//-----------------------------------------------------------------------------
// Based on ISO14443a implementation. Still in experimental phase.
// Contribution made during a security research at Radboud University Nijmegen
-//
+//
// Please feel free to contribute and extend iClass support!!
//-----------------------------------------------------------------------------
//
// We still have sometimes a demodulation error when snooping iClass communication.
// The resulting trace of a read-block-03 command may look something like this:
//
-// + 22279: : 0c 03 e8 01
+// + 22279: : 0c 03 e8 01
//
// ...with an incorrect answer...
//
//
// A correct trace should look like this:
//
-// + 21112: : 0c 03 e8 01
-// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
+// + 21112: : 0c 03 e8 01
+// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
//
//-----------------------------------------------------------------------------
+#include "iclass.h"
+
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
static int timeout = 4096;
-
-static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
-
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
static struct {
- enum {
- STATE_UNSYNCD,
- STATE_START_OF_COMMUNICATION,
- STATE_RECEIVING
- } state;
- uint16_t shiftReg;
- int bitCnt;
- int byteCnt;
- int byteCntMax;
- int posCnt;
- int nOutOfCnt;
- int OutOfCnt;
- int syncBit;
- int samples;
- int highCnt;
- int swapper;
- int counter;
- int bitBuffer;
- int dropPosition;
- uint8_t *output;
+ enum {
+ STATE_UNSYNCD,
+ STATE_START_OF_COMMUNICATION,
+ STATE_RECEIVING
+ } state;
+ uint16_t shiftReg;
+ int bitCnt;
+ int byteCnt;
+ int byteCntMax;
+ int posCnt;
+ int nOutOfCnt;
+ int OutOfCnt;
+ int syncBit;
+ int samples;
+ int highCnt;
+ int swapper;
+ int counter;
+ int bitBuffer;
+ int dropPosition;
+ uint8_t *output;
} Uart;
-static RAMFUNC int OutOfNDecoding(int bit)
-{
+static RAMFUNC int OutOfNDecoding(int bit) {
//int error = 0;
int bitright;
- if(!Uart.bitBuffer) {
+ if (!Uart.bitBuffer) {
Uart.bitBuffer = bit ^ 0xFF0;
return false;
- }
- else {
+ } else {
Uart.bitBuffer <<= 4;
Uart.bitBuffer ^= bit;
}
-
- /*if(Uart.swapper) {
+
+ /*if (Uart.swapper) {
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
Uart.byteCnt++;
Uart.swapper = 0;
- if(Uart.byteCnt > 15) { return true; }
+ if (Uart.byteCnt > 15) { return true; }
}
else {
Uart.swapper = 1;
}*/
- if(Uart.state != STATE_UNSYNCD) {
+ if (Uart.state != STATE_UNSYNCD) {
Uart.posCnt++;
- if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
+ if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
bit = 0x00;
- }
- else {
+ } else {
bit = 0x01;
}
- if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
+ if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
bitright = 0x00;
- }
- else {
+ } else {
bitright = 0x01;
}
- if(bit != bitright) { bit = bitright; }
+ if (bit != bitright) {
+ bit = bitright;
+ }
+
-
// So, now we only have to deal with *bit*, lets see...
- if(Uart.posCnt == 1) {
+ if (Uart.posCnt == 1) {
// measurement first half bitperiod
- if(!bit) {
+ if (!bit) {
// Drop in first half means that we are either seeing
// an SOF or an EOF.
- if(Uart.nOutOfCnt == 1) {
+ if (Uart.nOutOfCnt == 1) {
// End of Communication
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
- if(Uart.byteCnt == 0) {
+ if (Uart.byteCnt == 0) {
// Its not straightforward to show single EOFs
// So just leave it and do not return true
Uart.output[0] = 0xf0;
Uart.byteCnt++;
- }
- else {
+ } else {
return true;
}
- }
- else if(Uart.state != STATE_START_OF_COMMUNICATION) {
+ } else if (Uart.state != STATE_START_OF_COMMUNICATION) {
// When not part of SOF or EOF, it is an error
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 4;
}
}
- }
- else {
+ } else {
// measurement second half bitperiod
// Count the bitslot we are in... (ISO 15693)
Uart.nOutOfCnt++;
-
- if(!bit) {
- if(Uart.dropPosition) {
- if(Uart.state == STATE_START_OF_COMMUNICATION) {
+
+ if (!bit) {
+ if (Uart.dropPosition) {
+ if (Uart.state == STATE_START_OF_COMMUNICATION) {
//error = 1;
- }
- else {
+ } else {
//error = 7;
}
// It is an error if we already have seen a drop in current frame
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
- }
- else {
+ } else {
Uart.dropPosition = Uart.nOutOfCnt;
}
}
Uart.posCnt = 0;
-
- if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
+
+ if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
Uart.nOutOfCnt = 0;
-
- if(Uart.state == STATE_START_OF_COMMUNICATION) {
- if(Uart.dropPosition == 4) {
+
+ if (Uart.state == STATE_START_OF_COMMUNICATION) {
+ if (Uart.dropPosition == 4) {
Uart.state = STATE_RECEIVING;
Uart.OutOfCnt = 256;
- }
- else if(Uart.dropPosition == 3) {
+ } else if (Uart.dropPosition == 3) {
Uart.state = STATE_RECEIVING;
Uart.OutOfCnt = 4;
//Uart.output[Uart.byteCnt] = 0xdd;
//Uart.byteCnt++;
- }
- else {
+ } else {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
}
Uart.dropPosition = 0;
- }
- else {
+ } else {
// RECEIVING DATA
// 1 out of 4
- if(!Uart.dropPosition) {
+ if (!Uart.dropPosition) {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 9;
- }
- else {
+ } else {
Uart.shiftReg >>= 2;
-
+
// Swap bit order
Uart.dropPosition--;
- //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
- //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
-
+ //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
+ //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
+
Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
Uart.bitCnt += 2;
Uart.dropPosition = 0;
- if(Uart.bitCnt == 8) {
+ if (Uart.bitCnt == 8) {
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
Uart.byteCnt++;
Uart.bitCnt = 0;
}
}
}
- }
- else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
+ } else if (Uart.nOutOfCnt == Uart.OutOfCnt) {
// RECEIVING DATA
// 1 out of 256
- if(!Uart.dropPosition) {
+ if (!Uart.dropPosition) {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 3;
- }
- else {
+ } else {
Uart.dropPosition--;
Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
Uart.byteCnt++;
}
}
- /*if(error) {
+ /*if (error) {
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = error & 0xFF;
}*/
}
- }
- else {
+ } else {
bit = Uart.bitBuffer & 0xf0;
bit >>= 4;
bit ^= 0x0F; // drops become 1s ;-)
- if(bit) {
+ if (bit) {
// should have been high or at least (4 * 128) / fc
// according to ISO this should be at least (9 * 128 + 20) / fc
- if(Uart.highCnt == 8) {
+ if (Uart.highCnt == 8) {
// we went low, so this could be start of communication
// it turns out to be safer to choose a less significant
// syncbit... so we check whether the neighbour also represents the drop
Uart.posCnt = 1; // apparently we are busy with our first half bit period
Uart.syncBit = bit & 8;
Uart.samples = 3;
- if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
- else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
- if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
- else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
- if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
- if(Uart.syncBit && (Uart.bitBuffer & 8)) {
+ if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
+ else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
+ if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
+ else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
+ if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
+ if (Uart.syncBit && (Uart.bitBuffer & 8)) {
Uart.syncBit = 8;
// the first half bit period is expected in next sample
Uart.posCnt = 0;
Uart.samples = 3;
}
- }
- else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
+ } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
Uart.syncBit <<= 4;
Uart.state = STATE_START_OF_COMMUNICATION;
Uart.dropPosition = 0;
Uart.shiftReg = 0;
//error = 0;
- }
- else {
+ } else {
Uart.highCnt = 0;
}
- }
- else {
- if(Uart.highCnt < 8) {
- Uart.highCnt++;
- }
+ } else if (Uart.highCnt < 8) {
+ Uart.highCnt++;
}
}
- return false;
+ return false;
}
+
//=============================================================================
// Manchester
//=============================================================================
static struct {
- enum {
- DEMOD_UNSYNCD,
+ enum {
+ DEMOD_UNSYNCD,
DEMOD_START_OF_COMMUNICATION,
DEMOD_START_OF_COMMUNICATION2,
DEMOD_START_OF_COMMUNICATION3,
DEMOD_END_OF_COMMUNICATION,
DEMOD_END_OF_COMMUNICATION2,
DEMOD_MANCHESTER_F,
- DEMOD_ERROR_WAIT
- } state;
- int bitCount;
- int posCount;
- int syncBit;
- uint16_t shiftReg;
- int buffer;
- int buffer2;
- int buffer3;
- int buff;
- int samples;
- int len;
+ DEMOD_ERROR_WAIT
+ } state;
+ int bitCount;
+ int posCount;
+ int syncBit;
+ uint16_t shiftReg;
+ int buffer;
+ int buffer2;
+ int buffer3;
+ int buff;
+ int samples;
+ int len;
enum {
SUB_NONE,
SUB_FIRST_HALF,
SUB_SECOND_HALF,
SUB_BOTH
- } sub;
- uint8_t *output;
+ } sub;
+ uint8_t *output;
} Demod;
-static RAMFUNC int ManchesterDecoding(int v)
-{
+static RAMFUNC int ManchesterDecoding(int v) {
int bit;
int modulation;
int error = 0;
Demod.buffer2 = Demod.buffer3;
Demod.buffer3 = v;
- if(Demod.buff < 3) {
+ if (Demod.buff < 3) {
Demod.buff++;
return false;
}
- if(Demod.state==DEMOD_UNSYNCD) {
+ if (Demod.state==DEMOD_UNSYNCD) {
Demod.output[Demod.len] = 0xfa;
Demod.syncBit = 0;
//Demod.samples = 0;
- Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
+ Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
- if(bit & 0x08) {
+ if (bit & 0x08) {
Demod.syncBit = 0x08;
}
- if(bit & 0x04) {
- if(Demod.syncBit) {
+ if (bit & 0x04) {
+ if (Demod.syncBit) {
bit <<= 4;
}
Demod.syncBit = 0x04;
}
- if(bit & 0x02) {
- if(Demod.syncBit) {
+ if (bit & 0x02) {
+ if (Demod.syncBit) {
bit <<= 2;
}
Demod.syncBit = 0x02;
}
- if(bit & 0x01 && Demod.syncBit) {
+ if (bit & 0x01 && Demod.syncBit) {
Demod.syncBit = 0x01;
}
-
- if(Demod.syncBit) {
+
+ if (Demod.syncBit) {
Demod.len = 0;
Demod.state = DEMOD_START_OF_COMMUNICATION;
Demod.sub = SUB_FIRST_HALF;
Demod.bitCount = 0;
Demod.shiftReg = 0;
Demod.samples = 0;
- if(Demod.posCount) {
- //if(trigger) LED_A_OFF(); // Not useful in this case...
+ if (Demod.posCount) {
+ //if (trigger) LED_A_OFF(); // Not useful in this case...
switch(Demod.syncBit) {
case 0x08: Demod.samples = 3; break;
case 0x04: Demod.samples = 2; break;
case 0x01: Demod.samples = 0; break;
}
// SOF must be long burst... otherwise stay unsynced!!!
- if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
+ if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
Demod.state = DEMOD_UNSYNCD;
}
- }
- else {
+ } else {
// SOF must be long burst... otherwise stay unsynced!!!
- if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
+ if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
Demod.state = DEMOD_UNSYNCD;
error = 0x88;
}
error = 0;
}
- }
- else {
+ } else {
modulation = bit & Demod.syncBit;
modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
Demod.samples += 4;
- if(Demod.posCount==0) {
+ if (Demod.posCount==0) {
Demod.posCount = 1;
- if(modulation) {
+ if (modulation) {
Demod.sub = SUB_FIRST_HALF;
- }
- else {
+ } else {
Demod.sub = SUB_NONE;
}
- }
- else {
+ } else {
Demod.posCount = 0;
/*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
- if(Demod.state!=DEMOD_ERROR_WAIT) {
+ if (Demod.state!=DEMOD_ERROR_WAIT) {
Demod.state = DEMOD_ERROR_WAIT;
Demod.output[Demod.len] = 0xaa;
error = 0x01;
}
}*/
- //else if(modulation) {
- if(modulation) {
- if(Demod.sub == SUB_FIRST_HALF) {
+ //else if (modulation) {
+ if (modulation) {
+ if (Demod.sub == SUB_FIRST_HALF) {
Demod.sub = SUB_BOTH;
- }
- else {
+ } else {
Demod.sub = SUB_SECOND_HALF;
}
- }
- else if(Demod.sub == SUB_NONE) {
- if(Demod.state == DEMOD_SOF_COMPLETE) {
+ } else if (Demod.sub == SUB_NONE) {
+ if (Demod.state == DEMOD_SOF_COMPLETE) {
Demod.output[Demod.len] = 0x0f;
Demod.len++;
Demod.state = DEMOD_UNSYNCD;
-// error = 0x0f;
+// error = 0x0f;
return true;
- }
- else {
+ } else {
Demod.state = DEMOD_ERROR_WAIT;
error = 0x33;
}
- /*if(Demod.state!=DEMOD_ERROR_WAIT) {
+ /*if (Demod.state!=DEMOD_ERROR_WAIT) {
Demod.state = DEMOD_ERROR_WAIT;
Demod.output[Demod.len] = 0xaa;
error = 0x01;
switch(Demod.state) {
case DEMOD_START_OF_COMMUNICATION:
- if(Demod.sub == SUB_BOTH) {
+ if (Demod.sub == SUB_BOTH) {
//Demod.state = DEMOD_MANCHESTER_D;
Demod.state = DEMOD_START_OF_COMMUNICATION2;
Demod.posCount = 1;
Demod.sub = SUB_NONE;
- }
- else {
+ } else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0xd2;
}
break;
case DEMOD_START_OF_COMMUNICATION2:
- if(Demod.sub == SUB_SECOND_HALF) {
+ if (Demod.sub == SUB_SECOND_HALF) {
Demod.state = DEMOD_START_OF_COMMUNICATION3;
- }
- else {
+ } else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0xd3;
}
break;
case DEMOD_START_OF_COMMUNICATION3:
- if(Demod.sub == SUB_SECOND_HALF) {
-// Demod.state = DEMOD_MANCHESTER_D;
+ if (Demod.sub == SUB_SECOND_HALF) {
+// Demod.state = DEMOD_MANCHESTER_D;
Demod.state = DEMOD_SOF_COMPLETE;
//Demod.output[Demod.len] = Demod.syncBit & 0xFF;
//Demod.len++;
- }
- else {
+ } else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0xd4;
case DEMOD_MANCHESTER_E:
// OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
// 00001111 = 1 (0 in 14443)
- if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
+ if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
Demod.state = DEMOD_MANCHESTER_D;
- }
- else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
+ } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
Demod.bitCount++;
Demod.shiftReg >>= 1;
Demod.state = DEMOD_MANCHESTER_E;
- }
- else if(Demod.sub == SUB_BOTH) {
+ } else if (Demod.sub == SUB_BOTH) {
Demod.state = DEMOD_MANCHESTER_F;
- }
- else {
+ } else {
Demod.state = DEMOD_ERROR_WAIT;
error = 0x55;
}
case DEMOD_MANCHESTER_F:
// Tag response does not need to be a complete byte!
- if(Demod.len > 0 || Demod.bitCount > 0) {
- if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
- Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
+ if (Demod.len > 0 || Demod.bitCount > 0) {
+ if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
+ Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
}
Demod.state = DEMOD_UNSYNCD;
return true;
- }
- else {
+ } else {
Demod.output[Demod.len] = 0xad;
Demod.state = DEMOD_ERROR_WAIT;
error = 0x03;
break;
}
- /*if(Demod.bitCount>=9) {
+ /*if (Demod.bitCount>=9) {
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
Demod.bitCount = 0;
Demod.shiftReg = 0;
}*/
- if(Demod.bitCount>=8) {
+ if (Demod.bitCount >= 8) {
Demod.shiftReg >>= 1;
Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
Demod.len++;
Demod.shiftReg = 0;
}
- if(error) {
+ if (error) {
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = error & 0xFF;
} // end (state != UNSYNCED)
- return false;
+ return false;
}
//=============================================================================
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
-void RAMFUNC SnoopIClass(void)
-{
-
+void RAMFUNC SnoopIClass(void) {
- // We won't start recording the frames that we acquire until we trigger;
- // a good trigger condition to get started is probably when we see a
- // response from the tag.
- //int triggered = false; // false to wait first for card
+ // We won't start recording the frames that we acquire until we trigger;
+ // a good trigger condition to get started is probably when we see a
+ // response from the tag.
+ //int triggered = false; // false to wait first for card
- // The command (reader -> tag) that we're receiving.
+ // The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
#define ICLASS_BUFFER_SIZE 32
uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
- // The response (tag -> reader) that we're receiving.
+ // The response (tag -> reader) that we're receiving.
uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-
- // free all BigBuf memory
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+ // free all BigBuf memory
BigBuf_free();
- // The DMA buffer, used to stream samples from the FPGA
- uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
-
+ // The DMA buffer, used to stream samples from the FPGA
+ uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
set_tracing(true);
clear_trace();
- iso14a_set_trigger(false);
+ iso14a_set_trigger(false);
int lastRxCounter;
- uint8_t *upTo;
- int smpl;
- int maxBehindBy = 0;
+ uint8_t *upTo;
+ int smpl;
+ int maxBehindBy = 0;
- // Count of samples received so far, so that we can include timing
- // information in the trace buffer.
- int samples = 0;
- rsamples = 0;
+ // Count of samples received so far, so that we can include timing
+ // information in the trace buffer.
+ int samples = 0;
+ rsamples = 0;
- // Set up the demodulator for tag -> reader responses.
+ // Set up the demodulator for tag -> reader responses.
Demod.output = tagToReaderResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
- // Setup for the DMA.
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
- upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+ // Setup for the DMA.
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
+ upTo = dmaBuf;
+ lastRxCounter = DMA_BUFFER_SIZE;
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
- // And the reader -> tag commands
- memset(&Uart, 0, sizeof(Uart));
+ // And the reader -> tag commands
+ memset(&Uart, 0, sizeof(Uart));
Uart.output = readerToTagCmd;
- Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
- Uart.state = STATE_UNSYNCD;
+ Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
+ Uart.state = STATE_UNSYNCD;
- // And put the FPGA in the appropriate mode
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ // And put the FPGA in the appropriate mode
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
uint32_t time_0 = GetCountSspClk();
uint32_t time_start = 0;
uint32_t time_stop = 0;
- int div = 0;
- //int div2 = 0;
- int decbyte = 0;
- int decbyter = 0;
-
- // And now we loop, receiving samples.
- for(;;) {
- LED_A_ON();
- WDT_HIT();
- int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
- (DMA_BUFFER_SIZE-1);
- if(behindBy > maxBehindBy) {
- maxBehindBy = behindBy;
- if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
- Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
- goto done;
- }
- }
- if(behindBy < 1) continue;
+ int div = 0;
+ //int div2 = 0;
+ int decbyte = 0;
+ int decbyter = 0;
- LED_A_OFF();
- smpl = upTo[0];
- upTo++;
- lastRxCounter -= 1;
- if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
- upTo -= DMA_BUFFER_SIZE;
- lastRxCounter += DMA_BUFFER_SIZE;
- AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
- }
-
- //samples += 4;
- samples += 1;
-
- if(smpl & 0xF) {
- decbyte ^= (1 << (3 - div));
- }
-
- // FOR READER SIDE COMMUMICATION...
-
- decbyter <<= 2;
- decbyter ^= (smpl & 0x30);
-
- div++;
-
- if((div + 1) % 2 == 0) {
- smpl = decbyter;
- if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
- rsamples = samples - Uart.samples;
- time_stop = (GetCountSspClk()-time_0) << 4;
- LED_C_ON();
-
- //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
- //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(Uart.output, Uart.byteCnt, parity);
- LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, true);
-
- /* And ready to receive another command. */
- Uart.state = STATE_UNSYNCD;
- /* And also reset the demod code, which might have been */
- /* false-triggered by the commands from the reader. */
- Demod.state = DEMOD_UNSYNCD;
- LED_B_OFF();
- Uart.byteCnt = 0;
- }else{
- time_start = (GetCountSspClk()-time_0) << 4;
+ // And now we loop, receiving samples.
+ for (;;) {
+ LED_A_ON();
+ WDT_HIT();
+ int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1);
+ if (behindBy > maxBehindBy) {
+ maxBehindBy = behindBy;
+ if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
+ Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
+ goto done;
+ }
}
- decbyter = 0;
- }
+ if (behindBy < 1) continue;
- if(div > 3) {
- smpl = decbyte;
- if(ManchesterDecoding(smpl & 0x0F)) {
- time_stop = (GetCountSspClk()-time_0) << 4;
-
- rsamples = samples - Demod.samples;
- LED_B_ON();
-
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(Demod.output, Demod.len, parity);
- LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
-
- // And ready to receive another response.
- memset(&Demod, 0, sizeof(Demod));
- Demod.output = tagToReaderResponse;
- Demod.state = DEMOD_UNSYNCD;
- LED_C_OFF();
- }else{
- time_start = (GetCountSspClk()-time_0) << 4;
+ LED_A_OFF();
+ smpl = upTo[0];
+ upTo++;
+ lastRxCounter -= 1;
+ if (upTo - dmaBuf > DMA_BUFFER_SIZE) {
+ upTo -= DMA_BUFFER_SIZE;
+ lastRxCounter += DMA_BUFFER_SIZE;
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ }
+
+ //samples += 4;
+ samples += 1;
+
+ if (smpl & 0xF) {
+ decbyte ^= (1 << (3 - div));
+ }
+
+ // FOR READER SIDE COMMUMICATION...
+
+ decbyter <<= 2;
+ decbyter ^= (smpl & 0x30);
+
+ div++;
+
+ if ((div + 1) % 2 == 0) {
+ smpl = decbyter;
+ if (OutOfNDecoding((smpl & 0xF0) >> 4)) {
+ rsamples = samples - Uart.samples;
+ time_stop = (GetCountSspClk()-time_0) << 4;
+ LED_C_ON();
+
+ //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
+ //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
+ uint8_t parity[MAX_PARITY_SIZE];
+ GetParity(Uart.output, Uart.byteCnt, parity);
+ LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, parity, true);
+
+ /* And ready to receive another command. */
+ Uart.state = STATE_UNSYNCD;
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ Demod.state = DEMOD_UNSYNCD;
+ LED_B_OFF();
+ Uart.byteCnt = 0;
+ } else {
+ time_start = (GetCountSspClk()-time_0) << 4;
+ }
+ decbyter = 0;
+ }
+
+ if (div > 3) {
+ smpl = decbyte;
+ if (ManchesterDecoding(smpl & 0x0F)) {
+ time_stop = (GetCountSspClk()-time_0) << 4;
+
+ rsamples = samples - Demod.samples;
+ LED_B_ON();
+
+ uint8_t parity[MAX_PARITY_SIZE];
+ GetParity(Demod.output, Demod.len, parity);
+ LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
+
+ // And ready to receive another response.
+ memset(&Demod, 0, sizeof(Demod));
+ Demod.output = tagToReaderResponse;
+ Demod.state = DEMOD_UNSYNCD;
+ LED_C_OFF();
+ } else {
+ time_start = (GetCountSspClk()-time_0) << 4;
+ }
+
+ div = 0;
+ decbyte = 0x00;
}
-
- div = 0;
- decbyte = 0x00;
- }
- //}
- if(BUTTON_PRESS()) {
- DbpString("cancelled_a");
- goto done;
- }
- }
+ if (BUTTON_PRESS()) {
+ DbpString("cancelled_a");
+ goto done;
+ }
+ }
- DbpString("COMMAND FINISHED");
+ DbpString("COMMAND FINISHED");
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
+ Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
done:
- AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
+ AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
+ Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
- LEDsoff();
+ LEDsoff();
}
void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
- int i;
- for(i = 0; i < 8; i++) {
+ int i;
+ for (i = 0; i < 8; i++) {
rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
}
}
//-----------------------------------------------------------------------------
static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
{
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
- // only, since we are receiving, not transmitting).
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+ // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
- // Now run a `software UART' on the stream of incoming samples.
- Uart.output = received;
- Uart.byteCntMax = maxLen;
- Uart.state = STATE_UNSYNCD;
+ // Now run a `software UART' on the stream of incoming samples.
+ Uart.output = received;
+ Uart.byteCntMax = maxLen;
+ Uart.state = STATE_UNSYNCD;
- for(;;) {
- WDT_HIT();
+ for (;;) {
+ WDT_HIT();
- if(BUTTON_PRESS()) return false;
+ if (BUTTON_PRESS()) return false;
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- if(OutOfNDecoding(b & 0x0f)) {
+ if (OutOfNDecoding(b & 0x0f)) {
*len = Uart.byteCnt;
return true;
}
- }
- }
+ }
+ }
}
-static uint8_t encode4Bits(const uint8_t b)
-{
+static uint8_t encode4Bits(const uint8_t b) {
uint8_t c = b & 0xF;
// OTA, the least significant bits first
// The columns are
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
-static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
-{
+static void CodeIClassTagAnswer(const uint8_t *cmd, int len) {
/*
* SOF comprises 3 parts;
* * An unmodulated time of 56.64 us
- * * 24 pulses of 423.75 KHz (fc/32)
+ * * 24 pulses of 423.75 kHz (fc/32)
* * A logic 1, which starts with an unmodulated time of 18.88us
* followed by 8 pulses of 423.75kHz (fc/32)
*
* The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
* works like this.
* - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
- * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
+ * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
*
* In this mode the SOF can be written as 00011101 = 0x1D
* The EOF can be written as 10111000 = 0xb8
// Send SOF
ToSend[++ToSendMax] = 0x1D;
- for(i = 0; i < len; i++) {
+ for (i = 0; i < len; i++) {
uint8_t b = cmd[i];
- ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
- ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
+ ToSend[++ToSendMax] = encode4Bits(b & 0xF); // Least significant half
+ ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF); // Most significant half
}
// Send EOF
ToSendMax++;
}
-// Only SOF
-static void CodeIClassTagSOF()
-{
+// Only SOF
+static void CodeIClassTagSOF() {
//So far a dummy implementation, not used
//int lastProxToAirDuration =0;
ToSendReset();
// Send SOF
ToSend[++ToSendMax] = 0x1D;
-// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
+// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
// Convert from last byte pos to length
ToSendMax++;
}
-#define MODE_SIM_CSN 0
-#define MODE_EXIT_AFTER_MAC 1
-#define MODE_FULLSIM 2
-
-int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
-/**
- * @brief SimulateIClass simulates an iClass card.
- * @param arg0 type of simulation
- * - 0 uses the first 8 bytes in usb data as CSN
- * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
- * in the usb data. This mode collects MAC from the reader, in order to do an offline
- * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
- * - Other : Uses the default CSN (031fec8af7ff12e0)
- * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
- * @param arg2
- * @param datain
- */
-void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
-{
- uint32_t simType = arg0;
- uint32_t numberOfCSNS = arg1;
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Enable and clear the trace
- set_tracing(true);
- clear_trace();
- //Use the emulator memory for SIM
- uint8_t *emulator = BigBuf_get_EM_addr();
+static void AppendCrc(uint8_t *data, int len) {
+ ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1);
+}
- if(simType == 0) {
- // Use the CSN from commandline
- memcpy(emulator, datain, 8);
- doIClassSimulation(MODE_SIM_CSN,NULL);
- }else if(simType == 1)
- {
- //Default CSN
- uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
- // Use the CSN from commandline
- memcpy(emulator, csn_crc, 8);
- doIClassSimulation(MODE_SIM_CSN,NULL);
- }
- else if(simType == 2)
- {
+static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) {
+ int i = 0, d = 0;//, u = 0, d = 0;
+ uint8_t b = 0;
- uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
- Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
- // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
- // in order to collect MAC's from the reader. This can later be used in an offlne-attack
- // in order to obtain the keys, as in the "dismantling iclass"-paper.
- int i = 0;
- for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
- {
- // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
+ //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
- memcpy(emulator, datain+(i*8), 8);
- if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
- {
- cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
- return; // Button pressed
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
+ while (!BUTTON_PRESS()) {
+ if ((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
+ b = AT91C_BASE_SSC->SSC_RHR; (void) b;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
+ b = 0x00;
+ if (d < delay) {
+ d++;
}
+ else {
+ if (i < respLen) {
+ b = resp[i];
+ //Hack
+ //b = 0xAC;
+ }
+ i++;
+ }
+ AT91C_BASE_SSC->SSC_THR = b;
}
- cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
- }else if(simType == 3){
- //This is 'full sim' mode, where we use the emulator storage for data.
- doIClassSimulation(MODE_FULLSIM, NULL);
+// if (i > respLen +4) break;
+ if (i > respLen + 1) break;
}
- else{
- // We may want a mode here where we hardcode the csns to use (from proxclone).
- // That will speed things up a little, but not required just yet.
- Dbprintf("The mode is not implemented, reserved for future use");
- }
- Dbprintf("Done...");
+ return 0;
}
-void AppendCrc(uint8_t* data, int len)
-{
- ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
-}
+
+
+#define MODE_SIM_CSN 0
+#define MODE_EXIT_AFTER_MAC 1
+#define MODE_FULLSIM 2
/**
* @brief Does the actual simulation
* @param csn - csn to use
* @param breakAfterMacReceived if true, returns after reader MAC has been received.
*/
-int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
-{
+int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
State cipher_state;
-// State cipher_state_reserve;
+// State cipher_state_reserve;
uint8_t *csn = BigBuf_get_EM_addr();
uint8_t *emulator = csn;
uint8_t sof_data[] = { 0x0F} ;
// CSN followed by two CRC bytes
uint8_t anticoll_data[10] = { 0 };
uint8_t csn_data[10] = { 0 };
- memcpy(csn_data,csn,sizeof(csn_data));
- Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
+ memcpy(csn_data, csn, sizeof(csn_data));
+ Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]);
// Construct anticollision-CSN
- rotateCSN(csn_data,anticoll_data);
+ rotateCSN(csn_data, anticoll_data);
// Compute CRC on both CSNs
ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
uint8_t diversified_key[8] = { 0 };
// e-Purse
uint8_t card_challenge_data[8] = { 0x00 };
- if(simulationMode == MODE_FULLSIM)
- {
+ if (simulationMode == MODE_FULLSIM) {
//The diversified key should be stored on block 3
//Get the diversified key from emulator memory
- memcpy(diversified_key, emulator+(8*3),8);
-
+ memcpy(diversified_key, emulator + (8*3), 8);
//Card challenge, a.k.a e-purse is on block 2
- memcpy(card_challenge_data,emulator + (8 * 2) , 8);
+ memcpy(card_challenge_data, emulator + (8 * 2), 8);
//Precalculate the cipher state, feeding it the CC
- cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
-
+ cipher_state = opt_doTagMAC_1(card_challenge_data, diversified_key);
}
int exitLoop = 0;
uint8_t *modulated_response;
int modulated_response_size = 0;
- uint8_t* trace_data = NULL;
+ uint8_t *trace_data = NULL;
int trace_data_size = 0;
-
// Respond SOF -- takes 1 bytes
uint8_t *resp_sof = BigBuf_malloc(2);
int resp_sof_Len;
// First card answer: SOF
CodeIClassTagSOF();
- memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
+ memcpy(resp_sof, ToSend, ToSendMax);
+ resp_sof_Len = ToSendMax;
// Anticollision CSN
CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
- memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
+ memcpy(resp_anticoll, ToSend, ToSendMax);
+ resp_anticoll_len = ToSendMax;
// CSN
CodeIClassTagAnswer(csn_data, sizeof(csn_data));
- memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
+ memcpy(resp_csn, ToSend, ToSendMax);
+ resp_csn_len = ToSendMax;
// e-Purse
CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
LED_A_ON();
bool buttonPressed = false;
uint8_t response_delay = 1;
- while(!exitLoop) {
+ while (!exitLoop) {
response_delay = 1;
LED_B_OFF();
//Signal tracer
// Can be used to get a trigger for an oscilloscope..
LED_C_OFF();
- if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
+ if (!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
buttonPressed = true;
break;
}
LED_C_ON();
// Okay, look at the command now.
- if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
+ if (receivedCmd[0] == ICLASS_CMD_ACTALL) {
// Reader in anticollission phase
- modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
+ modulated_response = resp_sof;
+ modulated_response_size = resp_sof_Len; //order = 1;
trace_data = sof_data;
trace_data_size = sizeof(sof_data);
- } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
+ } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
// Reader asks for anticollission CSN
- modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
+ modulated_response = resp_anticoll;
+ modulated_response_size = resp_anticoll_len; //order = 2;
trace_data = anticoll_data;
trace_data_size = sizeof(anticoll_data);
//DbpString("Reader requests anticollission CSN:");
- } else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
+ } else if (receivedCmd[0] == ICLASS_CMD_SELECT) {
// Reader selects anticollission CSN.
// Tag sends the corresponding real CSN
- modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
+ modulated_response = resp_csn;
+ modulated_response_size = resp_csn_len; //order = 3;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
//DbpString("Reader selects anticollission CSN:");
- } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
+ } else if (receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
// Read e-purse (88 02)
- modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
+ modulated_response = resp_cc;
+ modulated_response_size = resp_cc_len; //order = 4;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
LED_B_ON();
- } else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
+ } else if (receivedCmd[0] == ICLASS_CMD_CHECK) {
// Reader random and reader MAC!!!
- if(simulationMode == MODE_FULLSIM)
- {
+ if (simulationMode == MODE_FULLSIM) {
//NR, from reader, is in receivedCmd +1
- opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
+ opt_doTagMAC_2(cipher_state, receivedCmd+1, data_generic_trace, diversified_key);
trace_data = data_generic_trace;
trace_data_size = 4;
- CodeIClassTagAnswer(trace_data , trace_data_size);
+ CodeIClassTagAnswer(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
- response_delay = 0;//We need to hurry here...
+ response_delay = 0; //We need to hurry here... (but maybe not too much... ??)
//exitLoop = true;
- }else
- { //Not fullsim, we don't respond
+ } else { //Not fullsim, we don't respond
// We do not know what to answer, so lets keep quiet
- modulated_response = resp_sof; modulated_response_size = 0;
+ modulated_response = resp_sof;
+ modulated_response_size = 0;
trace_data = NULL;
trace_data_size = 0;
- if (simulationMode == MODE_EXIT_AFTER_MAC){
+ if (simulationMode == MODE_EXIT_AFTER_MAC) {
// dbprintf:ing ...
Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
receivedCmd[0], receivedCmd[1], receivedCmd[2],
receivedCmd[3], receivedCmd[4], receivedCmd[5],
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
- if (reader_mac_buf != NULL)
- {
- memcpy(reader_mac_buf,receivedCmd+1,8);
+ if (reader_mac_buf != NULL) {
+ memcpy(reader_mac_buf, receivedCmd+1, 8);
}
exitLoop = true;
}
}
- } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
+ } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
// Reader ends the session
- modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
+ modulated_response = resp_sof;
+ modulated_response_size = 0; //order = 0;
trace_data = NULL;
trace_data_size = 0;
- } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
+ } else if (simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) {
//Read block
uint16_t blk = receivedCmd[1];
//Take the data...
- memcpy(data_generic_trace, emulator+(blk << 3),8);
+ memcpy(data_generic_trace, emulator + (blk << 3), 8);
//Add crc
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
- CodeIClassTagAnswer(trace_data , trace_data_size);
+ CodeIClassTagAnswer(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
- }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
- {//Probably the reader wants to update the nonce. Let's just ignore that for now.
+ } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM) {
+ //Probably the reader wants to update the nonce. Let's just ignore that for now.
// OBS! If this is implemented, don't forget to regenerate the cipher_state
//We're expected to respond with the data+crc, exactly what's already in the receivedcmd
//receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
//Take the data...
- memcpy(data_generic_trace, receivedCmd+2,8);
+ memcpy(data_generic_trace, receivedCmd+2, 8);
//Add crc
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
- CodeIClassTagAnswer(trace_data , trace_data_size);
+ CodeIClassTagAnswer(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
- }
- else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
- {//Pagesel
+ } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL) {
+ //Pagesel
//Pagesel enables to select a page in the selected chip memory and return its configuration block
//Chips with a single page will not answer to this command
// It appears we're fine ignoring this.
//Otherwise, we should answer 8bytes (block) + 2bytes CRC
- }
- else {
+ } else {
//#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
// Never seen this command before
Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
receivedCmd[3], receivedCmd[4], receivedCmd[5],
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
// Do not respond
- modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
+ modulated_response = resp_sof;
+ modulated_response_size = 0; //order = 0;
trace_data = NULL;
trace_data_size = 0;
}
- if(cmdsRecvd > 100) {
+ if (cmdsRecvd > 100) {
//DbpString("100 commands later...");
//break;
- }
- else {
+ } else {
cmdsRecvd++;
}
/**
A legit tag has about 380us delay between reader EOT and tag SOF.
**/
- if(modulated_response_size > 0) {
+ if (modulated_response_size > 0) {
SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
t2r_time = GetCountSspClk();
}
uint8_t parity[MAX_PARITY_SIZE];
GetParity(receivedCmd, len, parity);
- LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, true);
+ LogTrace(receivedCmd, len, (r2t_time-time_0) << 4, (r2t_time-time_0) << 4, parity, true);
if (trace_data != NULL) {
GetParity(trace_data, trace_data_size, parity);
LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, false);
}
- if(!get_tracing()) {
+ if (!get_tracing()) {
DbpString("Trace full");
//break;
}
LED_B_OFF();
LED_C_OFF();
- if(buttonPressed)
+ if (buttonPressed)
{
DbpString("Button pressed");
}
return buttonPressed;
}
-static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
-{
- int i = 0, d=0;//, u = 0, d = 0;
- uint8_t b = 0;
+/**
+ * @brief SimulateIClass simulates an iClass card.
+ * @param arg0 type of simulation
+ * - 0 uses the first 8 bytes in usb data as CSN
+ * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
+ * in the usb data. This mode collects MAC from the reader, in order to do an offline
+ * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
+ * - Other : Uses the default CSN (031fec8af7ff12e0)
+ * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
+ * @param arg2
+ * @param datain
+ */
+void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
+ uint32_t simType = arg0;
+ uint32_t numberOfCSNS = arg1;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
+ // Enable and clear the trace
+ set_tracing(true);
+ clear_trace();
+ //Use the emulator memory for SIM
+ uint8_t *emulator = BigBuf_get_EM_addr();
- AT91C_BASE_SSC->SSC_THR = 0x00;
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
- while(!BUTTON_PRESS()) {
- if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
- b = AT91C_BASE_SSC->SSC_RHR; (void) b;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
- b = 0x00;
- if(d < delay) {
- d++;
- }
- else {
- if( i < respLen){
- b = resp[i];
- //Hack
- //b = 0xAC;
- }
- i++;
+ if (simType == 0) {
+ // Use the CSN from commandline
+ memcpy(emulator, datain, 8);
+ doIClassSimulation(MODE_SIM_CSN,NULL);
+ } else if (simType == 1) {
+ //Default CSN
+ uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
+ // Use the CSN from commandline
+ memcpy(emulator, csn_crc, 8);
+ doIClassSimulation(MODE_SIM_CSN,NULL);
+ } else if (simType == 2) {
+ uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
+ Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
+ // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
+ // in order to collect MAC's from the reader. This can later be used in an offlne-attack
+ // in order to obtain the keys, as in the "dismantling iclass"-paper.
+ int i = 0;
+ for ( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) {
+ // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
+ memcpy(emulator, datain+(i*8), 8);
+ if (doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8)) {
+ cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8);
+ return; // Button pressed
}
- AT91C_BASE_SSC->SSC_THR = b;
}
-
-// if (i > respLen +4) break;
- if (i > respLen +1) break;
+ cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8);
+ } else if (simType == 3) {
+ //This is 'full sim' mode, where we use the emulator storage for data.
+ doIClassSimulation(MODE_FULLSIM, NULL);
+ } else {
+ // We may want a mode here where we hardcode the csns to use (from proxclone).
+ // That will speed things up a little, but not required just yet.
+ Dbprintf("The mode is not implemented, reserved for future use");
}
+ Dbprintf("Done...");
- return 0;
}
+
/// THE READER CODE
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
-static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
-{
- int c;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- AT91C_BASE_SSC->SSC_THR = 0x00;
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
-
- if (wait)
- {
- if(*wait < 10) *wait = 10;
-
- for(c = 0; c < *wait;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
- c++;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
-
- }
-
-
- uint8_t sendbyte;
- bool firstpart = true;
- c = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-
- // DOUBLE THE SAMPLES!
- if(firstpart) {
- sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
- }
- else {
- sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
- c++;
- }
- if(sendbyte == 0xff) {
- sendbyte = 0xfe;
- }
- AT91C_BASE_SSC->SSC_THR = sendbyte;
- firstpart = !firstpart;
-
- if(c >= len) {
- break;
- }
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
- if (samples && wait) *samples = (c + *wait) << 3;
+static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) {
+ int c;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
+
+ if (wait) {
+ if (*wait < 10) *wait = 10;
+
+ for (c = 0; c < *wait;) {
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
+ c++;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
+ }
+ WDT_HIT();
+ }
+ }
+
+ uint8_t sendbyte;
+ bool firstpart = true;
+ c = 0;
+ for (;;) {
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+
+ // DOUBLE THE SAMPLES!
+ if (firstpart) {
+ sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
+ } else {
+ sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
+ c++;
+ }
+ if (sendbyte == 0xff) {
+ sendbyte = 0xfe;
+ }
+ AT91C_BASE_SSC->SSC_THR = sendbyte;
+ firstpart = !firstpart;
+
+ if (c >= len) {
+ break;
+ }
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
+ }
+ WDT_HIT();
+ }
+ if (samples && wait) *samples = (c + *wait) << 3;
}
//-----------------------------------------------------------------------------
// Prepare iClass reader command to send to FPGA
//-----------------------------------------------------------------------------
-void CodeIClassCommand(const uint8_t * cmd, int len)
-{
- int i, j, k;
- uint8_t b;
-
- ToSendReset();
-
- // Start of Communication: 1 out of 4
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x0f;
- ToSend[++ToSendMax] = 0x00;
-
- // Modulate the bytes
- for (i = 0; i < len; i++) {
- b = cmd[i];
- for(j = 0; j < 4; j++) {
- for(k = 0; k < 4; k++) {
- if(k == (b & 3)) {
- ToSend[++ToSendMax] = 0xf0;
- }
- else {
- ToSend[++ToSendMax] = 0x00;
+void CodeIClassCommand(const uint8_t *cmd, int len) {
+ int i, j, k;
+
+ ToSendReset();
+
+ // Start of Communication: 1 out of 4
+ ToSend[++ToSendMax] = 0xf0;
+ ToSend[++ToSendMax] = 0x00;
+ ToSend[++ToSendMax] = 0x0f;
+ ToSend[++ToSendMax] = 0x00;
+
+ // Modulate the bytes
+ for (i = 0; i < len; i++) {
+ uint8_t b = cmd[i];
+ for (j = 0; j < 4; j++) {
+ for (k = 0; k < 4; k++) {
+ if (k == (b & 3)) {
+ ToSend[++ToSendMax] = 0xf0;
+ } else {
+ ToSend[++ToSendMax] = 0x00;
+ }
}
- }
- b >>= 2;
- }
- }
-
- // End of Communication
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
-
- // Convert from last character reference to length
- ToSendMax++;
+ b >>= 2;
+ }
+ }
+
+ // End of Communication
+ ToSend[++ToSendMax] = 0x00;
+ ToSend[++ToSendMax] = 0x00;
+ ToSend[++ToSendMax] = 0xf0;
+ ToSend[++ToSendMax] = 0x00;
+
+ // Convert from last character reference to length
+ ToSendMax++;
}
-void ReaderTransmitIClass(uint8_t* frame, int len)
-{
+static void ReaderTransmitIClass(uint8_t *frame, int len) {
int wait = 0;
int samples = 0;
// This is tied to other size changes
- CodeIClassCommand(frame,len);
+ CodeIClassCommand(frame, len);
// Select the card
TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
- if(trigger)
+ if (trigger)
LED_A_ON();
// Store reader command in buffer
// If a response is captured return true
// If it takes too long return false
//-----------------------------------------------------------------------------
-static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
-{
+static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) {
+ //uint8_t *buffer
// buffer needs to be 512 bytes
int c;
bool skip = false;
c = 0;
- for(;;) {
+ for (;;) {
WDT_HIT();
- if(BUTTON_PRESS()) return false;
+ if (BUTTON_PRESS()) return false;
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
if (elapsed) (*elapsed)++;
}
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- if(c < timeout) { c++; } else { return false; }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ if (c < timeout) {
+ c++;
+ } else {
+ return false;
+ }
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
skip = !skip;
- if(skip) continue;
-
- if(ManchesterDecoding(b & 0x0f)) {
+ if (skip) continue;
+
+ if (ManchesterDecoding(b & 0x0f)) {
*samples = c << 3;
return true;
}
}
}
-int ReaderReceiveIClass(uint8_t* receivedAnswer)
-{
- int samples = 0;
- if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return false;
- rsamples += samples;
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(receivedAnswer, Demod.len, parity);
- LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,false);
- if(samples == 0) return false;
- return Demod.len;
+static int ReaderReceiveIClass(uint8_t *receivedAnswer) {
+ int samples = 0;
+ if (!GetIClassAnswer(receivedAnswer, 160, &samples, 0)) {
+ return false;
+ }
+ rsamples += samples;
+ uint8_t parity[MAX_PARITY_SIZE];
+ GetParity(receivedAnswer, Demod.len, parity);
+ LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, parity, false);
+ if (samples == 0) return false;
+ return Demod.len;
}
-void setupIclassReader()
-{
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Reset trace buffer
- set_tracing(true);
- clear_trace();
-
- // Setup SSC
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
- // Start from off (no field generated)
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
-
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(200);
- LED_A_ON();
+static void setupIclassReader() {
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ // Reset trace buffer
+ set_tracing(true);
+ clear_trace();
+
+ // Setup SSC
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
+ // Start from off (no field generated)
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Now give it time to spin up.
+ // Signal field is on with the appropriate LED
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(200);
+ LED_A_ON();
}
-bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
-{
- while(retries-- > 0)
- {
+static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) {
+ while (retries-- > 0) {
ReaderTransmitIClass(command, cmdsize);
- if(expected_size == ReaderReceiveIClass(resp)){
+ if (expected_size == ReaderReceiveIClass(resp)) {
return true;
}
}
* 1 = Got CSN
* 2 = Got CSN and CC
*/
-uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
-{
+static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
static uint8_t act_all[] = { 0x0a };
//static uint8_t identify[] = { 0x0c };
static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
// Send act_all
ReaderTransmitIClass(act_all, 1);
// Card present?
- if(!ReaderReceiveIClass(resp)) return read_status;//Fail
+ if (!ReaderReceiveIClass(resp)) return read_status;//Fail
//Send Identify
ReaderTransmitIClass(identify, 1);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
- uint8_t len = ReaderReceiveIClass(resp);
- if(len != 10) return read_status;//Fail
+ uint8_t len = ReaderReceiveIClass(resp);
+ if (len != 10) return read_status;//Fail
//Copy the Anti-collision CSN to our select-packet
- memcpy(&select[1],resp,8);
+ memcpy(&select[1], resp, 8);
//Select the card
ReaderTransmitIClass(select, sizeof(select));
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
- len = ReaderReceiveIClass(resp);
- if(len != 10) return read_status;//Fail
+ len = ReaderReceiveIClass(resp);
+ if (len != 10) return read_status;//Fail
//Success - level 1, we got CSN
//Save CSN in response data
- memcpy(card_data,resp,8);
+ memcpy(card_data, resp, 8);
//Flag that we got to at least stage 1, read CSN
read_status = 1;
// Card selected, now read e-purse (cc) (only 8 bytes no CRC)
ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
- if(ReaderReceiveIClass(resp) == 8) {
+ if (ReaderReceiveIClass(resp) == 8) {
//Save CC (e-purse) in response data
- memcpy(card_data+8,resp,8);
+ memcpy(card_data+8, resp, 8);
read_status++;
}
return read_status;
}
-uint8_t handshakeIclassTag(uint8_t *card_data) {
+
+static uint8_t handshakeIclassTag(uint8_t *card_data) {
return handshakeIclassTag_ext(card_data, false);
}
// Reader iClass Anticollission
void ReaderIClass(uint8_t arg0) {
- uint8_t card_data[6 * 8]={0};
+ uint8_t card_data[6 * 8] = {0};
memset(card_data, 0xFF, sizeof(card_data));
- uint8_t last_csn[8]={0,0,0,0,0,0,0,0};
+ uint8_t last_csn[8] = {0,0,0,0,0,0,0,0};
uint8_t resp[ICLASS_BUFFER_SIZE];
memset(resp, 0xFF, sizeof(resp));
//Read conf block CRC(0x01) => 0xfa 0x22
- uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
+ uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
//Read App Issuer Area block CRC(0x05) => 0xde 0x64
- uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
+ uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
int read_status= 0;
uint8_t result_status = 0;
set_tracing(true);
setupIclassReader();
- uint16_t tryCnt=0;
+ uint16_t tryCnt = 0;
bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
- while(!userCancelled)
- {
+ while (!userCancelled) {
// if only looking for one card try 2 times if we missed it the first time
- if (try_once && tryCnt > 2) break;
+ if (try_once && tryCnt > 2) {
+ break;
+ }
tryCnt++;
- if(!get_tracing()) {
+ if (!get_tracing()) {
DbpString("Trace full");
break;
}
read_status = handshakeIclassTag_ext(card_data, use_credit_key);
- if(read_status == 0) continue;
- if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
- if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
+ if (read_status == 0) continue;
+ if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
+ if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC;
// handshakeIclass returns CSN|CC, but the actual block
// layout is CSN|CONFIG|CC, so here we reorder the data,
// moving CC forward 8 bytes
- memcpy(card_data+16,card_data+8, 8);
+ memcpy(card_data+16, card_data+8, 8);
//Read block 1, config
- if(flagReadConfig) {
- if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10))
- {
+ if (flagReadConfig) {
+ if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
}
//Read block 5, AA
- if(flagReadAA) {
- if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10))
- {
+ if (flagReadAA) {
+ if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) {
result_status |= FLAG_ICLASS_READER_AA;
- memcpy(card_data+(8*5), resp, 8);
+ memcpy(card_data + (8*5), resp, 8);
} else {
//Dbprintf("Failed to dump AA block");
}
// with 0xFF:s in block 3 and 4.
LED_B_ON();
- //Send back to client, but don't bother if we already sent this -
+ //Send back to client, but don't bother if we already sent this -
// only useful if looping in arm (not try_once && not abort_after_read)
- if(memcmp(last_csn, card_data, 8) != 0)
- {
+ if (memcmp(last_csn, card_data, 8) != 0) {
// If caller requires that we get Conf, CC, AA, continue until we got it
- if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
- cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
- if(abort_after_read) {
+ if ( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
+ cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
+ if (abort_after_read) {
LED_A_OFF();
LED_B_OFF();
return;
userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
}
if (userCancelled) {
- cmd_send(CMD_ACK,0xFF,0,0,card_data, 0);
+ cmd_send(CMD_ACK, 0xFF, 0, 0, card_data, 0);
} else {
- cmd_send(CMD_ACK,0,0,0,card_data, 0);
+ cmd_send(CMD_ACK, 0, 0, 0, card_data, 0);
}
LED_A_OFF();
}
uint8_t card_data[USB_CMD_DATA_SIZE]={0};
uint16_t block_crc_LUT[255] = {0};
- {//Generate a lookup table for block crc
- for(int block = 0; block < 255; block++){
- char bl = block;
- block_crc_LUT[block] = iclass_crc16(&bl ,1);
- }
+ //Generate a lookup table for block crc
+ for (int block = 0; block < 255; block++){
+ char bl = block;
+ block_crc_LUT[block] = iclass_crc16(&bl ,1);
}
//Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
-
- uint16_t crc = 0;
- uint8_t cardsize=0;
- uint8_t mem=0;
-
- static struct memory_t{
- int k16;
- int book;
- int k2;
- int lockauth;
- int keyaccess;
+
+ uint16_t crc = 0;
+ uint8_t cardsize = 0;
+ uint8_t mem = 0;
+
+ static struct memory_t {
+ int k16;
+ int book;
+ int k2;
+ int lockauth;
+ int keyaccess;
} memory;
-
+
uint8_t resp[ICLASS_BUFFER_SIZE];
-
- setupIclassReader();
+
+ setupIclassReader();
set_tracing(true);
- while(!BUTTON_PRESS()) {
-
+ while (!BUTTON_PRESS()) {
+
WDT_HIT();
- if(!get_tracing()) {
+ if (!get_tracing()) {
DbpString("Trace full");
break;
}
-
+
uint8_t read_status = handshakeIclassTag(card_data);
- if(read_status < 2) continue;
+ if (read_status < 2) continue;
//for now replay captured auth (as cc not updated)
- memcpy(check+5,MAC,4);
+ memcpy(check+5, MAC, 4);
- if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
- {
+ if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) {
Dbprintf("Error: Authentication Fail!");
continue;
}
//first get configuration block (block 1)
crc = block_crc_LUT[1];
- read[1]=1;
+ read[1] = 1;
read[2] = crc >> 8;
read[3] = crc & 0xff;
- if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
- {
+ if (!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) {
Dbprintf("Dump config (block 1) failed");
continue;
}
- mem=resp[5];
- memory.k16= (mem & 0x80);
- memory.book= (mem & 0x20);
- memory.k2= (mem & 0x8);
- memory.lockauth= (mem & 0x2);
- memory.keyaccess= (mem & 0x1);
+ mem = resp[5];
+ memory.k16 = (mem & 0x80);
+ memory.book = (mem & 0x20);
+ memory.k2 = (mem & 0x8);
+ memory.lockauth = (mem & 0x2);
+ memory.keyaccess = (mem & 0x1);
cardsize = memory.k16 ? 255 : 32;
WDT_HIT();
//Set card_data to all zeroes, we'll fill it with data
- memset(card_data,0x0,USB_CMD_DATA_SIZE);
- uint8_t failedRead =0;
- uint32_t stored_data_length =0;
+ memset(card_data, 0x0, USB_CMD_DATA_SIZE);
+ uint8_t failedRead = 0;
+ uint32_t stored_data_length = 0;
//then loop around remaining blocks
- for(int block=0; block < cardsize; block++){
-
- read[1]= block;
+ for (int block = 0; block < cardsize; block++) {
+ read[1] = block;
crc = block_crc_LUT[block];
read[2] = crc >> 8;
read[3] = crc & 0xff;
- if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
- {
+ if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) {
Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
- block, resp[0], resp[1], resp[2],
+ block, resp[0], resp[1], resp[2],
resp[3], resp[4], resp[5],
resp[6], resp[7]);
//Fill up the buffer
- memcpy(card_data+stored_data_length,resp,8);
+ memcpy(card_data+stored_data_length, resp, 8);
stored_data_length += 8;
- if(stored_data_length +8 > USB_CMD_DATA_SIZE)
- {//Time to send this off and start afresh
+ if (stored_data_length +8 > USB_CMD_DATA_SIZE) {
+ //Time to send this off and start afresh
cmd_send(CMD_ACK,
stored_data_length,//data length
failedRead,//Failed blocks?
failedRead = 0;
}
- }else{
+ } else {
failedRead = 1;
- stored_data_length +=8;//Otherwise, data becomes misaligned
+ stored_data_length += 8;//Otherwise, data becomes misaligned
Dbprintf("Failed to dump block %d", block);
}
}
//Send off any remaining data
- if(stored_data_length > 0)
- {
+ if (stored_data_length > 0) {
cmd_send(CMD_ACK,
stored_data_length,//data length
failedRead,//Failed blocks?
0,//Not used ATM
- card_data, stored_data_length);
+ card_data,
+ stored_data_length);
}
//If we got here, let's break
break;
0,//data length
0,//Failed blocks?
0,//Not used ATM
- card_data, 0);
+ card_data,
+ 0);
LED_A_OFF();
}
-void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
+void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
uint8_t readcheck[] = { keyType, blockNo };
uint8_t resp[] = {0,0,0,0,0,0,0,0};
size_t isOK = 0;
isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
- cmd_send(CMD_ACK,isOK,0,0,0,0);
+ cmd_send(CMD_ACK,isOK, 0, 0, 0, 0);
}
void iClass_Authentication(uint8_t *MAC) {
uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t resp[ICLASS_BUFFER_SIZE];
- memcpy(check+5,MAC,4);
+ memcpy(check+5, MAC, 4);
bool isOK;
isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
- cmd_send(CMD_ACK,isOK,0,0,0,0);
+ cmd_send(CMD_ACK,isOK, 0, 0, 0, 0);
}
+
bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
char bl = blockNo;
BigBuf_free();
uint8_t *dataout = BigBuf_malloc(255*8);
- if (dataout == NULL){
+ if (dataout == NULL) {
Dbprintf("out of memory");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
- cmd_send(CMD_ACK,0,1,0,0,0);
+ cmd_send(CMD_ACK, 0, 1, 0, 0, 0);
LED_A_OFF();
return;
}
- memset(dataout,0xFF,255*8);
+ memset(dataout, 0xFF, 255*8);
- for (;blkCnt < numblks; blkCnt++) {
+ for ( ; blkCnt < numblks; blkCnt++) {
isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
break;
}
}
- memcpy(dataout+(blkCnt*8),readblockdata,8);
+ memcpy(dataout + (blkCnt*8), readblockdata, 8);
}
//return pointer to dump memory in arg3
- cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0);
+ cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
BigBuf_free();
}
-bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
+static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
//uint8_t readblockdata[10];
//write[1] = blockNo;
memcpy(write+2, data, 12); // data + mac
- char *wrCmd = (char *)(write+1);
+ char *wrCmd = (char *)(write+1);
uint16_t wrCrc = iclass_crc16(wrCmd, 13);
write[14] = wrCrc >> 8;
write[15] = wrCrc & 0xff;
uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
bool isOK = false;
- isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
+ isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
if (isOK) { //if reader responded correctly
//Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
- if (memcmp(write+2,resp,8)) { //if response is not equal to write values
+ if (memcmp(write+2, resp, 8)) { //if response is not equal to write values
if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
//error try again
- isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
- }
-
+ isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
+ }
}
}
return isOK;
void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
bool isOK = iClass_WriteBlock_ext(blockNo, data);
if (isOK){
- Dbprintf("Write block [%02x] successful",blockNo);
+ Dbprintf("Write block [%02x] successful", blockNo);
} else {
- Dbprintf("Write block [%02x] failed",blockNo);
+ Dbprintf("Write block [%02x] failed", blockNo);
}
- cmd_send(CMD_ACK,isOK,0,0,0,0);
+ cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
}
void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
int i;
int written = 0;
int total_block = (endblock - startblock) + 1;
- for (i = 0; i < total_block;i++){
+ for (i = 0; i < total_block; i++) {
// block number
- if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
- Dbprintf("Write block [%02x] successful",i + startblock);
+ if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
+ Dbprintf("Write block [%02x] successful", i + startblock);
written++;
} else {
- if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
- Dbprintf("Write block [%02x] successful",i + startblock);
+ if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
+ Dbprintf("Write block [%02x] successful", i + startblock);
written++;
} else {
- Dbprintf("Write block [%02x] failed",i + startblock);
+ Dbprintf("Write block [%02x] failed", i + startblock);
}
}
}
if (written == total_block)
Dbprintf("Clone complete");
else
- Dbprintf("Clone incomplete");
+ Dbprintf("Clone incomplete");
- cmd_send(CMD_ACK,1,0,0,0,0);
+ cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
/*****************************************************************************
* WARNING
*
- * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
- *
- * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
- * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
- * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
- *
- * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
+ * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
+ *
+ * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
+ * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
+ * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
+ *
+ * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
- *
- *
- *
+ *
+ *
+ *
****************************************************************************/
/**
-- MHS 2015
**/
+/**
+
+ The runtime of opt_doTagMAC_2() with the MHS optimized version was 403 microseconds on Proxmark3.
+ This was still to slow for some newer readers which didn't want to wait that long.
+
+ Further optimizations to speedup the MAC calculations:
+ * Optimized opt_Tt logic
+ * Look up table for opt_select
+ * Removing many unnecessary bit maskings (& 0x1)
+ * updating state in place instead of alternating use of a second state structure
+ * remove the necessity to reverse bits of input and output bytes
+
+ opt_doTagMAC_2() now completes in 270 microseconds.
+
+ -- piwi 2019
+**/
+
#include "optimized_cipher.h"
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
-
-
-#define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14)^ (s->t >> 10)^ (s->t >> 8)^ (s->t >> 5)^ (s->t >> 4)^ (s->t >> 1)^ s->t))
-
-#define opt_B(s) (((s->b >> 6) ^ (s->b >> 5) ^ (s->b >> 4) ^ (s->b)) & 0x1)
+#include "string.h"
+
+static const uint8_t opt_select_LUT[256] = {
+ 00, 03, 02, 01, 02, 03, 00, 01, 04, 07, 07, 04, 06, 07, 05, 04,
+ 01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
+ 06, 05, 04, 07, 04, 05, 06, 07, 06, 05, 05, 06, 04, 05, 07, 06,
+ 07, 04, 05, 06, 04, 05, 06, 07, 07, 04, 04, 07, 04, 05, 07, 06,
+ 06, 05, 04, 07, 04, 05, 06, 07, 02, 01, 01, 02, 00, 01, 03, 02,
+ 03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
+ 00, 03, 02, 01, 02, 03, 00, 01, 00, 03, 03, 00, 02, 03, 01, 00,
+ 05, 06, 07, 04, 06, 07, 04, 05, 05, 06, 06, 05, 06, 07, 05, 04,
+ 02, 01, 00, 03, 00, 01, 02, 03, 06, 05, 05, 06, 04, 05, 07, 06,
+ 03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
+ 02, 01, 00, 03, 00, 01, 02, 03, 02, 01, 01, 02, 00, 01, 03, 02,
+ 03, 00, 01, 02, 00, 01, 02, 03, 03, 00, 00, 03, 00, 01, 03, 02,
+ 04, 07, 06, 05, 06, 07, 04, 05, 00, 03, 03, 00, 02, 03, 01, 00,
+ 01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
+ 04, 07, 06, 05, 06, 07, 04, 05, 04, 07, 07, 04, 06, 07, 05, 04,
+ 01, 02, 03, 00, 02, 03, 00, 01, 01, 02, 02, 01, 02, 03, 01, 00
+};
+
+/********************** the table above has been generated with this code: ********
+#include "util.h"
+static void init_opt_select_LUT(void) {
+ for (int r = 0; r < 256; r++) {
+ uint8_t r_ls2 = r << 2;
+ uint8_t r_and_ls2 = r & r_ls2;
+ uint8_t r_or_ls2 = r | r_ls2;
+ uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3);
+ uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r;
+ uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r;
+ opt_select_LUT[r] = (z0 & 4) | (z1 & 2) | (z2 & 1);
+ }
+ print_result("", opt_select_LUT, 256);
+}
+***********************************************************************************/
#define opt__select(x,y,r) (4 & (((r & (r << 2)) >> 5) ^ ((r & ~(r << 2)) >> 4) ^ ( (r | r << 2) >> 3)))\
|(2 & (((r | r << 2) >> 6) ^ ( (r | r << 2) >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1)))\
* Some background on the expression above can be found here...
uint8_t xopt__select(bool x, bool y, uint8_t r)
{
- uint8_t r_ls2 = r << 2;
- uint8_t r_and_ls2 = r & r_ls2;
- uint8_t r_or_ls2 = r | r_ls2;
//r: r0 r1 r2 r3 r4 r5 r6 r7
//r_ls2: r2 r3 r4 r5 r6 r7 0 0
// z0
// z1
-// uint8_t z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); // <-- original
+// uint8_t z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); // <-- original
uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3);
-// uint8_t z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; // <-- original
+// uint8_t z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; // <-- original
uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1);
-// uint8_t z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; // <-- original
+// uint8_t z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; // <-- original
uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r ^ x;
return (z0 & 4) | (z1 & 2) | (z2 & 1);
}
*/
-void opt_successor(const uint8_t* k, State *s, bool y, State* successor)
-{
-
- uint8_t Tt = 1 & opt_T(s);
-
- successor->t = (s->t >> 1);
- successor->t |= (Tt ^ (s->r >> 7 & 0x1) ^ (s->r >> 3 & 0x1)) << 15;
-
- successor->b = s->b >> 1;
- successor->b |= (opt_B(s) ^ (s->r & 0x1)) << 7;
-
- successor->r = (k[opt__select(Tt,y,s->r)] ^ successor->b) + s->l ;
- successor->l = successor->r+s->r;
-
+static void opt_successor(const uint8_t *k, State *s, uint8_t y) {
+// #define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14) ^ (s->t >> 10) ^ (s->t >> 8) ^ (s->t >> 5) ^ (s->t >> 4)^ (s->t >> 1) ^ s->t))
+ // uint8_t Tt = opt_T(s);
+ uint16_t Tt = s->t & 0xc533;
+ Tt = Tt ^ (Tt >> 1);
+ Tt = Tt ^ (Tt >> 4);
+ Tt = Tt ^ (Tt >> 10);
+ Tt = Tt ^ (Tt >> 8);
+
+ s->t = (s->t >> 1);
+ s->t |= (Tt ^ (s->r >> 7) ^ (s->r >> 3)) << 15;
+
+ uint8_t opt_B = s->b;
+ opt_B ^= s->b >> 6;
+ opt_B ^= s->b >> 5;
+ opt_B ^= s->b >> 4;
+
+ s->b = s->b >> 1;
+ s->b |= (opt_B ^ s->r) << 7;
+
+ uint8_t opt_select = opt_select_LUT[s->r] & 0x04;
+ opt_select |= (opt_select_LUT[s->r] ^ ((Tt ^ y) << 1)) & 0x02;
+ opt_select |= (opt_select_LUT[s->r] ^ Tt) & 0x01;
+
+ uint8_t r = s->r;
+ s->r = (k[opt_select] ^ s->b) + s->l ;
+ s->l = s->r + r;
}
-void opt_suc(const uint8_t* k,State* s, uint8_t *in, uint8_t length, bool add32Zeroes)
-{
- State x2;
- int i;
- uint8_t head = 0;
- for(i =0 ; i < length ; i++)
- {
- head = 1 & (in[i] >> 7);
- opt_successor(k,s,head,&x2);
-
- head = 1 & (in[i] >> 6);
- opt_successor(k,&x2,head,s);
+static void opt_suc(const uint8_t *k, State *s, uint8_t *in, uint8_t length, bool add32Zeroes) {
+ for (int i = 0; i < length; i++) {
+ uint8_t head;
+ head = in[i];
+ opt_successor(k, s, head);
- head = 1 & (in[i] >> 5);
- opt_successor(k,s,head,&x2);
+ head >>= 1;
+ opt_successor(k, s, head);
- head = 1 & (in[i] >> 4);
- opt_successor(k,&x2,head,s);
+ head >>= 1;
+ opt_successor(k, s, head);
- head = 1 & (in[i] >> 3);
- opt_successor(k,s,head,&x2);
+ head >>= 1;
+ opt_successor(k, s, head);
- head = 1 & (in[i] >> 2);
- opt_successor(k,&x2,head,s);
+ head >>= 1;
+ opt_successor(k, s, head);
- head = 1 & (in[i] >> 1);
- opt_successor(k,s,head,&x2);
+ head >>= 1;
+ opt_successor(k, s, head);
- head = 1 & in[i];
- opt_successor(k,&x2,head,s);
+ head >>= 1;
+ opt_successor(k, s, head);
+ head >>= 1;
+ opt_successor(k, s, head);
}
//For tag MAC, an additional 32 zeroes
- if(add32Zeroes)
- for(i =0 ; i < 16 ; i++)
- {
- opt_successor(k,s,0,&x2);
- opt_successor(k,&x2,0,s);
+ if (add32Zeroes) {
+ for(int i = 0; i < 16; i++) {
+ opt_successor(k, s, 0);
+ opt_successor(k, s, 0);
}
+ }
}
-void opt_output(const uint8_t* k,State* s, uint8_t *buffer)
-{
- uint8_t times = 0;
- uint8_t bout = 0;
- State temp = {0,0,0,0};
- for( ; times < 4 ; times++)
- {
- bout =0;
- bout |= (s->r & 0x4) << 5;
- opt_successor(k,s,0,&temp);
- bout |= (temp.r & 0x4) << 4;
- opt_successor(k,&temp,0,s);
- bout |= (s->r & 0x4) << 3;
- opt_successor(k,s,0,&temp);
- bout |= (temp.r & 0x4) << 2;
- opt_successor(k,&temp,0,s);
- bout |= (s->r & 0x4) << 1;
- opt_successor(k,s,0,&temp);
- bout |= (temp.r & 0x4) ;
- opt_successor(k,&temp,0,s);
+static void opt_output(const uint8_t *k, State *s, uint8_t *buffer) {
+ for (uint8_t times = 0; times < 4; times++) {
+ uint8_t bout = 0;
+ bout |= (s->r & 0x4) >> 2;
+ opt_successor(k, s, 0);
bout |= (s->r & 0x4) >> 1;
- opt_successor(k,s,0,&temp);
- bout |= (temp.r & 0x4) >> 2;
- opt_successor(k,&temp,0,s);
+ opt_successor(k, s, 0);
+ bout |= (s->r & 0x4);
+ opt_successor(k, s, 0);
+ bout |= (s->r & 0x4) << 1;
+ opt_successor(k, s, 0);
+ bout |= (s->r & 0x4) << 2;
+ opt_successor(k, s, 0);
+ bout |= (s->r & 0x4) << 3;
+ opt_successor(k, s, 0);
+ bout |= (s->r & 0x4) << 4;
+ opt_successor(k, s, 0);
+ bout |= (s->r & 0x4) << 5;
+ opt_successor(k, s, 0);
buffer[times] = bout;
}
-
}
-void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out)
-{
+static void opt_MAC(uint8_t *k, uint8_t *input, uint8_t *out) {
State _init = {
- ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
- ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
- 0x4c, // b
- 0xE012 // t
- };
+ ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+ ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
+ 0x4c, // b
+ 0xE012 // t
+ };
- opt_suc(k,&_init,input,12, false);
+ opt_suc(k, &_init, input, 12, false);
//printf("\noutp ");
- opt_output(k,&_init, out);
-}
-uint8_t rev_byte(uint8_t b) {
- b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
- b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
- b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
- return b;
-}
-void opt_reverse_arraybytecpy(uint8_t* dest, uint8_t *src, size_t len)
-{
- uint8_t i;
- for( i =0; i< len ; i++)
- dest[i] = rev_byte(src[i]);
+ opt_output(k, &_init, out);
}
-void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
-{
- static uint8_t cc_nr[12];
-
- opt_reverse_arraybytecpy(cc_nr, cc_nr_p,12);
- uint8_t dest []= {0,0,0,0,0,0,0,0};
- opt_MAC(div_key_p,cc_nr, dest);
- //The output MAC must also be reversed
- opt_reverse_arraybytecpy(mac, dest,4);
+void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) {
+ uint8_t dest[] = {0, 0, 0, 0, 0, 0, 0, 0};
+ opt_MAC(div_key_p, cc_nr_p, dest);
+ memcpy(mac, dest, 4);
return;
}
-void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4])
-{
- static uint8_t cc_nr[8+4+4];
- opt_reverse_arraybytecpy(cc_nr, cc_p,12);
- State _init = {
- ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
- ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
- 0x4c, // b
- 0xE012 // t
- };
- opt_suc(div_key_p,&_init,cc_nr, 12,true);
- uint8_t dest []= {0,0,0,0};
- opt_output(div_key_p,&_init, dest);
- //The output MAC must also be reversed
- opt_reverse_arraybytecpy(mac, dest,4);
- return;
+void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) {
+ State _init = {
+ ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+ ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
+ 0x4c, // b
+ 0xE012 // t
+ };
+ opt_suc(div_key_p, &_init, cc_p, 12, true);
+ opt_output(div_key_p, &_init, mac);
+ return;
}
+
/**
* The tag MAC can be divided (both can, but no point in dividing the reader mac) into
* two functions, since the first 8 bytes are known, we can pre-calculate the state
* @param div_key_p
* @return the cipher state
*/
-State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p)
-{
- static uint8_t cc_nr[8];
- opt_reverse_arraybytecpy(cc_nr, cc_p,8);
- State _init = {
- ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
- ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
- 0x4c, // b
- 0xE012 // t
- };
- opt_suc(div_key_p,&_init,cc_nr, 8,false);
+State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) {
+ State _init = {
+ ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+ ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
+ 0x4c, // b
+ 0xE012 // t
+ };
+ opt_suc(div_key_p, &_init, cc_p, 8, false);
return _init;
}
+
/**
* The second part of the tag MAC calculation, since the CC is already calculated into the state,
* this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
* @param mac - where to store the MAC
* @param div_key_p - the key to use
*/
-void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p)
-{
- static uint8_t _nr [4];
- opt_reverse_arraybytecpy(_nr, nr, 4);
- opt_suc(div_key_p,&_init,_nr, 4, true);
- //opt_suc(div_key_p,&_init,nr, 4, false);
- uint8_t dest []= {0,0,0,0};
- opt_output(div_key_p,&_init, dest);
- //The output MAC must also be reversed
- opt_reverse_arraybytecpy(mac, dest,4);
+void opt_doTagMAC_2(State _init, uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p) {
+ opt_suc(div_key_p, &_init, nr, 4, true);
+ opt_output(div_key_p, &_init, mac);
return;
}