wire hi_read_rx_xcorr_848 = conf_word[0];
// and whether to drive the coil (reader) or just short it (snooper)
wire hi_read_rx_xcorr_snoop = conf_word[1];
+// divide subcarrier frequency by 4
+wire hi_read_rx_xcorr_quarter = conf_word[2];
// For the high-frequency simulated tag: what kind of modulation to use.
wire [2:0] hi_simulate_mod_type = conf_word[2:0];
hrxc_ssp_frame, hrxc_ssp_din, ssp_dout, hrxc_ssp_clk,
cross_hi, cross_lo,
hrxc_dbg,
- hi_read_rx_xcorr_848, hi_read_rx_xcorr_snoop
+ hi_read_rx_xcorr_848, hi_read_rx_xcorr_snoop, hi_read_rx_xcorr_quarter
);
hi_simulate hs(
ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg,
- xcorr_is_848, snoop
+ xcorr_is_848, snoop, xcorr_quarter_freq
);
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
output ssp_frame, ssp_din, ssp_clk;
input cross_hi, cross_lo;
output dbg;
- input xcorr_is_848, snoop;
+ input xcorr_is_848, snoop, xcorr_quarter_freq;
// Carrier is steady on through this, unless we're snooping.
assign pwr_hi = ck_1356megb & (~snoop);
assign pwr_oe3 = 1'b0;
assign pwr_oe4 = 1'b0;
-// Clock divider
-reg [0:0] fc_divider;
+reg [2:0] fc_div;
always @(negedge ck_1356megb)
- fc_divider <= fc_divider + 1;
-wire fc_div2 = fc_divider[0];
+ fc_div <= fc_div + 1;
-reg adc_clk;
-always @(ck_1356megb)
- if (xcorr_is_848)
+(* clock_signal = "yes" *) reg adc_clk; // sample frequency, always 16 * fc
+always @(ck_1356megb, xcorr_is_848, xcorr_quarter_freq, fc_div)
+ if (xcorr_is_848 & ~xcorr_quarter_freq) // fc = 847.5 kHz
adc_clk <= ck_1356megb;
- else
- adc_clk <= fc_div2;
-
+ else if (~xcorr_is_848 & ~xcorr_quarter_freq) // fc = 424.25 kHz
+ adc_clk <= fc_div[0];
+ else if (xcorr_is_848 & xcorr_quarter_freq) // fc = 212.125 kHz
+ adc_clk <= fc_div[1];
+ else // fc = 106.0625 kHz
+ adc_clk <= fc_div[2];
+
// When we're a reader, we just need to do the BPSK demod; but when we're an
// eavesdropper, we also need to pick out the commands sent by the reader,
// using AM. Do this the same way that we do it for the simulated tag.
// so we need a 6-bit counter.
reg [5:0] corr_i_cnt;
// And a couple of registers in which to accumulate the correlations.
-// we would add at most 32 times adc_d, the result can be held in 13 bits.
-// Need one additional bit because it can be negative as well
+// we would add/sub at most 32 times adc_d, the signed result can be held in 14 bits.
reg signed [13:0] corr_i_accum;
reg signed [13:0] corr_q_accum;
reg signed [7:0] corr_i_out;
always @(negedge adc_clk)
begin
- corr_i_cnt <= corr_i_cnt + 1;
+ corr_i_cnt <= corr_i_cnt + 1;
end