if (ledcontrol)
LED_A_OFF();
}
-/*
-//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
-size_t fsk_demod(uint8_t * dest, size_t size)
-{
- uint32_t last_transition = 0;
- uint32_t idx = 1;
- uint32_t maxVal=0;
- // // we don't care about actual value, only if it's more or less than a
- // // threshold essentially we capture zero crossings for later analysis
-
- // we do care about the actual value as sometimes near the center of the
- // wave we may get static that changes direction of wave for one value
- // if our value is too low it might affect the read. and if our tag or
- // antenna is weak a setting too high might not see anything. [marshmellow]
- if (size<100) return size;
- for(idx=1; idx<100; idx++){
- if(maxVal<dest[idx]) maxVal = dest[idx];
- }
- // set close to the top of the wave threshold with 13% margin for error
- // less likely to get a false transition up there.
- // (but have to be careful not to go too high and miss some short waves)
- uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
- //uint8_t threshold_value = 127;
-
- // sync to first lo-hi transition, and threshold
-
- // Need to threshold first sample
- if(dest[0] < threshold_value) dest[0] = 0;
- else dest[0] = 1;
-
- size_t numBits = 0;
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for(idx = 1; idx < size; idx++) {
- // threshold current value
- if (dest[idx] < threshold_value) dest[idx] = 0;
- else dest[idx] = 1;
-
- // Check for 0->1 transition
- if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
- if (idx-last_transition<6){
- //do nothing with extra garbage
- } else if (idx-last_transition < 9) {
- dest[numBits]=1;
- } else {
- dest[numBits]=0;
- }
- last_transition = idx;
- numBits++;
- }
- }
- return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
-}
-
-uint32_t myround(float f)
-{
- if (f >= 2000) return 2000;//something bad happened
- return (uint32_t) (f + (float)0.5);
-}
-
-//translate 11111100000 to 10
-size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
-{
- uint8_t lastval=dest[0];
- uint32_t idx=0;
- size_t numBits=0;
- uint32_t n=1;
-
- for( idx=1; idx < size; idx++) {
-
- if (dest[idx]==lastval) {
- n++;
- continue;
- }
- //if lastval was 1, we have a 1->0 crossing
- if ( dest[idx-1]==1 ) {
- n=myround((float)(n+1)/((float)(rfLen)/(float)8));
- //n=(n+1) / h2l_crossing_value;
- } else {// 0->1 crossing
- n=myround((float)(n+1)/((float)(rfLen-2)/(float)10));
- //n=(n+1) / l2h_crossing_value;
- }
- if (n == 0) n = 1;
-
- if(n < maxConsequtiveBits) //Consecutive
- {
- if(invert==0){ //invert bits
- memset(dest+numBits, dest[idx-1] , n);
- }else{
- memset(dest+numBits, dest[idx-1]^1 , n);
- }
- numBits += n;
- }
- n=0;
- lastval=dest[idx];
- }//end for
- return numBits;
-}
-*/
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
hi2 = hi = lo = 0;
}
WDT_HIT();
+ //SpinDelay(50);
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
-/*
-// loop to get raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK2(int findone, int *high, int *low, int ledcontrol)
+void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
- size_t size=0,idx=0; //, found=0;
- uint32_t hi2=0, hi=0, lo=0;
-
+ size_t size=0; //, found=0;
+ uint32_t bitLen=0;
+ int clk=0, invert=0, errCnt=0;
+ uint64_t lo=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
- if (size < 2000) continue;
+ if (size < 2000) continue;
// FSK demodulator
- size = fsk_demod(dest, size);
-
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- // 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25)
- // 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
- // do not invert
- size = aggregate_bits(dest,size, 50,5,0); //6,5,5,0
-
+ //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
+ bitLen=size;
+ //Dbprintf("DEBUG: Buffer got");
+ errCnt = askmandemod(dest,&bitLen,&clk,&invert); //HIDdemodFSK(dest,size,&hi2,&hi,&lo);
+ //Dbprintf("DEBUG: ASK Got");
WDT_HIT();
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
- int numshifts = 0;
- idx = 0;
- //one scan
- uint8_t sameCardCount =0;
- while( idx + sizeof(frame_marker_mask) < size) {
- // search for a start of frame marker
- if (sameCardCount>2) break; //only up to 2 valid sets of data for the same read of looping card data
- if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
- { // frame marker found
- idx+=sizeof(frame_marker_mask);
- while(dest[idx] != dest[idx+1] && idx < size-2)
- {
- // Keep going until next frame marker (or error)
- // Shift in a bit. Start by shifting high registers
- hi2 = (hi2<<1)|(hi>>31);
- hi = (hi<<1)|(lo>>31);
- //Then, shift in a 0 or one into low
- if (dest[idx] && !dest[idx+1]) // 1 0
- lo=(lo<<1)|0;
- else // 0 1
- lo=(lo<<1)|
- 1;
- numshifts++;
- idx += 2;
- }
- //Dbprintf("Num shifts: %d ", numshifts);
- // Hopefully, we read a tag and hit upon the next frame marker
- if(idx + sizeof(frame_marker_mask) < size)
- {
- if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
- {
- if (hi2 != 0){ //extra large HID tags
- Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- else { //standard HID tags <38 bits
- //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
- uint8_t bitlen = 0;
- uint32_t fc = 0;
- uint32_t cardnum = 0;
- if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
- uint32_t lo2=0;
- lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
- uint8_t idx3 = 1;
- while(lo2>1){ //find last bit set to 1 (format len bit)
- lo2=lo2>>1;
- idx3++;
- }
- bitlen =idx3+19;
- fc =0;
- cardnum=0;
- if(bitlen==26){
- cardnum = (lo>>1)&0xFFFF;
- fc = (lo>>17)&0xFF;
- }
- if(bitlen==37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
- if(bitlen==34){
- cardnum = (lo>>1)&0xFFFF;
- fc= ((hi&1)<<15)|(lo>>17);
- }
- if(bitlen==35){
- cardnum = (lo>>1)&0xFFFFF;
- fc = ((hi&1)<<11)|(lo>>21);
- }
- }
- else { //if bit 38 is not set then 37 bit format is used
- bitlen= 37;
- fc =0;
- cardnum=0;
- if(bitlen==37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
- }
- //Dbprintf("TAG ID: %x%08x (%d)",
- // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
- (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
- }
- sameCardCount++;
- if (findone){
- if (ledcontrol) LED_A_OFF();
- return;
- }
- }
- }
- // reset
- hi2 = hi = lo = 0;
- numshifts = 0;
- }else
- {
- idx++;
+ if (errCnt>=0){
+ lo = Em410xDecode(dest,bitLen);
+ //Dbprintf("DEBUG: EM GOT");
+ //printEM410x(lo);
+ if (lo>0){
+ Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo>>32),(uint32_t)lo,(uint32_t)(lo&0xFFFF),(uint32_t)((lo>>16LL) & 0xFF),(uint32_t)(lo & 0xFFFFFF));
+ }
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ return;
}
+ } else{
+ //Dbprintf("DEBUG: No Tag");
}
WDT_HIT();
-
- }
+ lo = 0;
+ clk=0;
+ invert=0;
+ errCnt=0;
+ size=0;
+ //SpinDelay(50);
+ }
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
-*/
-
-/*
-uint32_t bytebits_to_byte(uint8_t* src, int numbits)
-{
- uint32_t num = 0;
- for(int i = 0 ; i < numbits ; i++)
- {
- num = (num << 1) | (*src);
- src++;
- }
- return num;
-}
-*/
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
size_t size=0;
int idx=0;
uint32_t code=0, code2=0;
-
+ uint8_t version=0;
+ uint8_t facilitycode=0;
+ uint16_t number=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
//make sure buffer has data
if (size < 2000) continue;
//fskdemod and get start index
+ WDT_HIT();
idx = IOdemodFSK(dest,size);
if (idx>0){
//valid tag found
}
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
- short version = bytebits_to_byte(dest+idx+27,8); //14,4
- uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
- uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+ version = bytebits_to_byte(dest+idx+27,8); //14,4
+ facilitycode = bytebits_to_byte(dest+idx+19,8) ;
+ number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
// if we're only looking for one tag
//LED_A_OFF();
return;
}
+ code=code2=0;
+ version=facilitycode=0;
+ number=0;
+ idx=0;
}
WDT_HIT();
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
-/*
-void CmdIOdemodFSK2(int findone, int *high, int *low, int ledcontrol)
-{
- uint8_t *dest = (uint8_t *)BigBuf;
- size_t size=0, idx=0;
- uint32_t code=0, code2=0;
-
- // Configure to go in 125Khz listen mode
- LFSetupFPGAForADC(95, true);
-
- while(!BUTTON_PRESS()) {
- WDT_HIT();
- if (ledcontrol) LED_A_ON();
- DoAcquisition125k_internal(-1,true);
- size = sizeof(BigBuf);
- //make sure buffer has data
- if (size < 64) return;
- //test samples are not just noise
- uint8_t testMax=0;
- for(idx=0;idx<64;idx++){
- if (testMax<dest[idx]) testMax=dest[idx];
- }
- idx=0;
- //if not just noise
- if (testMax>170){
- //Dbprintf("testMax: %d",testMax);
- // FSK demodulator
- size = fsk_demod(dest, size);
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
- // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
- size = aggregate_bits(dest, size, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
- WDT_HIT();
- //Index map
- //0 10 20 30 40 50 60
- //| | | | | | |
- //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
- //-----------------------------------------------------------------------------
- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
- //
- //XSF(version)facility:codeone+codetwo
- //Handle the data
- uint8_t sameCardCount=0;
- uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
- for( idx=0; idx < (size - 74); idx++) {
- if (sameCardCount>2) break;
- if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
- //frame marker found
- if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
- //confirmed proper separator bits found
- if(findone){ //only print binary if we are doing one
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
- Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
- }
- code = bytebits_to_byte(dest+idx,32);
- code2 = bytebits_to_byte(dest+idx+32,32);
- short version = bytebits_to_byte(dest+idx+27,8); //14,4
- uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
- uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
-
- Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
- // if we're only looking for one tag
- if (findone){
- if (ledcontrol) LED_A_OFF();
- //LED_A_OFF();
- return;
- }
- sameCardCount++;
- }
- }
- }
- }
- WDT_HIT();
- }
- DbpString("Stopped");
- if (ledcontrol) LED_A_OFF();
-}
-*/
/*------------------------------
* T5555/T5557/T5567 routines
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
-uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen)
+uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen)
{
//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
// otherwise could be a void with no arguments
uint64_t lo=0; //hi=0,
uint32_t i = 0;
- uint32_t initLoopMax = 1000;
+ uint32_t initLoopMax = 65;
if (initLoopMax>BitLen) initLoopMax=BitLen;
- for (;i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
+ for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values
{
if (BitStream[i] > high)
high = BitStream[i];
uint32_t ii=0;
uint8_t resetCnt = 0;
while( (idx + 64) < BitLen) {
-restart:
+ restart:
// search for a start of frame marker
if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
//int invert=0; //invert default
int high = 0, low = 0;
*clk=DetectClock2(BinStream,(size_t)*BitLen,*clk); //clock default
- uint8_t BitStream[MAX_BitStream_LEN] = {0};
+ uint8_t BitStream[252] = {0};
//sscanf(Cmd, "%i %i", &clk, &invert);
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert=0;
- uint32_t initLoopMax = 1000;
+ uint32_t initLoopMax = 200;
if (initLoopMax>*BitLen) initLoopMax=*BitLen;
// Detect high and lows
//PrintAndLog("Using Clock: %d and invert=%d",clk,invert);
- for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
+ for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){
lastBit=iii-*clk;
+ bitnum=0;
//loop through to see if this start location works
for (i = iii; i < *BitLen; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
}
}
}
+ if (bitnum >250) break;
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt<(*BitLen/1000))) {
//run through 2 times and take least errCnt
int manrawdemod(uint8_t * BitStream, int *bitLen)
{
- uint8_t BitStream2[MAX_BitStream_LEN]={0};
+ uint8_t BitStream2[252]={0};
int bitnum=0;
int errCnt =0;
int i=1;
BitStream2[bitnum++]=77;
errCnt++;
}
+ if(bitnum>250) break;
}
if (bestErr>errCnt){
bestErr=errCnt;
// int invert=0; //invert default
int high = 0, low = 0;
*clk=DetectClock2(BinStream,*bitLen,*clk); //clock default
- uint8_t BitStream[MAX_BitStream_LEN] = {0};
+ uint8_t BitStream[252] = {0};
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert =0;
- uint32_t initLoopMax = 1000;
+ uint32_t initLoopMax = 200;
if (initLoopMax>*bitLen) initLoopMax=*bitLen;
// Detect high and lows
- for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
+ for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
// PrintAndLog("no data found");
return -1;
}
- //13% fuzz in case highs and lows aren't clipped [marshmellow]
+ //25% fuzz in case highs and lows aren't clipped [marshmellow]
high=(int)(0.75*high);
low=(int)(0.75*low);
bitnum=0;//start over
break;
}
- }
+ }
}
+ if (bitnum>250) break;
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) {
return errCnt;
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
-size_t fsk_wave_demod2(uint8_t * dest, size_t size)
+size_t fsk_wave_demod(uint8_t * dest, size_t size)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
uint32_t maxVal=0;
- // // we don't care about actual value, only if it's more or less than a
- // // threshold essentially we capture zero crossings for later analysis
-
- // we do care about the actual value as sometimes near the center of the
+
+ // we do care about the actual theshold value as sometimes near the center of the
// wave we may get static that changes direction of wave for one value
// if our value is too low it might affect the read. and if our tag or
// antenna is weak a setting too high might not see anything. [marshmellow]
// set close to the top of the wave threshold with 13% margin for error
// less likely to get a false transition up there.
// (but have to be careful not to go too high and miss some short waves)
- uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
- //uint8_t threshold_value = 127;
+ uint8_t threshold_value = (uint8_t)(maxVal*.87); idx=1;
+ //uint8_t threshold_value = 127;
// sync to first lo-hi transition, and threshold
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
- if (idx-last_transition<6){
+ if (idx-last_transition<6){ //0-5 = garbage noise
//do nothing with extra garbage
- } else if (idx-last_transition < 9) {
+ } else if (idx-last_transition < 9) { //6-8 = 8 waves
dest[numBits]=1;
- } else {
+ } else { //9+ = 10 waves
dest[numBits]=0;
}
last_transition = idx;
}
//translate 11111100000 to 10
-size_t aggregate_bits2(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
+size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
{
uint8_t lastval=dest[0];
uint32_t idx=0;
n=myround2((float)(n+1)/((float)(rfLen)/(float)8));
//n=(n+1) / h2l_crossing_value;
} else {// 0->1 crossing
- n=myround2((float)(n+1)/((float)(rfLen-2)/(float)10));
+ n=myround2((float)(n+1)/((float)(rfLen-2)/(float)10)); //-2 for fudge factor
//n=(n+1) / l2h_crossing_value;
}
if (n == 0) n = 1;
// }
// size_t size = GraphTraceLen;
// FSK demodulator
- size = fsk_wave_demod2(dest, size);
- size = aggregate_bits2(dest, size,rfLen,192,invert);
+ size = fsk_wave_demod(dest, size);
+ size = aggregate_bits(dest, size,rfLen,192,invert);
// size = aggregate_bits(size, h2l_crossing_value, l2h_crossing_value,192, invert); //192=no limit to same values
//done messing with GraphBuffer - repaint
//RepaintGraphWindow();
int IOdemodFSK(uint8_t *dest, size_t size)
{
- size_t idx=0;
+ uint32_t idx=0;
//make sure buffer has data
if (size < 64) return -1;
//test samples are not just noise
//
//XSF(version)facility:codeone+codetwo
//Handle the data
- uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
+ uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 74); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
//frame marker found
if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
//confirmed proper separator bits found
//return start position
- return idx;
+ return (int) idx;
}
}
}