFFFFFC
+ BYTES_TO_T_UINT_8( 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
+ BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF ),
+};
+static const mbedtls_mpi_uint secp128r1_b[] = {
+ // E87579C11079F43D D824993C2CEE5ED3
+ BYTES_TO_T_UINT_8( 0xD3, 0x5E, 0xEE, 0x2C, 0x3C, 0x99, 0x24, 0xD8 ),
+ BYTES_TO_T_UINT_8( 0x3D, 0xF4, 0x79, 0x10, 0xC1, 0x79, 0x75, 0xE8 ),
+};
+static const mbedtls_mpi_uint secp128r1_gx[] = {
+ // 161FF7528B899B2D 0C28607CA52C5B86
+ BYTES_TO_T_UINT_8( 0x86, 0x5B, 0x2C, 0xA5, 0x7C, 0x60, 0x28, 0x0C ),
+ BYTES_TO_T_UINT_8( 0x2D, 0x9B, 0x89, 0x8B, 0x52, 0xF7, 0x1F, 0x16 ),
+};
+static const mbedtls_mpi_uint secp128r1_gy[] = {
+ // CF5AC8395BAFEB13 C02DA292DDED7A83
+ BYTES_TO_T_UINT_8( 0x83, 0x7A, 0xED, 0xDD, 0x92, 0xA2, 0x2D, 0xC0 ),
+ BYTES_TO_T_UINT_8( 0x13, 0xEB, 0xAF, 0x5B, 0x39, 0xC8, 0x5A, 0xCF ),
+};
+static const mbedtls_mpi_uint secp128r1_n[] = {
+ // FFFFFFFE00000000 75A30D1B9038A115
+ BYTES_TO_T_UINT_8( 0x15, 0xA1, 0x38, 0x90, 0x1B, 0x0D, 0xA3, 0x75 ),
+ BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFE, 0xFF, 0xFF, 0xFF ),
+};
+#endif /* MBEDTLS_ECP_DP_SECP128R1_ENABLED */
+
/*
* Domain parameters for secp192r1
*/
switch( id )
{
+#if defined(MBEDTLS_ECP_DP_SECP128R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP128R1:
+ grp->modp = NULL;
+ return( LOAD_GROUP_A( secp128r1 ) );
+#endif /* MBEDTLS_ECP_DP_SECP128R1_ENABLED */
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
case MBEDTLS_ECP_DP_SECP192R1:
NIST_MODP( p192 );