OBJ = $(OBJDIR)/start.o \\r
$(OBJDIR)/appmain.o \\r
$(OBJDIR)/fpga.o \\r
+ $(OBJDIR)/lfops.o \\r
$(OBJDIR)/iso14443.o \\r
$(OBJDIR)/iso14443a.o \\r
$(OBJDIR)/iso15693.o \\r
OBJ = $(OBJDIR)/start.o \
$(OBJDIR)/appmain.o \
$(OBJDIR)/fpga.o \
+ $(OBJDIR)/lfops.o \
$(OBJDIR)/iso15693.o \
$(OBJDIR)/util.o
// Edits by Gerhard de Koning Gans, Sep 2007 (##)
//-----------------------------------------------------------------------------
-
#include <proxmark3.h>
#include <stdlib.h>
#include "apps.h"
#include "LCD.h"
#endif
-// The large multi-purpose buffer, typically used to hold A/D samples,
-// maybe pre-processed in some way.
-DWORD BigBuf[16000];
int usbattached = 0;
//=============================================================================
int ToSendMax;
static int ToSendBit;
-
void BufferClear(void)
{
memset(BigBuf,0,sizeof(BigBuf));
SpinDelay(50);
}
-void AcquireRawAdcSamples125k(BOOL at134khz)
-{
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // Now call the acquisition routine
- DoAcquisition125k(at134khz);
-}
-
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(BOOL at134khz)
-{
- BYTE *dest = (BYTE *)BigBuf;
- int n = sizeof(BigBuf);
- int i;
-
- memset(dest,0,n);
- i = 0;
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0x43;
- LED_D_ON();
- }
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
- i++;
- LED_D_OFF();
- if(i >= n) {
- break;
- }
- }
- }
- DbpIntegers(dest[0], dest[1], at134khz);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
-{
- BOOL at134khz;
-
- // see if 'h' was specified
- if(command[strlen((char *) command) - 1] == 'h')
- at134khz= TRUE;
- else
- at134khz= FALSE;
-
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // now modulate the reader field
- while(*command != '\0' && *command != ' ')
- {
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
- LED_D_ON();
- if(*(command++) == '0')
- SpinDelayUs(period_0);
- else
- SpinDelayUs(period_1);
- }
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
-
- // now do the read
- DoAcquisition125k(at134khz);
-}
-
-void AcquireTiType(void)
-{
- int i;
- int n = 5000;
-
- // clear buffer
- memset(BigBuf,0,sizeof(BigBuf));
-
- // Set up the synchronous serial port
- PIO_DISABLE = (1<<GPIO_SSC_DIN);
- PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN);
-
- // steal this pin from the SSP and use it to control the modulation
- PIO_ENABLE = (1<<GPIO_SSC_DOUT);
- PIO_OUTPUT_ENABLE = (1<<GPIO_SSC_DOUT);
-
- SSC_CONTROL = SSC_CONTROL_RESET;
- SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;
-
- // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
- // 48/2 = 24 MHz clock must be divided by 12
- SSC_CLOCK_DIVISOR = 12;
-
- SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(0);
- SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(32) | SSC_FRAME_MODE_MSB_FIRST;
- SSC_TRANSMIT_CLOCK_MODE = 0;
- SSC_TRANSMIT_FRAME_MODE = 0;
-
- LED_D_ON();
-
- // modulate antenna
- PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
-
- // Charge TI tag for 50ms.
- SpinDelay(50);
-
- // stop modulating antenna and listen
- PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
-
- LED_D_OFF();
-
- i = 0;
- for(;;) {
- if(SSC_STATUS & SSC_STATUS_RX_READY) {
- BigBuf[i] = SSC_RECEIVE_HOLDING; // store 32 bit values in buffer
- i++; if(i >= n) return;
- }
- WDT_HIT();
- }
-
- // return stolen pin to SSP
- PIO_DISABLE = (1<<GPIO_SSC_DOUT);
- PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN) | (1<<GPIO_SSC_DOUT);
-}
-
-void AcquireRawBitsTI(void)
-{
- LED_D_ON();
- // TI tags charge at 134.2Khz
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line
- // connects to SSP_DIN and the SSP_DOUT logic level controls
- // whether we're modulating the antenna (high)
- // or listening to the antenna (low)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
-
- // get TI tag data into the buffer
- AcquireTiType();
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-}
-
//-----------------------------------------------------------------------------
// Read an ADC channel and block till it completes, then return the result
// in ADC units (0 to 1023). Also a routine to average 32 samples and
UsbSendPacket((BYTE *)&c, sizeof(c));
}
-void SimulateTagLowFrequency(int period, int ledcontrol)
+void SimulateTagHfListen(void)
{
+ BYTE *dest = (BYTE *)BigBuf;
+ int n = sizeof(BigBuf);
+ BYTE v = 0;
int i;
- BYTE *tab = (BYTE *)BigBuf;
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
+ int p = 0;
- PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
+ // We're using this mode just so that I can test it out; the simulated
+ // tag mode would work just as well and be simpler.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
- PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
- PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
+ // We need to listen to the high-frequency, peak-detected path.
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+ FpgaSetupSsc();
i = 0;
for(;;) {
- while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
- WDT_HIT();
+ if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
+ SSC_TRANSMIT_HOLDING = 0xff;
}
+ if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
+ BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
- if (ledcontrol)
- LED_D_ON();
-
- if(tab[i])
- OPEN_COIL();
- else
- SHORT_COIL();
+ v <<= 1;
+ if(r & 1) {
+ v |= 1;
+ }
+ p++;
- if (ledcontrol)
- LED_D_OFF();
+ if(p >= 8) {
+ dest[i] = v;
+ v = 0;
+ p = 0;
+ i++;
- while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
+ if(i >= n) {
+ break;
+ }
}
- WDT_HIT();
}
-
- i++;
- if(i == period) i = 0;
}
+ DbpString("simulate tag (now type bitsamples)");
}
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
- BYTE *dest = (BYTE *)BigBuf;
- int idx;
-
- // for when we want an fc8 pattern every 4 logical bits
- if(c==0) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
- if(c==8) {
- for (idx=0; idx<6; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
+void ReadMem(int addr)
+{
+ const DWORD *data = ((DWORD *)addr);
+ int i;
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
- if(c==10) {
- for (idx=0; idx<5; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
+ DbpString("Reading memory at address");
+ DbpIntegers(0, 0, addr);
+ for (i = 0; i < 8; i+= 2)
+ DbpIntegers(0, data[i], data[i+1]);
}
-// prepare a waveform pattern in the buffer based on the ID given then
-// simulate a HID tag until the button is pressed
-static void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
+// samy's sniff and repeat routine
+void SamyRun()
{
- int n=0, i=0;
- /*
- HID tag bitstream format
- The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
- A 1 bit is represented as 6 fc8 and 5 fc10 patterns
- A 0 bit is represented as 5 fc10 and 6 fc8 patterns
- A fc8 is inserted before every 4 bits
- A special start of frame pattern is used consisting a0b0 where a and b are neither 0
- nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
- */
-
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
- return;
- }
- fc(0,&n);
- // special start of frame marker containing invalid bit sequences
- fc(8, &n); fc(8, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
- fc(10, &n); fc(10, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
-
- WDT_HIT();
- // manchester encode bits 43 to 32
- for (i=11; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((hi>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
+ DbpString("Stand-alone mode! No PC necessary.");
- WDT_HIT();
- // manchester encode bits 31 to 0
- for (i=31; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((lo>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
+ // 3 possible options? no just 2 for now
+#define OPTS 2
- if (ledcontrol)
- LED_A_ON();
- SimulateTagLowFrequency(n, ledcontrol);
+ int high[OPTS], low[OPTS];
- if (ledcontrol)
- LED_A_OFF();
-}
+ // Oooh pretty -- notify user we're in elite samy mode now
+ LED(LED_RED, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_RED, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_RED, 200);
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-static void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
-{
- BYTE *dest = (BYTE *)BigBuf;
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;
- DWORD hi=0, lo=0;
+ int selected = 0;
+ int playing = 0;
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ // Turn on selected LED
+ LED(selected + 1, 0);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ for (;;)
+ {
+ usbattached = UsbPoll(FALSE);
+ WDT_HIT();
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
+ // Was our button held down or pressed?
+ int button_pressed = BUTTON_HELD(1000);
+ SpinDelay(300);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+ // Button was held for a second, begin recording
+ if (button_pressed > 0)
+ {
+ LEDsoff();
+ LED(selected + 1, 0);
+ LED(LED_RED2, 0);
- for(;;) {
- WDT_HIT();
- if (ledcontrol)
- LED_A_ON();
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- if (ledcontrol)
- LED_A_OFF();
- return;
- }
+ // record
+ DbpString("Starting recording");
- i = 0;
- m = sizeof(BigBuf);
- memset(dest,128,m);
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0x43;
- if (ledcontrol)
- LED_D_ON();
- }
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (ledcontrol)
- LED_D_OFF();
- if(i >= m) {
- break;
- }
- }
- }
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
- // FSK demodulator
+ /* need this delay to prevent catching some weird data */
+ SpinDelay(500);
- // sync to first lo-hi transition
- for( idx=1; idx<m; idx++) {
- if (dest[idx-1]<dest[idx])
- lastval=idx;
- break;
- }
- WDT_HIT();
+ CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
+ DbpString("Recorded");
+ DbpIntegers(selected, high[selected], low[selected]);
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for( i=0; idx<m; idx++) {
- if (dest[idx-1]<dest[idx]) {
- dest[i]=idx-lastval;
- if (dest[i] <= 8) {
- dest[i]=1;
- } else {
- dest[i]=0;
- }
+ LEDsoff();
+ LED(selected + 1, 0);
+ // Finished recording
- lastval=idx;
- i++;
- }
+ // If we were previously playing, set playing off
+ // so next button push begins playing what we recorded
+ playing = 0;
}
- m=i;
- WDT_HIT();
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- lastval=dest[0];
- idx=0;
- i=0;
- n=0;
- for( idx=0; idx<m; idx++) {
- if (dest[idx]==lastval) {
- n++;
- } else {
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
- // swallowed up by rounding
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
- // special start of frame markers use invalid manchester states (no transitions) by using sequences
- // like 111000
- if (dest[idx-1]) {
- n=(n+1)/6; // fc/8 in sets of 6
- } else {
- n=(n+1)/5; // fc/10 in sets of 5
- }
- switch (n) { // stuff appropriate bits in buffer
- case 0:
- case 1: // one bit
- dest[i++]=dest[idx-1];
- break;
- case 2: // two bits
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- case 3: // 3 bit start of frame markers
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- // When a logic 0 is immediately followed by the start of the next transmisson
- // (special pattern) a pattern of 4 bit duration lengths is created.
- case 4:
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- default: // this shouldn't happen, don't stuff any bits
- break;
- }
- n=0;
- lastval=dest[idx];
- }
- }
- m=i;
- WDT_HIT();
+ // Change where to record (or begin playing)
+ else if (button_pressed)
+ {
+ // Next option if we were previously playing
+ if (playing)
+ selected = (selected + 1) % OPTS;
+ playing = !playing;
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- for( idx=0; idx<m-6; idx++) {
- // search for a start of frame marker
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- DbpString("TAG ID");
- DbpIntegers(hi, lo, (lo>>1)&0xffff);
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
- }
- hi=0;
- lo=0;
- found=0;
- }
- }
- if (found) {
- if (dest[idx] && (!dest[idx+1]) ) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|0;
- } else if ( (!dest[idx]) && dest[idx+1]) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|1;
- } else {
- found=0;
- hi=0;
- lo=0;
- }
- idx++;
- }
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
+ LEDsoff();
+ LED(selected + 1, 0);
+
+ // Begin transmitting
+ if (playing)
{
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- DbpString("TAG ID");
- DbpIntegers(hi, lo, (lo>>1)&0xffff);
- /* if we're only looking for one tag */
- if (findone)
+ LED(LED_GREEN, 0);
+ DbpString("Playing");
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
+ DbpIntegers(selected, high[selected], low[selected]);
+ CmdHIDsimTAG(high[selected], low[selected], 0);
+ DbpString("Done playing");
+ if (BUTTON_HELD(1000) > 0)
{
- *high = hi;
- *low = lo;
- return;
+ DbpString("Exiting");
+ LEDsoff();
+ return;
}
- hi=0;
- lo=0;
- found=0;
- }
+
+ /* We pressed a button so ignore it here with a delay */
+ SpinDelay(300);
+
+ // when done, we're done playing, move to next option
+ selected = (selected + 1) % OPTS;
+ playing = !playing;
+ LEDsoff();
+ LED(selected + 1, 0);
}
+ else
+ while(BUTTON_PRESS())
+ WDT_HIT();
}
- WDT_HIT();
}
}
-void SimulateTagHfListen(void)
+
+/*
+OBJECTIVE
+Listen and detect an external reader. Determine the best location
+for the antenna.
+
+INSTRUCTIONS:
+Inside the ListenReaderField() function, there is two mode.
+By default, when you call the function, you will enter mode 1.
+If you press the PM3 button one time, you will enter mode 2.
+If you press the PM3 button a second time, you will exit the function.
+
+DESCRIPTION OF MODE 1:
+This mode just listens for an external reader field and lights up green
+for HF and/or red for LF. This is the original mode of the detectreader
+function.
+
+DESCRIPTION OF MODE 2:
+This mode will visually represent, using the LEDs, the actual strength of the
+current compared to the maximum current detected. Basically, once you know
+what kind of external reader is present, it will help you spot the best location to place
+your antenna. You will probably not get some good results if there is a LF and a HF reader
+at the same place! :-)
+
+LIGHT SCHEME USED:
+
+Light scheme | Descriptiong
+----------------------------------------------------
+ ---- | No field detected
+ X--- | 14% of maximum current detected
+ -X-- | 29% of maximum current detected
+ --X- | 43% of maximum current detected
+ ---X | 57% of maximum current detected
+ --XX | 71% of maximum current detected
+ -XXX | 86% of maximum current detected
+ XXXX | 100% of maximum current detected
+
+TODO:
+Add the LF part for MODE 2
+
+*/
+void ListenReaderField(int limit)
{
- BYTE *dest = (BYTE *)BigBuf;
- int n = sizeof(BigBuf);
- BYTE v = 0;
- int i;
- int p = 0;
+ int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0;
+ int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
+ int mode=1;
- // We're using this mode just so that I can test it out; the simulated
- // tag mode would work just as well and be simpler.
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
+#define LF_ONLY 1
+#define HF_ONLY 2
- // We need to listen to the high-frequency, peak-detected path.
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ LED_A_OFF();
+ LED_B_OFF();
+ LED_C_OFF();
+ LED_D_OFF();
- FpgaSetupSsc();
+ lf_av= ReadAdc(ADC_CHAN_LF);
- i = 0;
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0xff;
+ if(limit != HF_ONLY)
+ {
+ DbpString("LF 125/134 Baseline:");
+ DbpIntegers(lf_av,0,0);
+ lf_baseline= lf_av;
}
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
- v <<= 1;
- if(r & 1) {
- v |= 1;
- }
- p++;
+ hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
- if(p >= 8) {
- dest[i] = v;
- v = 0;
- p = 0;
- i++;
+ if (limit != LF_ONLY)
+ {
+ DbpString("HF 13.56 Baseline:");
+ DbpIntegers(hf_av,0,0);
+ hf_baseline= hf_av;
+ }
- if(i >= n) {
+ for(;;)
+ {
+ if (BUTTON_PRESS()) {
+ SpinDelay(500);
+ switch (mode) {
+ case 1:
+ mode=2;
+ DbpString("Signal Strength Mode");
break;
+ case 2:
+ default:
+ DbpString("Stopped");
+ LED_A_OFF();
+ LED_B_OFF();
+ LED_C_OFF();
+ LED_D_OFF();
+ return;
+ break;
+ }
+ }
+ WDT_HIT();
+
+ if (limit != HF_ONLY)
+ {
+ if (abs(lf_av - lf_baseline) > 10)
+ LED_D_ON();
+ else
+ LED_D_OFF();
+ ++lf_count;
+ lf_av_new= ReadAdc(ADC_CHAN_LF);
+ // see if there's a significant change
+ if(abs(lf_av - lf_av_new) > 10)
+ {
+ DbpString("LF 125/134 Field Change:");
+ DbpIntegers(lf_av,lf_av_new,lf_count);
+ lf_av= lf_av_new;
+ lf_count= 0;
+ }
+ }
+
+ if (limit != LF_ONLY)
+ {
+ if (abs(hf_av - hf_baseline) > 10) {
+ if (mode == 1)
+ LED_B_ON();
+ if (mode == 2) {
+ if ( hf_av>(hf_max/7)*6) {
+ LED_A_ON(); LED_B_ON(); LED_C_ON(); LED_D_ON();
+ }
+ if ( (hf_av>(hf_max/7)*5) && (hf_av<=(hf_max/7)*6) ) {
+ LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_ON();
+ }
+ if ( (hf_av>(hf_max/7)*4) && (hf_av<=(hf_max/7)*5) ) {
+ LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_ON();
+ }
+ if ( (hf_av>(hf_max/7)*3) && (hf_av<=(hf_max/7)*4) ) {
+ LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_ON();
+ }
+ if ( (hf_av>(hf_max/7)*2) && (hf_av<=(hf_max/7)*3) ) {
+ LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_OFF();
+ }
+ if ( (hf_av>(hf_max/7)*1) && (hf_av<=(hf_max/7)*2) ) {
+ LED_A_ON(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF();
+ }
+ if ( (hf_av>(hf_max/7)*0) && (hf_av<=(hf_max/7)*1) ) {
+ LED_A_OFF(); LED_B_OFF(); LED_C_ON(); LED_D_OFF();
+ }
+ }
+ } else {
+ if (mode == 1) {
+ LED_B_OFF();
+ }
+ if (mode == 2) {
+ LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF();
+ }
+ }
+
+ ++hf_count;
+ hf_av_new= ReadAdc(ADC_CHAN_HF);
+ // see if there's a significant change
+ if(abs(hf_av - hf_av_new) > 10)
+ {
+ DbpString("HF 13.56 Field Change:");
+ DbpIntegers(hf_av,hf_av_new,hf_count);
+ hf_av= hf_av_new;
+ if (hf_av > hf_max)
+ hf_max = hf_av;
+ hf_count= 0;
}
}
}
- }
- DbpString("simulate tag (now type bitsamples)");
}
void UsbPacketReceived(BYTE *packet, int len)
ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes);
break;
- case CMD_ACQUIRE_RAW_BITS_TI_TYPE:
- AcquireRawBitsTI();
- break;
-
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
AcquireRawAdcSamplesIso15693();
break;
LED_D_OFF(); // LED D indicates field ON or OFF
break;
+ case CMD_ACQUIRE_RAW_BITS_TI_TYPE:
+ AcquireRawBitsTI();
+ break;
+
+ case CMD_READ_TI_TYPE:
+ ReadTItag();
+ break;
+
+ case CMD_WRITE_TI_TYPE:
+ WriteTItag(c->ext1,c->ext2,c->ext3);
+ break;
+
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {
UsbCommand n;
LCDSend(c->ext1);
break;
#endif
- case CMD_SETUP_WRITE:
+ case CMD_SETUP_WRITE:
case CMD_FINISH_WRITE:
case CMD_HARDWARE_RESET:
USB_D_PLUS_PULLUP_OFF();
}
}
-void ReadMem(int addr)
-{
- const DWORD *data = ((DWORD *)addr);
- int i;
-
- DbpString("Reading memory at address");
- DbpIntegers(0, 0, addr);
- for (i = 0; i < 8; i+= 2)
- DbpIntegers(0, data[i], data[i+1]);
-}
-
void AppMain(void)
{
memset(BigBuf,0,sizeof(BigBuf));
SamyRun();
}
}
-
-
-// samy's sniff and repeat routine
-void SamyRun()
-{
- DbpString("Stand-alone mode! No PC necessary.");
-
- // 3 possible options? no just 2 for now
-#define OPTS 2
-
- int high[OPTS], low[OPTS];
-
- // Oooh pretty -- notify user we're in elite samy mode now
- LED(LED_RED, 200);
- LED(LED_ORANGE, 200);
- LED(LED_GREEN, 200);
- LED(LED_ORANGE, 200);
- LED(LED_RED, 200);
- LED(LED_ORANGE, 200);
- LED(LED_GREEN, 200);
- LED(LED_ORANGE, 200);
- LED(LED_RED, 200);
-
- int selected = 0;
- int playing = 0;
-
- // Turn on selected LED
- LED(selected + 1, 0);
-
- for (;;)
- {
- usbattached = UsbPoll(FALSE);
- WDT_HIT();
-
- // Was our button held down or pressed?
- int button_pressed = BUTTON_HELD(1000);
- SpinDelay(300);
-
- // Button was held for a second, begin recording
- if (button_pressed > 0)
- {
- LEDsoff();
- LED(selected + 1, 0);
- LED(LED_RED2, 0);
-
- // record
- DbpString("Starting recording");
-
- // wait for button to be released
- while(BUTTON_PRESS())
- WDT_HIT();
-
- /* need this delay to prevent catching some weird data */
- SpinDelay(500);
-
- CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
- DbpString("Recorded");
- DbpIntegers(selected, high[selected], low[selected]);
-
- LEDsoff();
- LED(selected + 1, 0);
- // Finished recording
-
- // If we were previously playing, set playing off
- // so next button push begins playing what we recorded
- playing = 0;
- }
-
- // Change where to record (or begin playing)
- else if (button_pressed)
- {
- // Next option if we were previously playing
- if (playing)
- selected = (selected + 1) % OPTS;
- playing = !playing;
-
- LEDsoff();
- LED(selected + 1, 0);
-
- // Begin transmitting
- if (playing)
- {
- LED(LED_GREEN, 0);
- DbpString("Playing");
- // wait for button to be released
- while(BUTTON_PRESS())
- WDT_HIT();
- DbpIntegers(selected, high[selected], low[selected]);
- CmdHIDsimTAG(high[selected], low[selected], 0);
- DbpString("Done playing");
- if (BUTTON_HELD(1000) > 0)
- {
- DbpString("Exiting");
- LEDsoff();
- return;
- }
-
- /* We pressed a button so ignore it here with a delay */
- SpinDelay(300);
-
- // when done, we're done playing, move to next option
- selected = (selected + 1) % OPTS;
- playing = !playing;
- LEDsoff();
- LED(selected + 1, 0);
- }
- else
- while(BUTTON_PRESS())
- WDT_HIT();
- }
- }
-}
-
-
-/* \r
-OBJECTIVE\r
-Listen and detect an external reader. Determine the best location\r
-for the antenna.\r
-\r
-INSTRUCTIONS:\r
-Inside the ListenReaderField() function, there is two mode. \r
-By default, when you call the function, you will enter mode 1.\r
-If you press the PM3 button one time, you will enter mode 2.\r
-If you press the PM3 button a second time, you will exit the function.\r
-\r
-DESCRIPTION OF MODE 1:\r
-This mode just listens for an external reader field and lights up green \r
-for HF and/or red for LF. This is the original mode of the detectreader\r
-function.\r
-\r
-DESCRIPTION OF MODE 2:\r
-This mode will visually represent, using the LEDs, the actual strength of the\r
-current compared to the maximum current detected. Basically, once you know \r
-what kind of external reader is present, it will help you spot the best location to place\r
-your antenna. You will probably not get some good results if there is a LF and a HF reader\r
-at the same place! :-)\r
-\r
-LIGHT SCHEME USED:\r
-\r
-Light scheme | Descriptiong\r
-----------------------------------------------------\r
- ---- | No field detected\r
- X--- | 14% of maximum current detected\r
- -X-- | 29% of maximum current detected\r
- --X- | 43% of maximum current detected\r
- ---X | 57% of maximum current detected\r
- --XX | 71% of maximum current detected\r
- -XXX | 86% of maximum current detected\r
- XXXX | 100% of maximum current detected\r
-\r
-TODO:\r
-Add the LF part for MODE 2\r
-\r
-*/\r
-void ListenReaderField(int limit)\r
-{\r
- int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0;\r
- int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;\r
- int mode=1;\r
-\r
-#define LF_ONLY 1\r
-#define HF_ONLY 2\r
-\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-\r
- lf_av= ReadAdc(ADC_CHAN_LF);\r
-\r
- if(limit != HF_ONLY) \r
- {\r
- DbpString("LF 125/134 Baseline:");\r
- DbpIntegers(lf_av,0,0);\r
- lf_baseline= lf_av;\r
- }\r
-\r
- hf_av=hf_max=ReadAdc(ADC_CHAN_HF);\r
-\r
- if (limit != LF_ONLY) \r
- {\r
- DbpString("HF 13.56 Baseline:");\r
- DbpIntegers(hf_av,0,0);\r
- hf_baseline= hf_av;\r
- }\r
-\r
- for(;;) \r
- {\r
- if (BUTTON_PRESS()) {\r
- SpinDelay(500);\r
- switch (mode) {\r
- case 1:\r
- mode=2;\r
- DbpString("Signal Strength Mode");
- break;\r
- case 2:\r
- default:\r
- DbpString("Stopped");\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
- return;\r
- break;\r
- }\r
- }\r
- WDT_HIT();\r
-\r
- if (limit != HF_ONLY) \r
- {\r
- if (abs(lf_av - lf_baseline) > 10)\r
- LED_D_ON();\r
- else\r
- LED_D_OFF();\r
- ++lf_count;\r
- lf_av_new= ReadAdc(ADC_CHAN_LF);\r
- // see if there's a significant change\r
- if(abs(lf_av - lf_av_new) > 10) \r
- {\r
- DbpString("LF 125/134 Field Change:");\r
- DbpIntegers(lf_av,lf_av_new,lf_count);\r
- lf_av= lf_av_new;\r
- lf_count= 0;\r
- }\r
- }\r
-\r
- if (limit != LF_ONLY) \r
- {\r
- if (abs(hf_av - hf_baseline) > 10) {\r
- if (mode == 1)\r
- LED_B_ON();\r
- if (mode == 2) {\r
- if ( hf_av>(hf_max/7)*6) {\r
- LED_A_ON(); LED_B_ON(); LED_C_ON(); LED_D_ON();\r
- }\r
- if ( (hf_av>(hf_max/7)*5) && (hf_av<=(hf_max/7)*6) ) {\r
- LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_ON();\r
- }\r
- if ( (hf_av>(hf_max/7)*4) && (hf_av<=(hf_max/7)*5) ) {\r
- LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_ON();\r
- }\r
- if ( (hf_av>(hf_max/7)*3) && (hf_av<=(hf_max/7)*4) ) {\r
- LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_ON();\r
- }\r
- if ( (hf_av>(hf_max/7)*2) && (hf_av<=(hf_max/7)*3) ) {\r
- LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_OFF();\r
- }\r
- if ( (hf_av>(hf_max/7)*1) && (hf_av<=(hf_max/7)*2) ) {\r
- LED_A_ON(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF();\r
- }\r
- if ( (hf_av>(hf_max/7)*0) && (hf_av<=(hf_max/7)*1) ) {\r
- LED_A_OFF(); LED_B_OFF(); LED_C_ON(); LED_D_OFF();\r
- }\r
- } \r
- } else {\r
- if (mode == 1) {\r
- LED_B_OFF();\r
- }\r
- if (mode == 2) {\r
- LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF();\r
- }\r
- }\r
-\r
- ++hf_count;\r
- hf_av_new= ReadAdc(ADC_CHAN_HF);\r
- // see if there's a significant change\r
- if(abs(hf_av - hf_av_new) > 10) \r
- {\r
- DbpString("HF 13.56 Field Change:");\r
- DbpIntegers(hf_av,hf_av_new,hf_count);\r
- hf_av= hf_av_new;\r
- if (hf_av > hf_max)\r
- hf_max = hf_av;\r
- hf_count= 0;\r
- }\r
- }\r
- }\r
-}\r
-\r
#ifndef __APPS_H\r
#define __APPS_H\r
\r
-/// appmain.c\r
+// The large multi-purpose buffer, typically used to hold A/D samples,\r
+// maybe processed in some way.\r
+DWORD BigBuf[16000];\r
+\r
+/// appmain.h\r
void ReadMem(int addr);\r
void AppMain(void);\r
void SamyRun(void);\r
extern BYTE ToSend[];\r
extern DWORD BigBuf[];\r
\r
-/// fpga.c\r
+/// fpga.h\r
void FpgaSendCommand(WORD cmd, WORD v);\r
void FpgaWriteConfWord(BYTE v);\r
void FpgaDownloadAndGo(void);\r
#define FPGA_HF_ISO14443A_READER_LISTEN (3<<0)\r
#define FPGA_HF_ISO14443A_READER_MOD (4<<0)\r
\r
+/// lfops.h\r
+void AcquireRawAdcSamples125k(BOOL at134khz);\r
+void DoAcquisition125k(BOOL at134khz);\r
+void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command);\r
+void ReadTItag();\r
+void WriteTItag(DWORD idhi, DWORD idlo, WORD crc);\r
+void AcquireTiType(void);\r
+void AcquireRawBitsTI(void);\r
+void SimulateTagLowFrequency(int period, int ledcontrol);\r
+void CmdHIDsimTAG(int hi, int lo, int ledcontrol);\r
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol);\r
+\r
/// iso14443.h\r
void SimulateIso14443Tag(void);\r
void AcquireRawAdcSamplesIso14443(DWORD parameter);\r
--- /dev/null
+//-----------------------------------------------------------------------------\r
+// Miscellaneous routines for low frequency tag operations.\r
+// Tags supported here so far are Texas Instruments (TI), HID\r
+// Also routines for raw mode reading/simulating of LF waveform\r
+//\r
+//-----------------------------------------------------------------------------\r
+#include <proxmark3.h>\r
+#include "apps.h"\r
+#include "../common/crc16.c"\r
+\r
+void AcquireRawAdcSamples125k(BOOL at134khz)\r
+{\r
+ if(at134khz) {\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+ } else {\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+ }\r
+\r
+ // Connect the A/D to the peak-detected low-frequency path.\r
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
+\r
+ // Give it a bit of time for the resonant antenna to settle.\r
+ SpinDelay(50);\r
+\r
+ // Now set up the SSC to get the ADC samples that are now streaming at us.\r
+ FpgaSetupSsc();\r
+\r
+ // Now call the acquisition routine\r
+ DoAcquisition125k(at134khz);\r
+}\r
+\r
+// split into two routines so we can avoid timing issues after sending commands //\r
+void DoAcquisition125k(BOOL at134khz)\r
+{\r
+ BYTE *dest = (BYTE *)BigBuf;\r
+ int n = sizeof(BigBuf);\r
+ int i;\r
+\r
+ memset(dest,0,n);\r
+ i = 0;\r
+ for(;;) {\r
+ if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
+ SSC_TRANSMIT_HOLDING = 0x43;\r
+ LED_D_ON();\r
+ }\r
+ if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
+ dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
+ i++;\r
+ LED_D_OFF();\r
+ if(i >= n) {\r
+ break;\r
+ }\r
+ }\r
+ }\r
+ DbpIntegers(dest[0], dest[1], at134khz);\r
+}\r
+\r
+void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)\r
+{\r
+ BOOL at134khz;\r
+\r
+ // see if 'h' was specified\r
+ if(command[strlen((char *) command) - 1] == 'h')\r
+ at134khz= TRUE;\r
+ else\r
+ at134khz= FALSE;\r
+\r
+ if(at134khz) {\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+ } else {\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+ }\r
+\r
+ // Give it a bit of time for the resonant antenna to settle.\r
+ SpinDelay(50);\r
+\r
+ // Now set up the SSC to get the ADC samples that are now streaming at us.\r
+ FpgaSetupSsc();\r
+\r
+ // now modulate the reader field\r
+ while(*command != '\0' && *command != ' ')\r
+ {\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
+ LED_D_OFF();\r
+ SpinDelayUs(delay_off);\r
+ if(at134khz) {\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+ } else {\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+ }\r
+ LED_D_ON();\r
+ if(*(command++) == '0')\r
+ SpinDelayUs(period_0);\r
+ else\r
+ SpinDelayUs(period_1);\r
+ }\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
+ LED_D_OFF();\r
+ SpinDelayUs(delay_off);\r
+ if(at134khz) {\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+ } else {\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+ }\r
+\r
+ // now do the read\r
+ DoAcquisition125k(at134khz);\r
+}\r
+\r
+void AcquireTiType(void)\r
+{\r
+ int i;\r
+ // tag transmission is <20ms, sampling at 2M gives us 40K samples max\r
+ // each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS\r
+ int n = 1250;\r
+\r
+ // clear buffer\r
+ memset(BigBuf,0,sizeof(BigBuf));\r
+\r
+ // Set up the synchronous serial port\r
+ PIO_DISABLE = (1<<GPIO_SSC_DIN);\r
+ PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN);\r
+\r
+ // steal this pin from the SSP and use it to control the modulation\r
+ PIO_ENABLE = (1<<GPIO_SSC_DOUT);\r
+ PIO_OUTPUT_ENABLE = (1<<GPIO_SSC_DOUT);\r
+\r
+ SSC_CONTROL = SSC_CONTROL_RESET;\r
+ SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;\r
+\r
+ // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long\r
+ // 48/2 = 24 MHz clock must be divided by 12\r
+ SSC_CLOCK_DIVISOR = 12;\r
+\r
+ SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(0);\r
+ SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(32) | SSC_FRAME_MODE_MSB_FIRST;\r
+ SSC_TRANSMIT_CLOCK_MODE = 0;\r
+ SSC_TRANSMIT_FRAME_MODE = 0;\r
+\r
+ LED_D_ON();\r
+\r
+ // modulate antenna\r
+ PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);\r
+\r
+ // Charge TI tag for 50ms.\r
+ SpinDelay(50);\r
+\r
+ // stop modulating antenna and listen\r
+ PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);\r
+\r
+ LED_D_OFF();\r
+\r
+ i = 0;\r
+ for(;;) {\r
+ if(SSC_STATUS & SSC_STATUS_RX_READY) {\r
+ BigBuf[i] = SSC_RECEIVE_HOLDING; // store 32 bit values in buffer\r
+ i++; if(i >= n) return;\r
+ }\r
+ WDT_HIT();\r
+ }\r
+\r
+ // return stolen pin to SSP\r
+ PIO_DISABLE = (1<<GPIO_SSC_DOUT);\r
+ PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN) | (1<<GPIO_SSC_DOUT);\r
+}\r
+\r
+void ReadTItag()\r
+{\r
+}\r
+\r
+void WriteTIbyte(BYTE b)\r
+{\r
+ int i = 0;\r
+\r
+ // modulate 8 bits out to the antenna\r
+ for (i=0; i<8; i++)\r
+ {\r
+ if (b&(1<<i)) {\r
+ // stop modulating antenna\r
+ PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);\r
+ SpinDelayUs(1000);\r
+ // modulate antenna\r
+ PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);\r
+ SpinDelayUs(1000);\r
+ } else {\r
+ // stop modulating antenna\r
+ PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);\r
+ SpinDelayUs(300);\r
+ // modulate antenna\r
+ PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);\r
+ SpinDelayUs(1700);\r
+ }\r
+ }\r
+}\r
+\r
+void AcquireRawBitsTI(void)\r
+{\r
+ // TI tags charge at 134.2Khz\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
+\r
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line\r
+ // connects to SSP_DIN and the SSP_DOUT logic level controls\r
+ // whether we're modulating the antenna (high)\r
+ // or listening to the antenna (low)\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);\r
+\r
+ // get TI tag data into the buffer\r
+ AcquireTiType();\r
+\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
+}\r
+\r
+// this is a dummy function to get around\r
+// a possible flash bug in the bootloader\r
+// delete once you've added more code.\r
+void DummyDummyDummy(void)\r
+{\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);\r
+ AcquireTiType();\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
+}\r
+\r
+// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc\r
+// if crc provided, it will be written with the data verbatim (even if bogus)\r
+// if not provided a valid crc will be computed from the data and written.\r
+void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)\r
+{\r
+\r
+ // WARNING the order of the bytes in which we calc crc below needs checking\r
+ // i'm 99% sure the crc algorithm is correct, but it may need to eat the\r
+ // bytes in reverse or something\r
+\r
+ if(crc == 0) {\r
+ crc = update_crc16(crc, (idlo)&0xff);\r
+ crc = update_crc16(crc, (idlo>>8)&0xff);\r
+ crc = update_crc16(crc, (idlo>>16)&0xff);\r
+ crc = update_crc16(crc, (idlo>>24)&0xff);\r
+ crc = update_crc16(crc, (idhi)&0xff);\r
+ crc = update_crc16(crc, (idhi>>8)&0xff);\r
+ crc = update_crc16(crc, (idhi>>16)&0xff);\r
+ crc = update_crc16(crc, (idhi>>24)&0xff);\r
+ }\r
+ DbpString("Writing the following data to tag:");\r
+ DbpIntegers(idhi, idlo, crc);\r
+\r
+ // TI tags charge at 134.2Khz\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line\r
+ // connects to SSP_DIN and the SSP_DOUT logic level controls\r
+ // whether we're modulating the antenna (high)\r
+ // or listening to the antenna (low)\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);\r
+ LED_A_ON();\r
+\r
+ // steal this pin from the SSP and use it to control the modulation\r
+ PIO_ENABLE = (1<<GPIO_SSC_DOUT);\r
+ PIO_OUTPUT_ENABLE = (1<<GPIO_SSC_DOUT);\r
+\r
+ // writing algorithm:\r
+ // a high bit consists of a field off for 1ms and field on for 1ms\r
+ // a low bit consists of a field off for 0.3ms and field on for 1.7ms\r
+ // initiate a charge time of 50ms (field on) then immediately start writing bits\r
+ // start by writing 0xBB (keyword) and 0xEB (password)\r
+ // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)\r
+ // finally end with 0x0300 (write frame)\r
+ // all data is sent lsb firts\r
+ // finish with 15ms programming time\r
+\r
+ // modulate antenna\r
+ PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);\r
+ SpinDelay(50); // charge time\r
+\r
+ WriteTIbyte(0xbb); // keyword\r
+ WriteTIbyte(0xeb); // password\r
+ WriteTIbyte( (idlo )&0xff );\r
+ WriteTIbyte( (idlo>>8 )&0xff );\r
+ WriteTIbyte( (idlo>>16)&0xff );\r
+ WriteTIbyte( (idlo>>24)&0xff );\r
+ WriteTIbyte( (idhi )&0xff );\r
+ WriteTIbyte( (idhi>>8 )&0xff );\r
+ WriteTIbyte( (idhi>>16)&0xff );\r
+ WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo\r
+ WriteTIbyte( (crc )&0xff ); // crc lo\r
+ WriteTIbyte( (crc>>8 )&0xff ); // crc hi\r
+ WriteTIbyte(0x00); // write frame lo\r
+ WriteTIbyte(0x03); // write frame hi\r
+ PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);\r
+ SpinDelay(50); // programming time\r
+\r
+ LED_A_OFF();\r
+\r
+ // get TI tag data into the buffer\r
+ AcquireTiType();\r
+\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
+ DbpString("Now use tibits and tidemod");\r
+}\r
+\r
+void SimulateTagLowFrequency(int period, int ledcontrol)\r
+{\r
+ int i;\r
+ BYTE *tab = (BYTE *)BigBuf;\r
+\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r
+\r
+ PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);\r
+\r
+ PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);\r
+ PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);\r
+\r
+#define SHORT_COIL() LOW(GPIO_SSC_DOUT)\r
+#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)\r
+\r
+ i = 0;\r
+ for(;;) {\r
+ while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {\r
+ if(BUTTON_PRESS()) {\r
+ DbpString("Stopped");\r
+ return;\r
+ }\r
+ WDT_HIT();\r
+ }\r
+\r
+ if (ledcontrol)\r
+ LED_D_ON();\r
+\r
+ if(tab[i])\r
+ OPEN_COIL();\r
+ else\r
+ SHORT_COIL();\r
+\r
+ if (ledcontrol)\r
+ LED_D_OFF();\r
+\r
+ while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {\r
+ if(BUTTON_PRESS()) {\r
+ DbpString("Stopped");\r
+ return;\r
+ }\r
+ WDT_HIT();\r
+ }\r
+\r
+ i++;\r
+ if(i == period) i = 0;\r
+ }\r
+}\r
+\r
+// compose fc/8 fc/10 waveform\r
+static void fc(int c, int *n) {\r
+ BYTE *dest = (BYTE *)BigBuf;\r
+ int idx;\r
+\r
+ // for when we want an fc8 pattern every 4 logical bits\r
+ if(c==0) {\r
+ dest[((*n)++)]=1;\r
+ dest[((*n)++)]=1;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ }\r
+ // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples\r
+ if(c==8) {\r
+ for (idx=0; idx<6; idx++) {\r
+ dest[((*n)++)]=1;\r
+ dest[((*n)++)]=1;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ }\r
+ }\r
+\r
+ // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples\r
+ if(c==10) {\r
+ for (idx=0; idx<5; idx++) {\r
+ dest[((*n)++)]=1;\r
+ dest[((*n)++)]=1;\r
+ dest[((*n)++)]=1;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ dest[((*n)++)]=0;\r
+ }\r
+ }\r
+}\r
+\r
+// prepare a waveform pattern in the buffer based on the ID given then\r
+// simulate a HID tag until the button is pressed\r
+void CmdHIDsimTAG(int hi, int lo, int ledcontrol)\r
+{\r
+ int n=0, i=0;\r
+ /*\r
+ HID tag bitstream format\r
+ The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits\r
+ A 1 bit is represented as 6 fc8 and 5 fc10 patterns\r
+ A 0 bit is represented as 5 fc10 and 6 fc8 patterns\r
+ A fc8 is inserted before every 4 bits\r
+ A special start of frame pattern is used consisting a0b0 where a and b are neither 0\r
+ nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)\r
+ */\r
+\r
+ if (hi>0xFFF) {\r
+ DbpString("Tags can only have 44 bits.");\r
+ return;\r
+ }\r
+ fc(0,&n);\r
+ // special start of frame marker containing invalid bit sequences\r
+ fc(8, &n); fc(8, &n); // invalid\r
+ fc(8, &n); fc(10, &n); // logical 0\r
+ fc(10, &n); fc(10, &n); // invalid\r
+ fc(8, &n); fc(10, &n); // logical 0\r
+\r
+ WDT_HIT();\r
+ // manchester encode bits 43 to 32\r
+ for (i=11; i>=0; i--) {\r
+ if ((i%4)==3) fc(0,&n);\r
+ if ((hi>>i)&1) {\r
+ fc(10, &n); fc(8, &n); // low-high transition\r
+ } else {\r
+ fc(8, &n); fc(10, &n); // high-low transition\r
+ }\r
+ }\r
+\r
+ WDT_HIT();\r
+ // manchester encode bits 31 to 0\r
+ for (i=31; i>=0; i--) {\r
+ if ((i%4)==3) fc(0,&n);\r
+ if ((lo>>i)&1) {\r
+ fc(10, &n); fc(8, &n); // low-high transition\r
+ } else {\r
+ fc(8, &n); fc(10, &n); // high-low transition\r
+ }\r
+ }\r
+\r
+ if (ledcontrol)\r
+ LED_A_ON();\r
+ SimulateTagLowFrequency(n, ledcontrol);\r
+\r
+ if (ledcontrol)\r
+ LED_A_OFF();\r
+}\r
+\r
+\r
+// loop to capture raw HID waveform then FSK demodulate the TAG ID from it\r
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)\r
+{\r
+ BYTE *dest = (BYTE *)BigBuf;\r
+ int m=0, n=0, i=0, idx=0, found=0, lastval=0;\r
+ DWORD hi=0, lo=0;\r
+\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+\r
+ // Connect the A/D to the peak-detected low-frequency path.\r
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
+\r
+ // Give it a bit of time for the resonant antenna to settle.\r
+ SpinDelay(50);\r
+\r
+ // Now set up the SSC to get the ADC samples that are now streaming at us.\r
+ FpgaSetupSsc();\r
+\r
+ for(;;) {\r
+ WDT_HIT();\r
+ if (ledcontrol)\r
+ LED_A_ON();\r
+ if(BUTTON_PRESS()) {\r
+ DbpString("Stopped");\r
+ if (ledcontrol)\r
+ LED_A_OFF();\r
+ return;\r
+ }\r
+\r
+ i = 0;\r
+ m = sizeof(BigBuf);\r
+ memset(dest,128,m);\r
+ for(;;) {\r
+ if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
+ SSC_TRANSMIT_HOLDING = 0x43;\r
+ if (ledcontrol)\r
+ LED_D_ON();\r
+ }\r
+ if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
+ dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
+ // we don't care about actual value, only if it's more or less than a\r
+ // threshold essentially we capture zero crossings for later analysis\r
+ if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;\r
+ i++;\r
+ if (ledcontrol)\r
+ LED_D_OFF();\r
+ if(i >= m) {\r
+ break;\r
+ }\r
+ }\r
+ }\r
+\r
+ // FSK demodulator\r
+\r
+ // sync to first lo-hi transition\r
+ for( idx=1; idx<m; idx++) {\r
+ if (dest[idx-1]<dest[idx])\r
+ lastval=idx;\r
+ break;\r
+ }\r
+ WDT_HIT();\r
+\r
+ // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)\r
+ // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere\r
+ // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10\r
+ for( i=0; idx<m; idx++) {\r
+ if (dest[idx-1]<dest[idx]) {\r
+ dest[i]=idx-lastval;\r
+ if (dest[i] <= 8) {\r
+ dest[i]=1;\r
+ } else {\r
+ dest[i]=0;\r
+ }\r
+\r
+ lastval=idx;\r
+ i++;\r
+ }\r
+ }\r
+ m=i;\r
+ WDT_HIT();\r
+\r
+ // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns\r
+ lastval=dest[0];\r
+ idx=0;\r
+ i=0;\r
+ n=0;\r
+ for( idx=0; idx<m; idx++) {\r
+ if (dest[idx]==lastval) {\r
+ n++;\r
+ } else {\r
+ // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,\r
+ // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets\r
+ // swallowed up by rounding\r
+ // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding\r
+ // special start of frame markers use invalid manchester states (no transitions) by using sequences\r
+ // like 111000\r
+ if (dest[idx-1]) {\r
+ n=(n+1)/6; // fc/8 in sets of 6\r
+ } else {\r
+ n=(n+1)/5; // fc/10 in sets of 5\r
+ }\r
+ switch (n) { // stuff appropriate bits in buffer\r
+ case 0:\r
+ case 1: // one bit\r
+ dest[i++]=dest[idx-1];\r
+ break;\r
+ case 2: // two bits\r
+ dest[i++]=dest[idx-1];\r
+ dest[i++]=dest[idx-1];\r
+ break;\r
+ case 3: // 3 bit start of frame markers\r
+ dest[i++]=dest[idx-1];\r
+ dest[i++]=dest[idx-1];\r
+ dest[i++]=dest[idx-1];\r
+ break;\r
+ // When a logic 0 is immediately followed by the start of the next transmisson\r
+ // (special pattern) a pattern of 4 bit duration lengths is created.\r
+ case 4:\r
+ dest[i++]=dest[idx-1];\r
+ dest[i++]=dest[idx-1];\r
+ dest[i++]=dest[idx-1];\r
+ dest[i++]=dest[idx-1];\r
+ break;\r
+ default: // this shouldn't happen, don't stuff any bits\r
+ break;\r
+ }\r
+ n=0;\r
+ lastval=dest[idx];\r
+ }\r
+ }\r
+ m=i;\r
+ WDT_HIT();\r
+\r
+ // final loop, go over previously decoded manchester data and decode into usable tag ID\r
+ // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0\r
+ for( idx=0; idx<m-6; idx++) {\r
+ // search for a start of frame marker\r
+ if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
+ {\r
+ found=1;\r
+ idx+=6;\r
+ if (found && (hi|lo)) {\r
+ DbpString("TAG ID");\r
+ DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
+ /* if we're only looking for one tag */\r
+ if (findone)\r
+ {\r
+ *high = hi;\r
+ *low = lo;\r
+ return;\r
+ }\r
+ hi=0;\r
+ lo=0;\r
+ found=0;\r
+ }\r
+ }\r
+ if (found) {\r
+ if (dest[idx] && (!dest[idx+1]) ) {\r
+ hi=(hi<<1)|(lo>>31);\r
+ lo=(lo<<1)|0;\r
+ } else if ( (!dest[idx]) && dest[idx+1]) {\r
+ hi=(hi<<1)|(lo>>31);\r
+ lo=(lo<<1)|1;\r
+ } else {\r
+ found=0;\r
+ hi=0;\r
+ lo=0;\r
+ }\r
+ idx++;\r
+ }\r
+ if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
+ {\r
+ found=1;\r
+ idx+=6;\r
+ if (found && (hi|lo)) {\r
+ DbpString("TAG ID");\r
+ DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
+ /* if we're only looking for one tag */\r
+ if (findone)\r
+ {\r
+ *high = hi;\r
+ *low = lo;\r
+ return;\r
+ }\r
+ hi=0;\r
+ lo=0;\r
+ found=0;\r
+ }\r
+ }\r
+ }\r
+ WDT_HIT();\r
+ }\r
+}\r
-unsigned short update_crc16( WORD crc, BYTE c ) {\r
+WORD update_crc16( WORD crc, BYTE c ) {\r
WORD i, v, tcrc = 0;\r
\r
v = (crc ^ c) & 0xff;\r
v >>= 1;\r
}\r
\r
- return (crc >> 8) ^ tcrc;\r
+ return ((crc >> 8) ^ tcrc)&0xffff;\r
}\r
} UsbCommand;\r
\r
// For the bootloader\r
-#define CMD_DEVICE_INFO 0x0000\r
-#define CMD_SETUP_WRITE 0x0001\r
-#define CMD_FINISH_WRITE 0x0003\r
-#define CMD_HARDWARE_RESET 0x0004\r
-#define CMD_START_FLASH 0x0005
-#define CMD_ACK 0x00ff\r
+#define CMD_DEVICE_INFO 0x0000\r
+#define CMD_SETUP_WRITE 0x0001\r
+#define CMD_FINISH_WRITE 0x0003\r
+#define CMD_HARDWARE_RESET 0x0004\r
+#define CMD_START_FLASH 0x0005\r
+#define CMD_ACK 0x00ff\r
\r
// For general mucking around\r
-#define CMD_DEBUG_PRINT_STRING 0x0100\r
-#define CMD_DEBUG_PRINT_INTEGERS 0x0101\r
-#define CMD_DEBUG_PRINT_BYTES 0x0102\r
-#define CMD_LCD_RESET 0x0103\r
-#define CMD_LCD 0x0104\r
-#define CMD_BUFF_CLEAR 0x0105
-#define CMD_READ_MEM 0x0106
+#define CMD_DEBUG_PRINT_STRING 0x0100\r
+#define CMD_DEBUG_PRINT_INTEGERS 0x0101\r
+#define CMD_DEBUG_PRINT_BYTES 0x0102\r
+#define CMD_LCD_RESET 0x0103\r
+#define CMD_LCD 0x0104\r
+#define CMD_BUFF_CLEAR 0x0105\r
+#define CMD_READ_MEM 0x0106\r
\r
// For low-frequency tags\r
-#define CMD_ACQUIRE_RAW_BITS_TI_TYPE 0x0200\r
-#define CMD_DOWNLOAD_RAW_BITS_TI_TYPE 0x0201\r
-#define CMD_DOWNLOADED_RAW_BITS_TI_TYPE 0x0202\r
-#define CMD_ACQUIRE_RAW_ADC_SAMPLES_125K 0x0203\r
-#define CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K 0x0204\r
-#define CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K 0x0205\r
-#define CMD_DOWNLOADED_SIM_SAMPLES_125K 0x0206\r
-#define CMD_SIMULATE_TAG_125K 0x0207\r
-#define CMD_HID_DEMOD_FSK 0x0208 // ## New command: demodulate HID tag ID\r
-#define CMD_HID_SIM_TAG 0x0209 // ## New command: simulate HID tag by ID\r
-#define CMD_SET_LF_DIVISOR 0x020A\r
-#define CMD_SWEEP_LF 0x020B\r
-#define CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K 0x020C\r
+#define CMD_ACQUIRE_RAW_BITS_TI_TYPE 0x0200\r
+#define CMD_DOWNLOAD_RAW_BITS_TI_TYPE 0x0201\r
+#define CMD_READ_TI_TYPE 0x0202\r
+#define CMD_WRITE_TI_TYPE 0x0203\r
+#define CMD_DOWNLOADED_RAW_BITS_TI_TYPE 0x0204\r
+#define CMD_ACQUIRE_RAW_ADC_SAMPLES_125K 0x0205\r
+#define CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K 0x0206\r
+#define CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K 0x0207\r
+#define CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K 0x0208\r
+#define CMD_DOWNLOADED_SIM_SAMPLES_125K 0x0209\r
+#define CMD_SIMULATE_TAG_125K 0x020A\r
+#define CMD_HID_DEMOD_FSK 0x020B\r
+#define CMD_HID_SIM_TAG 0x020C\r
+#define CMD_SET_LF_DIVISOR 0x020D\r
\r
// For the 13.56 MHz tags\r
-#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693 0x0300\r
-#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443 0x0301\r
-#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443_SIM 0x0302
-#define CMD_READ_SRI512_TAG 0x0303\r
-#define CMD_READER_ISO_15693 0x0310 // ## New command to act like a 15693 reader - greg\r
-#define CMD_SIMTAG_ISO_15693 0x0311 // ## New command to act like a 15693 reader - greg\r
-\r
-#define CMD_SIMULATE_TAG_HF_LISTEN 0x0380\r
-#define CMD_SIMULATE_TAG_ISO_14443 0x0381\r
-#define CMD_SNOOP_ISO_14443 0x0382\r
-#define CMD_SNOOP_ISO_14443a 0x0383 // ## New snoop command\r
-#define CMD_SIMULATE_TAG_ISO_14443a 0x0384 // ## New command: Simulate tag 14443a\r
-#define CMD_READER_ISO_14443a 0x0385 // ## New command to act like a 14443a reader\r
-#define CMD_SIMULATE_MIFARE_CARD 0x0386\r
+#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693 0x0300\r
+#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443 0x0301\r
+#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443_SIM 0x0302\r
+#define CMD_READ_SRI512_TAG 0x0303\r
+#define CMD_READER_ISO_15693 0x0310\r
+#define CMD_SIMTAG_ISO_15693 0x0311\r
+#define CMD_SIMULATE_TAG_HF_LISTEN 0x0380\r
+#define CMD_SIMULATE_TAG_ISO_14443 0x0381\r
+#define CMD_SNOOP_ISO_14443 0x0382\r
+#define CMD_SNOOP_ISO_14443a 0x0383\r
+#define CMD_SIMULATE_TAG_ISO_14443a 0x0384\r
+#define CMD_READER_ISO_14443a 0x0385\r
+#define CMD_SIMULATE_MIFARE_CARD 0x0386\r
\r
// For measurements of the antenna tuning\r
-#define CMD_MEASURE_ANTENNA_TUNING 0x0400\r
-#define CMD_MEASURED_ANTENNA_TUNING 0x0401\r
-#define CMD_LISTEN_READER_FIELD 0x0402
+#define CMD_MEASURE_ANTENNA_TUNING 0x0400\r
+#define CMD_MEASURED_ANTENNA_TUNING 0x0401\r
+#define CMD_LISTEN_READER_FIELD 0x0402\r
\r
// For direct FPGA control\r
-#define CMD_FPGA_MAJOR_MODE_OFF 0x0500 // ## FPGA Control\r
-#define CMD_TEST 0x0501\r
+#define CMD_FPGA_MAJOR_MODE_OFF 0x0500\r
\r
#endif\r
PrintToScrollback("CRC=%04x", Iso15693Crc(outBuf, k-2));\r
}\r
\r
-static void CmdTiread(char *str)\r
+static void CmdTIReadRaw(char *str)\r
{\r
UsbCommand c;\r
c.cmd = CMD_ACQUIRE_RAW_BITS_TI_TYPE;\r
SendCommand(&c, FALSE);\r
}\r
\r
-static void CmdTibits(char *str)\r
+static void CmdTIBits(char *str)\r
{\r
int cnt = 0;\r
int i;\r
PrintToScrollback("hex: %08x %08x", hi, lo);\r
}\r
\r
-static void CmdTidemod(char *cmdline)\r
+// read a TI tag and return its ID\r
+static void CmdTIRead(char *str)\r
+{\r
+ UsbCommand c;\r
+ c.cmd = CMD_READ_TI_TYPE;\r
+ SendCommand(&c, FALSE);\r
+}\r
+\r
+// write new data to a r/w TI tag\r
+static void CmdTIWrite(char *str)\r
+{\r
+ UsbCommand c;\r
+ int res=0;\r
+\r
+ c.cmd = CMD_WRITE_TI_TYPE;\r
+ res = sscanf(str, "0x%x 0x%x 0x%x ", &c.ext1, &c.ext2, &c.ext3);\r
+ if (res == 2) c.ext3=0;\r
+ if (res<2)\r
+ PrintToScrollback("Please specify 2 or three hex strings, eg 0x1234 0x5678");\r
+ else \r
+ SendCommand(&c, FALSE);\r
+}\r
+\r
+static void CmdTIDemod(char *cmdline)\r
{\r
/* MATLAB as follows:\r
f_s = 2000000; % sampling frequency\r
// align 16 bit "end bits" or "ident" into lower half of shift3\r
shift3 >>= 16;\r
\r
- if ( (shift3^shift0)&0xffff ) {\r
+ // only 15 bits compare, last bit of ident is not valid\r
+ if ( (shift3^shift0)&0x7fff ) {\r
PrintToScrollback("Error: Ident mismatch!");\r
}\r
+ // WARNING the order of the bytes in which we calc crc below needs checking\r
+ // i'm 99% sure the crc algorithm is correct, but it may need to eat the\r
+ // bytes in reverse or something\r
// calculate CRC\r
crc=0;\r
crc = update_crc16(crc, (shift0)&0xff);\r
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},\r
{"setlfdivisor", CmdSetDivisor, 0, "<19 - 255> -- Drive LF antenna at 12Mhz/(divisor+1)"},\r
{"sri512read", CmdSri512read, 0, "<int> -- Read contents of a SRI512 tag"},\r
- {"tibits", CmdTibits, 0, "Get raw bits for TI-type LF tag"},\r
- {"tidemod", CmdTidemod, 1, "Demodulate raw bits for TI-type LF tag"},\r
- {"tiread", CmdTiread, 0, "Read a TI-type 134 kHz tag"},\r
+ {"tibits", CmdTIBits, 0, "Get raw bits for TI-type LF tag"},\r
+ {"tidemod", CmdTIDemod, 1, "Demodulate raw bits for TI-type LF tag"},\r
+ {"tireadraw", CmdTIReadRaw, 0, "Read a TI-type 134 kHz tag in raw mode"},\r
+ {"tiread", CmdTIRead, 0, "Read and decode a TI 134 kHz tag"},\r
+ {"tiwrite", CmdTIWrite, 0, "Write new data to a r/w TI 134 kHz tag"},\r
{"threshold", CmdThreshold, 1, "Maximize/minimize every value in the graph window depending on threshold"},\r
{"tune", CmdTune, 0, "Measure antenna tuning"},\r
{"vchdemod", CmdVchdemod, 0, "['clone'] -- Demodulate samples for VeriChip"},\r