void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data);
void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType);
-// hitag2.h
-void SnoopHitag(uint32_t type);
-void SimulateHitagTag(bool tag_mem_supplied, byte_t* data);
-void ReaderHitag(hitag_function htf, hitag_data* htd);
-void WriterHitag(hitag_function htf, hitag_data* htd, int page);
-
-//hitagS.h
-void ReadHitagSCmd(hitag_function htf, hitag_data* htd, uint64_t startPage, uint64_t tagMode, bool readBlock);
-void SimulateHitagSTag(bool tag_mem_supplied, byte_t* data);
-void WritePageHitagS(hitag_function htf, hitag_data* htd,int page);
-void check_challenges_cmd(bool file_given, byte_t* data, uint64_t tagMode);
-
// cmd.h
bool cmd_receive(UsbCommand* cmd);
bool cmd_send(uint32_t cmd, uint32_t arg0, uint32_t arg1, uint32_t arg2, void* data, size_t len);
// (c) 2012 Roel Verdult
//-----------------------------------------------------------------------------
+#include "hitag2.h"
+
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
-#include "hitag2.h"
+#include "hitag.h"
#include "string.h"
#include "BigBuf.h"
#include "fpgaloader.h"
};
static struct hitag2_tag tag = {
- .state = TAG_STATE_RESET,
- .sectors = { // Password mode: | Crypto mode:
- [0] = { 0x02, 0x4e, 0x02, 0x20}, // UID | UID
- [1] = { 0x4d, 0x49, 0x4b, 0x52}, // Password RWD | 32 bit LSB key
- [2] = { 0x20, 0xf0, 0x4f, 0x4e}, // Reserved | 16 bit MSB key, 16 bit reserved
- [3] = { 0x0e, 0xaa, 0x48, 0x54}, // Configuration, password TAG | Configuration, password TAG
- [4] = { 0x46, 0x5f, 0x4f, 0x4b}, // Data: F_OK
- [5] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
- [6] = { 0xaa, 0xaa, 0xaa, 0xaa}, // Data: ....
- [7] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
- [8] = { 0x00, 0x00, 0x00, 0x00}, // RSK Low
- [9] = { 0x00, 0x00, 0x00, 0x00}, // RSK High
- [10] = { 0x00, 0x00, 0x00, 0x00}, // RCF
- [11] = { 0x00, 0x00, 0x00, 0x00}, // SYNC
- },
+ .state = TAG_STATE_RESET,
+ .sectors = { // Password mode: | Crypto mode:
+ [0] = { 0x02, 0x4e, 0x02, 0x20}, // UID | UID
+ [1] = { 0x4d, 0x49, 0x4b, 0x52}, // Password RWD | 32 bit LSB key
+ [2] = { 0x20, 0xf0, 0x4f, 0x4e}, // Reserved | 16 bit MSB key, 16 bit reserved
+ [3] = { 0x0e, 0xaa, 0x48, 0x54}, // Configuration, password TAG | Configuration, password TAG
+ [4] = { 0x46, 0x5f, 0x4f, 0x4b}, // Data: F_OK
+ [5] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
+ [6] = { 0xaa, 0xaa, 0xaa, 0xaa}, // Data: ....
+ [7] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
+ [8] = { 0x00, 0x00, 0x00, 0x00}, // RSK Low
+ [9] = { 0x00, 0x00, 0x00, 0x00}, // RSK High
+ [10] = { 0x00, 0x00, 0x00, 0x00}, // RCF
+ [11] = { 0x00, 0x00, 0x00, 0x00}, // SYNC
+ },
};
static enum {
WRITE_STATE_PAGENUM_WRITTEN,
WRITE_STATE_PROG
} writestate;
-
-// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
+
+// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
#define AUTH_TABLE_LENGTH 2744
static byte_t* auth_table;
// Basic macros:
-#define u8 uint8_t
-#define u32 uint32_t
-#define u64 uint64_t
-#define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7))
-#define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8))
-#define rev32(x) (rev16(x)+(rev16(x>>16)<<16))
-#define rev64(x) (rev32(x)+(rev32(x>>32)<<32))
-#define bit(x,n) (((x)>>(n))&1)
-#define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1)
-#define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31))
-#define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63)))
+#define u8 uint8_t
+#define u32 uint32_t
+#define u64 uint64_t
+#define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7))
+#define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8))
+#define rev32(x) (rev16(x)+(rev16(x>>16)<<16))
+#define rev64(x) (rev32(x)+(rev32(x>>32)<<32))
+#define bit(x,n) (((x)>>(n))&1)
+#define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1)
+#define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31))
+#define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63)))
// Single bit Hitag2 functions:
-#define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8))
+#define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8))
-static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001
-static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001
-static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011
+static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001
+static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001
+static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011
static u32 _f20 (const u64 x)
{
- u32 i5;
-
+ u32 i5;
+
i5 = ((ht2_f4a >> i4 (x, 1, 2, 4, 5)) & 1)* 1
+ ((ht2_f4b >> i4 (x, 7,11,13,14)) & 1)* 2
+ ((ht2_f4b >> i4 (x,16,20,22,25)) & 1)* 4
static u64 _hitag2_init (const u64 key, const u32 serial, const u32 IV)
{
- u32 i;
- u64 x = ((key & 0xFFFF) << 32) + serial;
+ u32 i;
+ u64 x = ((key & 0xFFFF) << 32) + serial;
for (i = 0; i < 32; i++)
{
static u64 _hitag2_round (u64 *state)
{
- u64 x = *state;
+ u64 x = *state;
x = (x >> 1) +
((((x >> 0) ^ (x >> 2) ^ (x >> 3) ^ (x >> 6)
static u32 _hitag2_byte (u64 * x)
{
- u32 i, c;
+ u32 i, c;
for (i = 0, c = 0; i < 8; i++) c += (u32) _hitag2_round (x) << (i^7);
return c;
static int hitag2_init(void)
{
-// memcpy(&tag, &resetdata, sizeof(tag));
+// memcpy(&tag, &resetdata, sizeof(tag));
hitag2_reset();
return 0;
}
// T0 = TIMER_CLOCK1 / 125000 = 192
#define T0 192
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
#define HITAG_FRAME_LEN 20
#define HITAG_T_STOP 36 /* T_EOF should be > 36 */
-#define HITAG_T_LOW 8 /* T_LOW should be 4..10 */
+#define HITAG_T_LOW 8 /* T_LOW should be 4..10 */
#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
#define HITAG_T_1_MIN 25 /* T[1] should be 26..30 */
//#define HITAG_T_EOF 40 /* T_EOF should be > 36 */
-#define HITAG_T_EOF 80 /* T_EOF should be > 36 */
+#define HITAG_T_EOF 80 /* T_EOF should be > 36 */
#define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */
#define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */
#define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */
#define HITAG_T_PROG 614
-#define HITAG_T_TAG_ONE_HALF_PERIOD 10
-#define HITAG_T_TAG_TWO_HALF_PERIOD 25
-#define HITAG_T_TAG_THREE_HALF_PERIOD 41
-#define HITAG_T_TAG_FOUR_HALF_PERIOD 57
+#define HITAG_T_TAG_ONE_HALF_PERIOD 10
+#define HITAG_T_TAG_TWO_HALF_PERIOD 25
+#define HITAG_T_TAG_THREE_HALF_PERIOD 41
+#define HITAG_T_TAG_FOUR_HALF_PERIOD 57
-#define HITAG_T_TAG_HALF_PERIOD 16
-#define HITAG_T_TAG_FULL_PERIOD 32
+#define HITAG_T_TAG_HALF_PERIOD 16
+#define HITAG_T_TAG_FULL_PERIOD 32
-#define HITAG_T_TAG_CAPTURE_ONE_HALF 13
-#define HITAG_T_TAG_CAPTURE_TWO_HALF 25
-#define HITAG_T_TAG_CAPTURE_THREE_HALF 41
-#define HITAG_T_TAG_CAPTURE_FOUR_HALF 57
+#define HITAG_T_TAG_CAPTURE_ONE_HALF 13
+#define HITAG_T_TAG_CAPTURE_TWO_HALF 25
+#define HITAG_T_TAG_CAPTURE_THREE_HALF 41
+#define HITAG_T_TAG_CAPTURE_FOUR_HALF 57
static void hitag_send_bit(int bit) {
LED_A_ON();
- // Reset clock for the next bit
+ // Reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
-
+
// Fixed modulation, earlier proxmark version used inverted signal
if(bit == 0) {
// Manchester: Unloaded, then loaded |__--|
static void hitag2_handle_reader_command(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen)
{
byte_t rx_air[HITAG_FRAME_LEN];
-
+
// Copy the (original) received frame how it is send over the air
memcpy(rx_air,rx,nbytes(rxlen));
if(tag.crypto_active) {
hitag2_cipher_transcrypt(&(tag.cs),rx,rxlen/8,rxlen%8);
}
-
- // Reset the transmission frame length
+
+ // Reset the transmission frame length
*txlen = 0;
-
+
// Try to find out which command was send by selecting on length (in bits)
switch (rxlen) {
- // Received 11000 from the reader, request for UID, send UID
+ // Received 11000 from the reader, request for UID, send UID
case 05: {
// Always send over the air in the clear plaintext mode
if(rx_air[0] != 0xC0) {
}
break;
- // Read/Write command: ..xx x..y yy with yyy == ~xxx, xxx is sector number
+ // Read/Write command: ..xx x..y yy with yyy == ~xxx, xxx is sector number
case 10: {
unsigned int sector = (~( ((rx[0]<<2)&0x04) | ((rx[1]>>6)&0x03) ) & 0x07);
// Verify complement of sector index
memcpy(tx,tag.sectors[sector],4);
*txlen = 32;
break;
-
+
// Inverted Read command: 01xx x10y
case 0x44:
for (size_t i=0; i<4; i++) {
tag.active_sector = sector;
tag.state=TAG_STATE_WRITING;
break;
-
+
// Unknown command
default:
Dbprintf("Unknown command: %02x %02x",rx[0],rx[1]);
break;
}
-// LogTraceHitag(rx,rxlen,0,0,false);
-// LogTraceHitag(tx,*txlen,0,0,true);
-
+// LogTraceHitag(rx,rxlen,0,0,false);
+// LogTraceHitag(tx,*txlen,0,0,true);
+
if(tag.crypto_active) {
hitag2_cipher_transcrypt(&(tag.cs), tx, *txlen/8, *txlen%8);
}
static void hitag_reader_send_bit(int bit) {
LED_A_ON();
- // Reset clock for the next bit
+ // Reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
-
+
// Binary puls length modulation (BPLM) is used to encode the data stream
// This means that a transmission of a one takes longer than that of a zero
-
+
// Enable modulation, which means, drop the field
HIGH(GPIO_SSC_DOUT);
-
+
// Wait for 4-10 times the carrier period
while(AT91C_BASE_TC0->TC_CV < T0*6);
- // SpinDelayUs(8*8);
-
+ // SpinDelayUs(8*8);
+
// Disable modulation, just activates the field again
LOW(GPIO_SSC_DOUT);
-
+
if(bit == 0) {
// Zero bit: |_-|
while(AT91C_BASE_TC0->TC_CV < T0*22);
- // SpinDelayUs(16*8);
+ // SpinDelayUs(16*8);
} else {
// One bit: |_--|
while(AT91C_BASE_TC0->TC_CV < T0*28);
- // SpinDelayUs(22*8);
+ // SpinDelayUs(22*8);
}
LED_A_OFF();
}
for(size_t i=0; i<frame_len; i++) {
hitag_reader_send_bit((frame[i/8] >> (7-(i%8)))&1);
}
- // Send EOF
+ // Send EOF
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
// Enable modulation, which means, drop the field
HIGH(GPIO_SSC_DOUT);
static bool hitag2_password(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
// Reset the transmission frame length
*txlen = 0;
-
+
// Try to find out which command was send by selecting on length (in bits)
switch (rxlen) {
// No answer, try to resurrect
*txlen = 5;
memcpy(tx,"\xc0",nbytes(*txlen));
} break;
-
+
// Received UID, tag password
case 32: {
if (!bPwd) {
memcpy(tag.sectors[blocknr],rx,4);
blocknr++;
} else {
-
+
if(blocknr == 1){
//store password in block1, the TAG answers with Block3, but we need the password in memory
memcpy(tag.sectors[blocknr],tx,4);
}else{
memcpy(tag.sectors[blocknr],rx,4);
}
-
+
blocknr++;
if (blocknr > 7) {
DbpString("Read succesful!");
tx[1] = ((blocknr^7) << 6);
}
} break;
-
+
// Unexpected response
default: {
Dbprintf("Uknown frame length: %d",rxlen);
case WRITE_STATE_PAGENUM_WRITTEN:
// Check if page number was received correctly
if ((rxlen == 10) &&
- (rx[0] == (0x82 | (blocknr << 3) | ((blocknr^7) >> 2))) &&
- (rx[1] == (((blocknr & 0x3) ^ 0x3) << 6))) {
+ (rx[0] == (0x82 | (blocknr << 3) | ((blocknr^7) >> 2))) &&
+ (rx[1] == (((blocknr & 0x3) ^ 0x3) << 6))) {
*txlen = 32;
memset(tx, 0, HITAG_FRAME_LEN);
memcpy(tx, writedata, 4);
static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen, bool write) {
// Reset the transmission frame length
*txlen = 0;
-
+
if(bCrypto) {
hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8);
}
}
} break;
-
+
// Unexpected response
default: {
Dbprintf("Uknown frame length: %d",rxlen);
} break;
}
}
-
+
if(bCrypto) {
// We have to return now to avoid double encryption
if (!bAuthenticating) {
static bool hitag2_authenticate(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
- // Reset the transmission frame length
+ // Reset the transmission frame length
*txlen = 0;
-
+
// Try to find out which command was send by selecting on length (in bits)
switch (rxlen) {
// No answer, try to resurrect
*txlen = 5;
memcpy(tx,"\xc0",nbytes(*txlen));
} break;
-
+
// Received UID, crypto tag answer
case 32: {
if (!bCrypto) {
return false;
}
} break;
-
+
// Unexpected response
default: {
Dbprintf("Uknown frame length: %d",rxlen);
return false;
} break;
}
-
+
return true;
}
static bool hitag2_test_auth_attempts(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
- // Reset the transmission frame length
+ // Reset the transmission frame length
*txlen = 0;
-
+
// Try to find out which command was send by selecting on length (in bits)
switch (rxlen) {
// No answer, try to resurrect
}
*txlen = 5;
memcpy(tx,"\xc0",nbytes(*txlen));
- } break;
-
+ } break;
+
// Received UID, crypto tag answer, or read block response
case 32: {
if (!bCrypto) {
memcpy(NrAr,auth_table+auth_table_pos,8);
}
} break;
-
+
default: {
Dbprintf("Uknown frame length: %d",rxlen);
return false;
} break;
}
-
+
return true;
}
int tag_sof;
byte_t rx[HITAG_FRAME_LEN] = {0};
size_t rxlen=0;
-
+
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// Clean up trace and prepare it for storing frames
set_tracing(true);
clear_trace();
-
+
auth_table_len = 0;
auth_table_pos = 0;
DbpString("Starting Hitag2 snoop");
LED_D_ON();
-
+
// Set up eavesdropping mode, frequency divisor which will drive the FPGA
// and analog mux selection.
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
-
+
// Configure output pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// Disable modulation, we are going to eavesdrop, not modulate ;)
LOW(GPIO_SSC_DOUT);
-
+
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
-
- // Disable timer during configuration
+
+ // Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-
- // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+
+ // TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
uint32_t t1_channel_mode = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
AT91C_BASE_TC1->TC_CMR = t1_channel_mode;
-
+
// Enable and reset counter
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-
+
// Reset the received frame, frame count and timing info
frame_count = 0;
response = 0;
lastbit = 1;
bSkip = true;
tag_sof = 4;
-
+
while(!BUTTON_PRESS()) {
// Watchdog hit
WDT_HIT();
-
+
// Receive frame, watch for at most T0*EOF periods
while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) {
// Check if rising edge in modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
- // Retrieve the new timing values
+ // Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA/T0);
-
+
// Find out if we are dealing with a rising or falling edge
rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0;
memset(rx,0x00,sizeof(rx));
rxlen = 0;
}
-
+
// Only handle if reader frame and rising edge, or tag frame and falling edge
if (reader_frame != rising_edge) {
overflow += ra;
continue;
}
-
+
// Add the buffered timing values of earlier captured edges which were skipped
ra += overflow;
overflow = 0;
-
+
if (reader_frame) {
LED_B_ON();
// Capture reader frame
// Capture the T0 periods that have passed since last communication or field drop (reset)
response = (ra - HITAG_T_LOW);
} else if(ra >= HITAG_T_1_MIN ) {
- // '1' bit
+ // '1' bit
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
} else if(ra >= HITAG_T_0_MIN) {
- // '0' bit
+ // '0' bit
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
} else {
// Manchester coding example |_-|...|_-|-_| (0...01)
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
- // We have to skip this half period at start and add the 'one' the second time
+ // We have to skip this half period at start and add the 'one' the second time
if (!bSkip) {
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
}
}
}
-
+
// Check if frame was captured
if(rxlen > 0) {
frame_count++;
auth_table_len += 8;
}
}
-
+
// Reset the received frame and response timing info
memset(rx,0x00,sizeof(rx));
response = 0;
bSkip = true;
tag_sof = 4;
overflow = 0;
-
+
LED_B_OFF();
LED_C_OFF();
} else {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_A_OFF();
-
-// Dbprintf("frame received: %d",frame_count);
-// Dbprintf("Authentication Attempts: %d",(auth_table_len/8));
-// DbpString("All done");
+
+// Dbprintf("frame received: %d",frame_count);
+// Dbprintf("Authentication Attempts: %d",(auth_table_len/8));
+// DbpString("All done");
}
void SimulateHitagTag(bool tag_mem_supplied, byte_t* data) {
size_t txlen=0;
bool bQuitTraceFull = false;
bQuiet = false;
-
+
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// Clean up trace and prepare it for storing frames
DbpString("Starting Hitag2 simulation");
LED_D_ON();
hitag2_init();
-
+
if (tag_mem_supplied) {
DbpString("Loading hitag2 memory...");
memcpy((byte_t*)tag.sectors,data,48);
}
Dbprintf("| %d | %08x |",i,block);
}
-
+
// Set up simulator mode, frequency divisor which will drive the FPGA
// and analog mux selection.
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
// Disable modulation at default, which means release resistance
LOW(GPIO_SSC_DOUT);
-
+
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
-
+
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
-
- // Disable timer during configuration
+
+ // Disable timer during configuration
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
- // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+ // TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
+
+ // TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
-
+
// Reset the received frame, frame count and timing info
memset(rx,0x00,sizeof(rx));
frame_count = 0;
// Enable and reset counter
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-
+
while(!BUTTON_PRESS()) {
// Watchdog hit
WDT_HIT();
-
+
// Receive frame, watch for at most T0*EOF periods
while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) {
// Check if rising edge in modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
- // Retrieve the new timing values
+ // Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
overflow = 0;
// Reset timer every frame, we have to capture the last edge for timing
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-
+
LED_B_ON();
-
+
// Capture reader frame
if(ra >= HITAG_T_STOP) {
if (rxlen != 0) {
// Capture the T0 periods that have passed since last communication or field drop (reset)
response = (ra - HITAG_T_LOW);
} else if(ra >= HITAG_T_1_MIN ) {
- // '1' bit
+ // '1' bit
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
} else if(ra >= HITAG_T_0_MIN) {
- // '0' bit
+ // '0' bit
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
} else {
}
}
}
-
+
// Check if frame was captured
if(rxlen > 4) {
frame_count++;
}
}
}
-
+
// Disable timer 1 with external trigger to avoid triggers during our own modulation
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Process the incoming frame (rx) and prepare the outgoing frame (tx)
hitag2_handle_reader_command(rx,rxlen,tx,&txlen);
-
+
// Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
// not that since the clock counts since the rising edge, but T_Wait1 is
// with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
- // periods. The gap time T_Low varies (4..10). All timer values are in
+ // periods. The gap time T_Low varies (4..10). All timer values are in
// terms of T0 units
while(AT91C_BASE_TC0->TC_CV < T0*(HITAG_T_WAIT_1-HITAG_T_LOW));
}
}
}
-
+
// Reset the received frame and response timing info
memset(rx,0x00,sizeof(rx));
response = 0;
-
+
// Enable and reset external trigger in timer for capturing future frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
LED_B_OFF();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-
+
DbpString("Sim Stopped");
-
+
}
void ReaderHitag(hitag_function htf, hitag_data* htd) {
size_t txlen=0;
int lastbit;
bool bSkip;
- int reset_sof;
+ int reset_sof;
int tag_sof;
int t_wait = HITAG_T_WAIT_MAX;
bool bStop = false;
bool bQuitTraceFull = false;
-
+
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// Reset the return status
bSuccessful = false;
-
+
// Clean up trace and prepare it for storing frames
set_tracing(true);
clear_trace();
bAuthenticating = false;
bQuitTraceFull = true;
} break;
- case RHT2F_CRYPTO:
+ case RHT2F_CRYPTO:
{
DbpString("Authenticating using key:");
- memcpy(key,htd->crypto.key,6); //HACK; 4 or 6?? I read both in the code.
+ memcpy(key,htd->crypto.key,6); //HACK; 4 or 6?? I read both in the code.
Dbhexdump(6,key,false);
blocknr = 0;
bQuiet = false;
return;
} break;
}
-
+
LED_D_ON();
hitag2_init();
-
+
// Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-
+
// Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(30);
-
+
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
-
- // Disable timer during configuration
+
+ // Disable timer during configuration
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-
- // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+
+ // TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
+
+ // TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
-
+
// Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while(!bStop && !BUTTON_PRESS()) {
// Watchdog hit
WDT_HIT();
-
+
// Check if frame was captured and store it
if(rxlen > 0) {
frame_count++;
}
}
}
-
+
// By default reset the transmission buffer
tx = txbuf;
switch(htf) {
while(AT91C_BASE_TC0->TC_CV < T0*(t_wait+(HITAG_T_TAG_HALF_PERIOD*lastbit)));
//Dbprintf("DEBUG: Sending reader frame");
-
+
// Transmit the reader frame
hitag_reader_send_frame(tx,txlen);
while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_WAIT_MAX) {
// Check if falling edge in tag modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
- // Retrieve the new timing values
+ // Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA/T0);
-
+
// Reset timer every frame, we have to capture the last edge for timing
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
-
+
LED_B_ON();
-
+
// Capture tag frame (manchester decoding using only falling edges)
if(ra >= HITAG_T_EOF) {
if (rxlen != 0) {
//need to test to verify we don't exceed memory...
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
- // break;
+ // break;
//}
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
rxlen++;
} else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
-
+
//need to test to verify we don't exceed memory...
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
- // break;
+ // break;
//}
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
- // We have to skip this half period at start and add the 'one' the second time
+ // We have to skip this half period at start and add the 'one' the second time
if (!bSkip) {
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
//need to test to verify we don't exceed memory...
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
- // break;
+ // break;
//}
if (tag_sof) {
// Ignore bits that are transmitted during SOF
}
}
//Dbprintf("DEBUG: Done waiting for frame");
-
+
LED_B_OFF();
LED_D_OFF();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
size_t txlen=0;
int lastbit;
bool bSkip;
- int reset_sof;
+ int reset_sof;
int tag_sof;
int t_wait = HITAG_T_WAIT_MAX;
bool bStop;
bool bQuitTraceFull = false;
-
+
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// Reset the return status
bSuccessful = false;
-
+
// Clean up trace and prepare it for storing frames
set_tracing(true);
clear_trace();
case WHT2F_CRYPTO:
{
DbpString("Authenticating using key:");
- memcpy(key,htd->crypto.key,6); //HACK; 4 or 6?? I read both in the code.
+ memcpy(key,htd->crypto.key,6); //HACK; 4 or 6?? I read both in the code.
memcpy(writedata, htd->crypto.data, 4);
Dbhexdump(6,key,false);
blocknr = page;
return;
} break;
}
-
+
LED_D_ON();
hitag2_init();
-
+
// Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-
+
// Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(30);
-
+
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
-
- // Disable timer during configuration
+
+ // Disable timer during configuration
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-
- // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+
+ // TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
+
+ // TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
-
+
// Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while(!bStop && !BUTTON_PRESS()) {
// Watchdog hit
WDT_HIT();
-
+
// Check if frame was captured and store it
if(rxlen > 0) {
frame_count++;
}
}
}
-
+
// By default reset the transmission buffer
tx = txbuf;
switch(htf) {
return;
} break;
}
-
+
// Send and store the reader command
// Disable timer 1 with external trigger to avoid triggers during our own modulation
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-
+
// Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting,
// Since the clock counts since the last falling edge, a 'one' means that the
// falling edge occured halfway the period. with respect to this falling edge,
// we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'.
// All timer values are in terms of T0 units
while(AT91C_BASE_TC0->TC_CV < T0*(t_wait+(HITAG_T_TAG_HALF_PERIOD*lastbit)));
-
+
//Dbprintf("DEBUG: Sending reader frame");
-
+
// Transmit the reader frame
hitag_reader_send_frame(tx,txlen);
- // Enable and reset external trigger in timer for capturing future frames
+ // Enable and reset external trigger in timer for capturing future frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Add transmitted frame to total count
while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_WAIT_MAX) {
// Check if falling edge in tag modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
- // Retrieve the new timing values
+ // Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA/T0);
-
+
// Reset timer every frame, we have to capture the last edge for timing
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
-
+
LED_B_ON();
-
+
// Capture tag frame (manchester decoding using only falling edges)
if(ra >= HITAG_T_EOF) {
if (rxlen != 0) {
//need to test to verify we don't exceed memory...
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
- // break;
+ // break;
//}
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
rxlen++;
} else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
-
+
//need to test to verify we don't exceed memory...
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
- // break;
+ // break;
//}
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
- // We have to skip this half period at start and add the 'one' the second time
+ // We have to skip this half period at start and add the 'one' the second time
if (!bSkip) {
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
//need to test to verify we don't exceed memory...
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
- // break;
+ // break;
//}
if (tag_sof) {
// Ignore bits that are transmitted during SOF
if (rxlen>0) break;
}
}
-
+
// Wait some extra time for flash to be programmed
if ((rxlen == 0) && (writestate == WRITE_STATE_PROG))
{
}
}
//Dbprintf("DEBUG: Done waiting for frame");
-
+
LED_B_OFF();
LED_D_OFF();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
--- /dev/null
+//-----------------------------------------------------------------------------
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Hitag2 emulation
+//
+// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
+// (c) 2012 Roel Verdult
+//-----------------------------------------------------------------------------
+
+#ifndef HITAG2_H__
+#define HITAG2_H__
+
+#include <stdint.h>
+#include <stdbool.h>
+#include "hitag.h"
+
+void SnoopHitag(uint32_t type);
+void SimulateHitagTag(bool tag_mem_supplied, uint8_t* data);
+void ReaderHitag(hitag_function htf, hitag_data* htd);
+void WriterHitag(hitag_function htf, hitag_data* htd, int page);
+
+#endif
//-----------------------------------------------------------------------------
+#include "hitagS.h"
+
#include <stdlib.h>
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
-#include "hitagS.h"
-#include "hitag2.h"
+#include "hitag.h"
#include "string.h"
#include "BigBuf.h"
#include "fpgaloader.h"
#define CRC_PRESET 0xFF
#define CRC_POLYNOM 0x1D
-#define u8 uint8_t
-#define u32 uint32_t
-#define u64 uint64_t
-#define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7))
-#define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8))
-#define rev32(x) (rev16(x)+(rev16(x>>16)<<16))
-#define rev64(x) (rev32(x)+(rev32(x>>32)<<32))
-#define bit(x,n) (((x)>>(n))&1)
-#define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1)
-#define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31))
-#define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63)))
+#define u8 uint8_t
+#define u32 uint32_t
+#define u64 uint64_t
+#define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7))
+#define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8))
+#define rev32(x) (rev16(x)+(rev16(x>>16)<<16))
+#define rev64(x) (rev32(x)+(rev32(x>>32)<<32))
+#define bit(x,n) (((x)>>(n))&1)
+#define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1)
+#define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31))
+#define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63)))
static bool bQuiet;
static bool bSuccessful;
typedef enum modulation {
AC2K = 0, AC4K, MC4K, MC8K
} MOD;
-static MOD m = AC2K; //used modulation
+static MOD m = AC2K; //used modulation
static uint32_t temp_uid;
static int temp2 = 0;
-static int sof_bits; //number of start-of-frame bits
-static byte_t pwdh0, pwdl0, pwdl1; //password bytes
-static uint32_t rnd = 0x74124485; //randomnumber
+static int sof_bits; //number of start-of-frame bits
+static byte_t pwdh0, pwdl0, pwdl1; //password bytes
+static uint32_t rnd = 0x74124485; //randomnumber
static int test = 0;
size_t blocknr;
bool end=false;
// Single bit Hitag2 functions:
-#define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8))
-static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001
-static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001
-static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011
-#define ht2bs_4a(a,b,c,d) (~(((a|b)&c)^(a|d)^b))
-#define ht2bs_4b(a,b,c,d) (~(((d|c)&(a^b))^(d|a|b)))
-#define ht2bs_5c(a,b,c,d,e) (~((((((c^e)|d)&a)^b)&(c^b))^(((d^e)|a)&((d^b)|c))))
-#define uf20bs u32
+#define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8))
+static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001
+static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001
+static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011
+#define ht2bs_4a(a,b,c,d) (~(((a|b)&c)^(a|d)^b))
+#define ht2bs_4b(a,b,c,d) (~(((d|c)&(a^b))^(d|a|b)))
+#define ht2bs_5c(a,b,c,d,e) (~((((((c^e)|d)&a)^b)&(c^b))^(((d^e)|a)&((d^b)|c))))
+#define uf20bs u32
static u32 f20(const u64 x) {
u32 i5;
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
-#define T0 192
+#define T0 192
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
-#define HITAG_FRAME_LEN 20
-#define HITAG_T_STOP 36 /* T_EOF should be > 36 */
-#define HITAG_T_LOW 8 /* T_LOW should be 4..10 */
-#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
-#define HITAG_T_1_MIN 25 /* T[1] should be 26..30 */
+#define HITAG_FRAME_LEN 20
+#define HITAG_T_STOP 36 /* T_EOF should be > 36 */
+#define HITAG_T_LOW 8 /* T_LOW should be 4..10 */
+#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
+#define HITAG_T_1_MIN 25 /* T[1] should be 26..30 */
//#define HITAG_T_EOF 40 /* T_EOF should be > 36 */
-#define HITAG_T_EOF 80 /* T_EOF should be > 36 */
-#define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */
-#define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */
-#define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */
-
-#define HITAG_T_TAG_ONE_HALF_PERIOD 10
-#define HITAG_T_TAG_TWO_HALF_PERIOD 25
-#define HITAG_T_TAG_THREE_HALF_PERIOD 41
-#define HITAG_T_TAG_FOUR_HALF_PERIOD 57
-
-#define HITAG_T_TAG_HALF_PERIOD 16
-#define HITAG_T_TAG_FULL_PERIOD 32
-
-#define HITAG_T_TAG_CAPTURE_ONE_HALF 13
-#define HITAG_T_TAG_CAPTURE_TWO_HALF 25
-#define HITAG_T_TAG_CAPTURE_THREE_HALF 41
-#define HITAG_T_TAG_CAPTURE_FOUR_HALF 57
+#define HITAG_T_EOF 80 /* T_EOF should be > 36 */
+#define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */
+#define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */
+#define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */
+
+#define HITAG_T_TAG_ONE_HALF_PERIOD 10
+#define HITAG_T_TAG_TWO_HALF_PERIOD 25
+#define HITAG_T_TAG_THREE_HALF_PERIOD 41
+#define HITAG_T_TAG_FOUR_HALF_PERIOD 57
+
+#define HITAG_T_TAG_HALF_PERIOD 16
+#define HITAG_T_TAG_FULL_PERIOD 32
+
+#define HITAG_T_TAG_CAPTURE_ONE_HALF 13
+#define HITAG_T_TAG_CAPTURE_TWO_HALF 25
+#define HITAG_T_TAG_CAPTURE_THREE_HALF 41
+#define HITAG_T_TAG_CAPTURE_FOUR_HALF 57
#define DEBUG 0
// Wait for 4-10 times the carrier period
while (AT91C_BASE_TC0->TC_CV < T0 * 6)
;
- // SpinDelayUs(8*8);
+ // SpinDelayUs(8*8);
// Disable modulation, just activates the field again
LOW(GPIO_SSC_DOUT);
// Zero bit: |_-|
while (AT91C_BASE_TC0->TC_CV < T0 * 11)
;
- // SpinDelayUs(16*8);
+ // SpinDelayUs(16*8);
} else {
// One bit: |_--|
while (AT91C_BASE_TC0->TC_CV < T0 * 14)
;
- // SpinDelayUs(22*8);
+ // SpinDelayUs(22*8);
}
} else {
// Wait for 4-10 times the carrier period
while (AT91C_BASE_TC0->TC_CV < T0 * 6)
;
- // SpinDelayUs(8*8);
+ // SpinDelayUs(8*8);
// Disable modulation, just activates the field again
LOW(GPIO_SSC_DOUT);
// Zero bit: |_-|
while (AT91C_BASE_TC0->TC_CV < T0 * 22)
;
- // SpinDelayUs(16*8);
+ // SpinDelayUs(16*8);
} else {
// One bit: |_--|
while (AT91C_BASE_TC0->TC_CV < T0 * 28)
;
- // SpinDelayUs(22*8);
+ // SpinDelayUs(22*8);
}
}
} else {
// Ignore wierd value, is to small to mean anything
}
- }
+ }
*rxlenOrg = rxlen;
}
-/*
+/*
static void hitag_decode_frame_AC2K_rising(byte_t* rx, size_t* rxlenOrg, int* response, int rawMod[], int rawLen) {
int tag_sof = 1; //skip start of frame
size_t rxlen = 0;
if (bitRate == 4) {
timing = 2;
}
-
+
for (int i=0; i < rawLen; i++) {
int ra = rawMod[i];
break;
case ADVANCED:
m = AC2K;
- sofBits = 5; //3 sof bits but 5 captures
+ sofBits = 5; //3 sof bits but 5 captures
break;
case FAST_ADVANCED:
m = AC4K;
- sofBits = 5; //3 sof bits but 5 captures
+ sofBits = 5; //3 sof bits but 5 captures
break;
default:
break;
break;
}
}
-
+
//rising AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
if (DEBUG >= 2) {
for (i=0; i < rawLen; i+=20) {
- Dbprintf("raw modulation: - %d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d",
+ Dbprintf("raw modulation: - %d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d",
rawMod[i],rawMod[i+1],rawMod[i+2],rawMod[i+3], rawMod[i+4],rawMod[i+5],rawMod[i+6],rawMod[i+7],
rawMod[i+8],rawMod[i+9],rawMod[i+10],rawMod[i+11], rawMod[i+12],rawMod[i+13],rawMod[i+14],rawMod[i+15],
rawMod[i+16],rawMod[i+17],rawMod[i+18],rawMod[i+19]
// DATA | 1 | 0 | 1 | 1 | 0 |
// Manchester |--__|__--|--__|--__|__--|
// Anti Collision |-_-_|--__|-_-_|-_-_|--__|
- // |<-->|
- // | T |
+ // |<-->|
+ // | T |
case AC2K:
if (DEBUG >= 2) { Dbprintf("decoding frame with modulation AC2K"); }
hitag_decode_frame_AC(2, sofBits, rx, rxlen, response, rawMod, rawLen);
calc_crc(&crc, tx[0], 8);
calc_crc(&crc, 0x00 + ((pageNum % 16) * 16), 4);
tx[1] = 0x00 + ((pageNum % 16) * 16) + (crc / 16);
- tx[2] = 0x00 + (crc % 16) * 16;
+ tx[2] = 0x00 + (crc % 16) * 16;
} else if (tag.pstate == SELECTED && tag.tstate == READING_PAGE && *rxlen > 0) {
//save received data
z = 0;
tag.pages[pageNum][i] = 0x0;
}
for (i = 0; i < 4; i++) {
- tag.pages[pageNum][i] += ((pageData[i * 8] << 7) | (pageData[1 + (i * 8)] << 6) |
- (pageData[2 + (i * 8)] << 5) | (pageData[3 + (i * 8)] << 4) |
- (pageData[4 + (i * 8)] << 3) | (pageData[5 + (i * 8)] << 2) |
+ tag.pages[pageNum][i] += ((pageData[i * 8] << 7) | (pageData[1 + (i * 8)] << 6) |
+ (pageData[2 + (i * 8)] << 5) | (pageData[3 + (i * 8)] << 4) |
+ (pageData[4 + (i * 8)] << 3) | (pageData[5 + (i * 8)] << 2) |
(pageData[6 + (i * 8)]
<< 1) | pageData[7 + (i * 8)]);
}
tag.pages[pageNum][2], tag.pages[pageNum][1], tag.pages[pageNum][0]);
} else {
Dbprintf("Page[%2d]: %02X %02X %02X %02X", pageNum,
- tag.pages[pageNum][3], tag.pages[pageNum][2],
+ tag.pages[pageNum][3], tag.pages[pageNum][2],
tag.pages[pageNum][1], tag.pages[pageNum][0]);
}
-
+
//display key and password if possible
if (pageNum == 1 && tag.auth == 1 && tag.LKP) {
if (htf == 02) { //RHTS_KEY
calc_crc(&crc, tx[0], 8);
calc_crc(&crc, 0x00 + ((blockNum % 16) * 16), 4);
tx[1] = 0x00 + ((blockNum % 16) * 16) + (crc / 16);
- tx[2] = 0x00 + (crc % 16) * 16;
+ tx[2] = 0x00 + (crc % 16) * 16;
} else if (tag.pstate == SELECTED && tag.tstate == READING_BLOCK && *rxlen > 0) {
//save received data
z = 0;
for (z = 0; z < 4; z++) { //4 pages
for (i = 0; i < 4; i++) {
j = (i * 8) + (z*32); //bit in page + pageStart
- tag.pages[blockNum+z][i] = ((blockData[j] << 7) | (blockData[1 + j] << 6) |
- (blockData[2 + j] << 5) | (blockData[3 + j] << 4) |
- (blockData[4 + j] << 3) | (blockData[5 + j] << 2) |
+ tag.pages[blockNum+z][i] = ((blockData[j] << 7) | (blockData[1 + j] << 6) |
+ (blockData[2 + j] << 5) | (blockData[3 + j] << 4) |
+ (blockData[4 + j] << 3) | (blockData[5 + j] << 2) |
(blockData[6 + j] << 1) | blockData[7 + j]);
}
}
if (DEBUG) {
- for (z = 0; z < 4; z++) {
+ for (z = 0; z < 4; z++) {
Dbprintf("Page[%2d]: %02X %02X %02X %02X", blockNum+z,
- tag.pages[blockNum+z][3], tag.pages[blockNum+z][2],
+ tag.pages[blockNum+z][3], tag.pages[blockNum+z][2],
tag.pages[blockNum+z][1], tag.pages[blockNum+z][0]);
}
}
tx[1] = tag.pages[page][1];
tx[2] = tag.pages[page][2];
tx[3] = tag.pages[page][3];
-
+
if (tag.LKP && page == 1)
tx[3] = 0xff;
/*
* to autenticate to a tag with the given key or challenge
*/
-static int hitagS_handle_tag_auth(hitag_function htf,uint64_t key, uint64_t NrAr, byte_t* rx,
+static int hitagS_handle_tag_auth(hitag_function htf,uint64_t key, uint64_t NrAr, byte_t* rx,
const size_t rxlen, byte_t* tx, size_t* txlen) {
byte_t rx_air[HITAG_FRAME_LEN];
int response_bit[200] = {0};
*txlen = 0;
if (DEBUG) {
- Dbprintf("START hitagS_handle_tag_auth - rxlen: %d, tagstate=%d", rxlen, (int)tag.pstate);
- }
+ Dbprintf("START hitagS_handle_tag_auth - rxlen: %d, tagstate=%d", rxlen, (int)tag.pstate);
+ }
if (tag.pstate == READY && rxlen >= 32) {
//received uid
for (i = 0; i < 32; i++) {
uid[i] = response_bit[i];
}
-
+
uid1 = (uid[0] << 7) | (uid[1] << 6) | (uid[2] << 5) | (uid[3] << 4)
| (uid[4] << 3) | (uid[5] << 2) | (uid[6] << 1) | uid[7];
uid2 = (uid[8] << 7) | (uid[9] << 6) | (uid[10] << 5) | (uid[11] << 4)
uid3 = (uid[16] << 7) | (uid[17] << 6) | (uid[18] << 5) | (uid[19] << 4)
| (uid[20] << 3) | (uid[21] << 2) | (uid[22] << 1) | uid[23];
uid4 = (uid[24] << 7) | (uid[25] << 6) | (uid[26] << 5) | (uid[27] << 4)
- | (uid[28] << 3) | (uid[29] << 2) | (uid[30] << 1) | uid[31];
+ | (uid[28] << 3) | (uid[29] << 2) | (uid[30] << 1) | uid[31];
Dbprintf("UID: %02X %02X %02X %02X", uid1, uid2, uid3, uid4);
tag.uid = (uid4 << 24 | uid3 << 16 | uid2 << 8 | uid1);
response_bit[i] = 0;
}
- //skip the first 5
+ //skip the first 5
for (i = 5; i < 37; i++) {
response_bit[i] = uid[i - 5];
}
//tag.TTFM in response_bit[12] and response_bit[13]
tag.LCON = response_bit[14];
tag.LKP = response_bit[15];
-
+
//CON2
tag.LCK7 = response_bit[16];
tag.LCK6 = response_bit[17];
if(htf==02||htf==04){ //RHTS_KEY //WHTS_KEY
state = hitag2_init(rev64(key), rev32(tag.uid), rev32(rnd));
/*
- Dbprintf("key: %02X %02X\n\n", key, rev64(key));
- Dbprintf("tag.uid: %02X %02X\n\n", tag.uid, rev32(tag.uid));
- Dbprintf("rnd: %02X %02X\n\n", rnd, rev32(rnd));
+ Dbprintf("key: %02X %02X\n\n", key, rev64(key));
+ Dbprintf("tag.uid: %02X %02X\n\n", tag.uid, rev32(tag.uid));
+ Dbprintf("rnd: %02X %02X\n\n", rnd, rev32(rnd));
*/
for (i = 0; i < 4; i++) {
auth_ks[i] = hitag2_byte(&state) ^ 0xff;
} else if (tag.auth == 0) {
tag.pstate = SELECTED;
}
-
+
} else if (tag.pstate == AUTHENTICATE && rxlen >= 32) {
//encrypted con2,password received.
if (DEBUG) {
}
if (DEBUG) {
- Dbprintf("END hitagS_handle_tag_auth - tagstate=%d", (int)tag.pstate);
- }
+ Dbprintf("END hitagS_handle_tag_auth - tagstate=%d", (int)tag.pstate);
+ }
return 0;
}
}
}
- for (i = 0; i < 64; i++) {
+ for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
tag.pages[i][j] = data[(i*4)+j];
}
//tag.TTFM in response_bit[12] and response_bit[13]
tag.LCON = ((con1 & 0x2) == 0x2) ? 1 : 0;
tag.LKP = ((con1 & 0x1) == 0x1) ? 1 : 0;
-
+
//CON2
tag.LCK7 = ((con2 & 0x80) == 0x80) ? 1 : 0;
tag.LCK6 = ((con2 & 0x40) == 0x40) ? 1 : 0;
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
- // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+ // TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
+
+ // TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
bool bQuitTraceFull = false;
page_to_be_written = 0;
-
+
//read given key/challenge
byte_t NrAr_[8];
uint64_t key=0;
memcpy(NrAr_,htd->auth.NrAr,8);
Dbhexdump(8,NrAr_,false);
NrAr=NrAr_[7] | ((uint64_t)NrAr_[6]) << 8 | ((uint64_t)NrAr_[5]) << 16 | ((uint64_t)NrAr_[4]) << 24 | ((uint64_t)NrAr_[3]) << 32 |
- ((uint64_t)NrAr_[2]) << 40| ((uint64_t)NrAr_[1]) << 48 | ((uint64_t)NrAr_[0]) << 56;
+ ((uint64_t)NrAr_[2]) << 40| ((uint64_t)NrAr_[1]) << 48 | ((uint64_t)NrAr_[0]) << 56;
} break;
case 02:
case 04: { //RHTS_KEY
DbpString("Authenticating using key:");
- memcpy(key_,htd->crypto.key,6);
+ memcpy(key_,htd->crypto.key,6);
Dbhexdump(6,key_,false);
key=key_[5] | ((uint64_t)key_[4]) << 8 | ((uint64_t)key_[3]) << 16 | ((uint64_t)key_[2]) << 24 | ((uint64_t)key_[1]) << 32 | ((uint64_t)key_[0]) << 40;
} break;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-// Reset the return status
+ // Reset the return status
bSuccessful = false;
-// Clean up trace and prepare it for storing frames
+ // Clean up trace and prepare it for storing frames
set_tracing(true);
clear_trace();
LED_D_ON();
-// Configure output and enable pin that is connected to the FPGA (for modulating)
+ // Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-// Set fpga in edge detect with reader field, we can modulate as reader now
+ // Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
-// Set Frequency divisor which will drive the FPGA and analog mux selection
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ // Set Frequency divisor which will drive the FPGA and analog mux selection
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
-// Disable modulation at default, which means enable the field
+ // Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
-// Give it a bit of time for the resonant antenna to settle.
+ // Give it a bit of time for the resonant antenna to settle.
SpinDelay(30);
-// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
+ // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
-// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
+ // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
-// Disable timer during configuration
+ // Disable timer during configuration
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
-// external trigger rising edge, load RA on falling edge of TIOA.
+ // TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
+
+ // TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+ // external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
-// Enable and reset counters
+ // Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-// Reset the received frame, frame count and timing info
+ // Reset the received frame, frame count and timing info
frame_count = 0;
response = 0;
lastbit = 1;
txlen = 0;
if (DEBUG >= 2) {
- Dbprintf("FRO %d rxlen: %d, pstate=%d, tstate=%d", frame_count, rxlen, (int)tag.pstate, (int)tag.tstate);
- }
+ Dbprintf("FRO %d rxlen: %d, pstate=%d, tstate=%d", frame_count, rxlen, (int)tag.pstate, (int)tag.tstate);
+ }
if (rxlen == 0) {
//start authentication
}
-
+
if (readBlock && tag.pstate == SELECTED && (tag.tstate == READING_BLOCK || tag.tstate == NO_OP) && rxlen > 0) {
i = hitag_read_block(htf, key, rx, &rxlen, tx, &txlen, sendNum);
if (i > 0) { sendNum+=4; }
lastbit = 1;
response = 0;
- // get tag id in anti-collision mode (proprietary data format, so switch off manchester and read at double the data rate, for 4 x the data bits)
- hitag_receive_frame(rx, &rxlen, &response);
+ // get tag id in anti-collision mode (proprietary data format, so switch off manchester and read at double the data rate, for 4 x the data bits)
+ hitag_receive_frame(rx, &rxlen, &response);
}
end=false;
LED_B_OFF();
} else {
Dbprintf("ReadHitagS in mode=STANDARD, blockRead=%d, startPage=%d", readBlock, startPage);
ReadHitagSintern(htf, htd, STANDARD, (int)startPage, readBlock);
- }
+ }
}
int page = page_;
unsigned char crc;
byte_t data[4]= {0,0,0,0};
-
+
//read given key/challenge, the page and the data
byte_t NrAr_[8];
uint64_t key=0;
memcpy(NrAr_,htd->auth.NrAr,8);
Dbhexdump(8,NrAr_,false);
NrAr=NrAr_[7] | ((uint64_t)NrAr_[6]) << 8 | ((uint64_t)NrAr_[5]) << 16 | ((uint64_t)NrAr_[4]) << 24 | ((uint64_t)NrAr_[3]) << 32 |
- ((uint64_t)NrAr_[2]) << 40| ((uint64_t)NrAr_[1]) << 48 | ((uint64_t)NrAr_[0]) << 56;
+ ((uint64_t)NrAr_[2]) << 40| ((uint64_t)NrAr_[1]) << 48 | ((uint64_t)NrAr_[0]) << 56;
} break;
case 04: { //WHTS_KEY
memcpy(data,htd->crypto.data,4);
DbpString("Authenticating using key:");
- memcpy(key_,htd->crypto.key,6);
+ memcpy(key_,htd->crypto.key,6);
Dbhexdump(6,key_,false);
key=key_[5] | ((uint64_t)key_[4]) << 8 | ((uint64_t)key_[3]) << 16 | ((uint64_t)key_[2]) << 24 | ((uint64_t)key_[1]) << 32 | ((uint64_t)key_[0]) << 40;
} break;
Dbprintf("Page: %d",page_);
Dbprintf("DATA: %02X %02X %02X %02X", data[0], data[1], data[2], data[3]);
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-// Reset the return status
+ // Reset the return status
bSuccessful = false;
tag.pstate = READY;
tag.tstate = NO_OP;
-// Clean up trace and prepare it for storing frames
+ // Clean up trace and prepare it for storing frames
set_tracing(true);
clear_trace();
LED_D_ON();
-// Configure output and enable pin that is connected to the FPGA (for modulating)
+ // Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-// Set fpga in edge detect with reader field, we can modulate as reader now
+ // Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
-// Set Frequency divisor which will drive the FPGA and analog mux selection
+ // Set Frequency divisor which will drive the FPGA and analog mux selection
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
-// Disable modulation at default, which means enable the field
+ // Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
-// Give it a bit of time for the resonant antenna to settle.
+ // Give it a bit of time for the resonant antenna to settle.
SpinDelay(30);
-// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
+ // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
-// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
+ // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
-// Disable timer during configuration
+ // Disable timer during configuration
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
-// external trigger rising edge, load RA on falling edge of TIOA.
+ // TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
+
+ // TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+ // external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK
| AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG
| AT91C_TC_LDRA_FALLING;
-// Enable and reset counters
+ // Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-// Reset the received frame, frame count and timing info
+ // Reset the received frame, frame count and timing info
frame_count = 0;
response = 0;
lastbit = 1;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-// Reset the return status
+ // Reset the return status
bSuccessful = false;
-// Clean up trace and prepare it for storing frames
+ // Clean up trace and prepare it for storing frames
set_tracing(true);
clear_trace();
LED_D_ON();
-// Configure output and enable pin that is connected to the FPGA (for modulating)
+ // Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-// Set fpga in edge detect with reader field, we can modulate as reader now
+ // Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(
FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
-// Set Frequency divisor which will drive the FPGA and analog mux selection
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ // Set Frequency divisor which will drive the FPGA and analog mux selection
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
-// Disable modulation at default, which means enable the field
+ // Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
-// Give it a bit of time for the resonant antenna to settle.
+ // Give it a bit of time for the resonant antenna to settle.
SpinDelay(30);
-// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
+ // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
-// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
+ // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
-// Disable timer during configuration
+ // Disable timer during configuration
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
-// external trigger rising edge, load RA on falling edge of TIOA.
+ // TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
+
+ // TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+ // external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
-// Enable and reset counters
+ // Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-// Reset the received frame, frame count and timing info
+ // Reset the received frame, frame count and timing info
frame_count = 0;
response = 0;
lastbit = 1;
--- /dev/null
+//-----------------------------------------------------------------------------
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// HitagS emulation (preliminary test version)
+//
+// (c) 2016 Oguzhan Cicek, Hendrik Schwartke, Ralf Spenneberg
+// <info@os-s.de>
+//-----------------------------------------------------------------------------
+// Some code was copied from Hitag2.c
+//-----------------------------------------------------------------------------
+
+#ifndef HITAGS_H__
+#define HITAGS_H__
+
+#include <stdint.h>
+#include <stdbool.h>
+#include "hitag.h"
+
+void ReadHitagSCmd(hitag_function htf, hitag_data* htd, uint64_t startPage, uint64_t tagMode, bool readBlock);
+void SimulateHitagSTag(bool tag_mem_supplied, uint8_t* data);
+void WritePageHitagS(hitag_function htf, hitag_data* htd, int page);
+void check_challenges_cmd(bool file_given, uint8_t* data, uint64_t tagMode);
+
+#endif
\ No newline at end of file
#include "common.h"
#include "util.h"
#include "parity.h"
-#include "hitag2.h"
-#include "hitagS.h"
+#include "hitag.h"
#include "cmdmain.h"
static int CmdHelp(const char *Cmd);
--- /dev/null
+//-----------------------------------------------------------------------------
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Hitag2, HitagS
+//
+// (c) 2012 Roel Verdult
+// (c) 2016 Oguzhan Cicek, Hendrik Schwartke, Ralf Spenneberg
+// <info@os-s.de>
+//-----------------------------------------------------------------------------
+
+
+#ifndef HITAG_H__
+#define HITAG_H__
+
+#ifdef _MSC_VER
+#define PACKED
+#else
+#define PACKED __attribute__((packed))
+#endif
+
+typedef enum {
+ RHTSF_CHALLENGE = 01,
+ RHTSF_KEY = 02,
+ WHTSF_CHALLENGE = 03,
+ WHTSF_KEY = 04,
+ RHT2F_PASSWORD = 21,
+ RHT2F_AUTHENTICATE = 22,
+ RHT2F_CRYPTO = 23,
+ WHT2F_CRYPTO = 24,
+ RHT2F_TEST_AUTH_ATTEMPTS = 25,
+ RHT2F_UID_ONLY = 26,
+} hitag_function;
+
+typedef struct {
+ uint8_t password[4];
+} PACKED rht2d_password;
+
+typedef struct {
+ uint8_t NrAr[8];
+ uint8_t data[4];
+} PACKED rht2d_authenticate;
+
+typedef struct {
+ uint8_t key[6];
+ uint8_t data[4];
+} PACKED rht2d_crypto;
+
+typedef union {
+ rht2d_password pwd;
+ rht2d_authenticate auth;
+ rht2d_crypto crypto;
+} hitag_data;
+
+
+//---------------------------------------------------------
+// Hitag S
+//---------------------------------------------------------
+typedef enum PROTO_STATE {READY=0,INIT,AUTHENTICATE,SELECTED,QUIET,TTF,FAIL} PSTATE; //protocol-state
+typedef enum TAG_STATE {NO_OP=0,READING_PAGE,READING_BLOCK,WRITING_PAGE_ACK,WRITING_PAGE_DATA,WRITING_BLOCK_DATA} TSATE; //tag-state
+typedef enum SOF_TYPE {STANDARD=0,ADVANCED,FAST_ADVANCED,ONE,NO_BITS} stype; //number of start-of-frame bits
+
+struct hitagS_tag {
+ PSTATE pstate; //protocol-state
+ TSATE tstate; //tag-state
+ uint32_t uid;
+ uint8_t pages[64][4];
+ uint64_t key;
+ uint8_t pwdl0, pwdl1, pwdh0;
+ //con0
+ int max_page;
+ stype mode;
+ //con1
+ bool auth; //0=Plain 1=Auth
+ bool TTFC; //Transponder Talks first coding. 0=Manchester 1=Biphase
+ int TTFDR; //data rate in TTF Mode
+ int TTFM; //the number of pages that are sent to the RWD
+ bool LCON; //0=con1/2 read write 1=con1 read only and con2 OTP
+ bool LKP; //0=page2/3 read write 1=page2/3 read only in Plain mode and no access in authenticate mode
+ //con2
+ //0=read write 1=read only
+ bool LCK7; //page4/5
+ bool LCK6; //page6/7
+ bool LCK5; //page8-11
+ bool LCK4; //page12-15
+ bool LCK3; //page16-23
+ bool LCK2; //page24-31
+ bool LCK1; //page32-47
+ bool LCK0; //page48-63
+} ;
+
+#endif
+++ /dev/null
-//-----------------------------------------------------------------------------
-// (c) 2012 Roel Verdult
-//
-// This code is licensed to you under the terms of the GNU GPL, version 2 or,
-// at your option, any later version. See the LICENSE.txt file for the text of
-// the license.
-//-----------------------------------------------------------------------------
-// Hitag2 type prototyping
-//-----------------------------------------------------------------------------
-// HitagS added
-//-----------------------------------------------------------------------------
-
-#ifndef _HITAG2_H_
-#define _HITAG2_H_
-
-#ifdef _MSC_VER
-#define PACKED
-#else
-#define PACKED __attribute__((packed))
-#endif
-
-typedef enum {
- RHTSF_CHALLENGE = 01,
- RHTSF_KEY = 02,
- WHTSF_CHALLENGE = 03,
- WHTSF_KEY = 04,
- RHT2F_PASSWORD = 21,
- RHT2F_AUTHENTICATE = 22,
- RHT2F_CRYPTO = 23,
- WHT2F_CRYPTO = 24,
- RHT2F_TEST_AUTH_ATTEMPTS = 25,
- RHT2F_UID_ONLY = 26,
-} hitag_function;
-
-typedef struct {
- byte_t password[4];
-} PACKED rht2d_password;
-
-typedef struct {
- byte_t NrAr[8];
- byte_t data[4];
-} PACKED rht2d_authenticate;
-
-typedef struct {
- byte_t key[6];
- byte_t data[4];
-} PACKED rht2d_crypto;
-
-typedef union {
- rht2d_password pwd;
- rht2d_authenticate auth;
- rht2d_crypto crypto;
-} hitag_data;
-
-#endif
+++ /dev/null
-//-----------------------------------------------------------------------------
-// This code is licensed to you under the terms of the GNU GPL, version 2 or,
-// at your option, any later version. See the LICENSE.txt file for the text of
-// the license.
-//-----------------------------------------------------------------------------
-// HitagS emulation (preliminary test version)
-//
-// (c) 2016 Oguzhan Cicek, Hendrik Schwartke, Ralf Spenneberg
-// <info@os-s.de>
-//-----------------------------------------------------------------------------
-
-
-#ifndef _HITAGS_H_
-#define _HITAGS_H_
-
-#include "hitag2.h"
-
-typedef enum PROTO_STATE {READY=0,INIT,AUTHENTICATE,SELECTED,QUIET,TTF,FAIL} PSTATE; //protocol-state
-typedef enum TAG_STATE {NO_OP=0,READING_PAGE,READING_BLOCK,WRITING_PAGE_ACK,WRITING_PAGE_DATA,WRITING_BLOCK_DATA} TSATE; //tag-state
-typedef enum SOF_TYPE {STANDARD=0,ADVANCED,FAST_ADVANCED,ONE,NO_BITS} stype; //number of start-of-frame bits
-
-struct hitagS_tag {
- PSTATE pstate; //protocol-state
- TSATE tstate; //tag-state
- uint32_t uid;
- uint8_t pages[64][4];
- uint64_t key;
- byte_t pwdl0,pwdl1,pwdh0;
- //con0
- int max_page;
- stype mode;
- //con1
- bool auth; //0=Plain 1=Auth
- bool TTFC; //Transponder Talks first coding. 0=Manchester 1=Biphase
- int TTFDR; //data rate in TTF Mode
- int TTFM; //the number of pages that are sent to the RWD
- bool LCON; //0=con1/2 read write 1=con1 read only and con2 OTP
- bool LKP; //0=page2/3 read write 1=page2/3 read only in Plain mode and no access in authenticate mode
- //con2
- //0=read write 1=read only
- bool LCK7; //page4/5
- bool LCK6; //page6/7
- bool LCK5; //page8-11
- bool LCK4; //page12-15
- bool LCK3; //page16-23
- bool LCK2; //page24-31
- bool LCK1; //page32-47
- bool LCK0; //page48-63
-} ;
-
-#endif