also fixed a bug in detect clock functions.
sync with master prep for pull request
/**
-* Does the sample acquisition. If threshold is specified, the actual sampling
-* is not commenced until the threshold has been reached.
+* Does the sample acquisition. If threshold is specified, the actual sampling
+* is not commenced until the threshold has been reached.
* @param trigger_threshold - the threshold
* @param silent - is true, now outputs are made. If false, dbprints the status
*/
void DoAcquisition125k_internal(int trigger_threshold,bool silent)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- int n = sizeof(BigBuf);
- int i;
-
- memset(dest, 0, n);
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- LED_D_ON();
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- LED_D_OFF();
- if (trigger_threshold != -1 && dest[i] < trigger_threshold)
- continue;
- else
- trigger_threshold = -1;
- if (++i >= n) break;
- }
- }
- if(!silent)
- {
- Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
- dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-
- }
+ uint8_t *dest = (uint8_t *)BigBuf;
+ int n = sizeof(BigBuf);
+ int i;
+
+ memset(dest, 0, n);
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ LED_D_OFF();
+ if (trigger_threshold != -1 && dest[i] < trigger_threshold)
+ continue;
+ else
+ trigger_threshold = -1;
+ if (++i >= n) break;
+ }
+ }
+ if(!silent)
+ {
+ Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
+ dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
+
+ }
}
/**
-* Perform sample aquisition.
+* Perform sample aquisition.
*/
void DoAcquisition125k(int trigger_threshold)
{
- DoAcquisition125k_internal(trigger_threshold, false);
+ DoAcquisition125k_internal(trigger_threshold, false);
}
/**
-* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
-* if not already loaded, sets divisor and starts up the antenna.
+* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
+* if not already loaded, sets divisor and starts up the antenna.
* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
* 0 or 95 ==> 125 KHz
-*
+*
**/
void LFSetupFPGAForADC(int divisor, bool lf_field)
{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else if (divisor == 0)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+ else if (divisor == 0)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ else
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Give it a bit of time for the resonant antenna to settle.
+ SpinDelay(50);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
}
/**
-* Initializes the FPGA, and acquires the samples.
+* Initializes the FPGA, and acquires the samples.
**/
void AcquireRawAdcSamples125k(int divisor)
{
- LFSetupFPGAForADC(divisor, true);
- // Now call the acquisition routine
- DoAcquisition125k_internal(-1,false);
+ LFSetupFPGAForADC(divisor, true);
+ // Now call the acquisition routine
+ DoAcquisition125k_internal(-1,false);
}
/**
-* Initializes the FPGA for snoop-mode, and acquires the samples.
+* Initializes the FPGA for snoop-mode, and acquires the samples.
**/
void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
{
- LFSetupFPGAForADC(divisor, false);
- DoAcquisition125k(trigger_threshold);
+ LFSetupFPGAForADC(divisor, false);
+ DoAcquisition125k(trigger_threshold);
}
void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
{
- /* Make sure the tag is reset */
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(2500);
+ /* Make sure the tag is reset */
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(2500);
- int divisor_used = 95; // 125 KHz
- // see if 'h' was specified
+ int divisor_used = 95; // 125 KHz
+ // see if 'h' was specified
- if (command[strlen((char *) command) - 1] == 'h')
- divisor_used = 88; // 134.8 KHz
+ if (command[strlen((char *) command) - 1] == 'h')
+ divisor_used = 88; // 134.8 KHz
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ // Give it a bit of time for the resonant antenna to settle.
+ SpinDelay(50);
- // And a little more time for the tag to fully power up
- SpinDelay(2000);
+ // And a little more time for the tag to fully power up
+ SpinDelay(2000);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
- // now modulate the reader field
- while(*command != '\0' && *command != ' ') {
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ // now modulate the reader field
+ while(*command != '\0' && *command != ' ') {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ SpinDelayUs(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- LED_D_ON();
- if(*(command++) == '0')
- SpinDelayUs(period_0);
- else
- SpinDelayUs(period_1);
- }
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ LED_D_ON();
+ if(*(command++) == '0')
+ SpinDelayUs(period_0);
+ else
+ SpinDelayUs(period_1);
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ SpinDelayUs(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- // now do the read
- DoAcquisition125k(-1);
+ // now do the read
+ DoAcquisition125k(-1);
}
/* blank r/w tag data stream
*/
void ReadTItag(void)
{
- // some hardcoded initial params
- // when we read a TI tag we sample the zerocross line at 2Mhz
- // TI tags modulate a 1 as 16 cycles of 123.2Khz
- // TI tags modulate a 0 as 16 cycles of 134.2Khz
-#define FSAMPLE 2000000
-#define FREQLO 123200
-#define FREQHI 134200
-
- signed char *dest = (signed char *)BigBuf;
- int n = sizeof(BigBuf);
- // int *dest = GraphBuffer;
- // int n = GraphTraceLen;
-
- // 128 bit shift register [shift3:shift2:shift1:shift0]
- uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
-
- int i, cycles=0, samples=0;
- // how many sample points fit in 16 cycles of each frequency
- uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
- // when to tell if we're close enough to one freq or another
- uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
-
- // TI tags charge at 134.2Khz
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line
- // connects to SSP_DIN and the SSP_DOUT logic level controls
- // whether we're modulating the antenna (high)
- // or listening to the antenna (low)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
-
- // get TI tag data into the buffer
- AcquireTiType();
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-
- for (i=0; i<n-1; i++) {
- // count cycles by looking for lo to hi zero crossings
- if ( (dest[i]<0) && (dest[i+1]>0) ) {
- cycles++;
- // after 16 cycles, measure the frequency
- if (cycles>15) {
- cycles=0;
- samples=i-samples; // number of samples in these 16 cycles
-
- // TI bits are coming to us lsb first so shift them
- // right through our 128 bit right shift register
- shift0 = (shift0>>1) | (shift1 << 31);
- shift1 = (shift1>>1) | (shift2 << 31);
- shift2 = (shift2>>1) | (shift3 << 31);
- shift3 >>= 1;
-
- // check if the cycles fall close to the number
- // expected for either the low or high frequency
- if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
- // low frequency represents a 1
- shift3 |= (1<<31);
- } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
- // high frequency represents a 0
- } else {
- // probably detected a gay waveform or noise
- // use this as gaydar or discard shift register and start again
- shift3 = shift2 = shift1 = shift0 = 0;
- }
- samples = i;
-
- // for each bit we receive, test if we've detected a valid tag
-
- // if we see 17 zeroes followed by 6 ones, we might have a tag
- // remember the bits are backwards
- if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
- // if start and end bytes match, we have a tag so break out of the loop
- if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
- cycles = 0xF0B; //use this as a flag (ugly but whatever)
- break;
- }
- }
- }
- }
- }
-
- // if flag is set we have a tag
- if (cycles!=0xF0B) {
- DbpString("Info: No valid tag detected.");
- } else {
- // put 64 bit data into shift1 and shift0
- shift0 = (shift0>>24) | (shift1 << 8);
- shift1 = (shift1>>24) | (shift2 << 8);
-
- // align 16 bit crc into lower half of shift2
- shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
-
- // if r/w tag, check ident match
- if ( shift3&(1<<15) ) {
- DbpString("Info: TI tag is rewriteable");
- // only 15 bits compare, last bit of ident is not valid
- if ( ((shift3>>16)^shift0)&0x7fff ) {
- DbpString("Error: Ident mismatch!");
- } else {
- DbpString("Info: TI tag ident is valid");
- }
- } else {
- DbpString("Info: TI tag is readonly");
- }
-
- // WARNING the order of the bytes in which we calc crc below needs checking
- // i'm 99% sure the crc algorithm is correct, but it may need to eat the
- // bytes in reverse or something
- // calculate CRC
- uint32_t crc=0;
-
- crc = update_crc16(crc, (shift0)&0xff);
- crc = update_crc16(crc, (shift0>>8)&0xff);
- crc = update_crc16(crc, (shift0>>16)&0xff);
- crc = update_crc16(crc, (shift0>>24)&0xff);
- crc = update_crc16(crc, (shift1)&0xff);
- crc = update_crc16(crc, (shift1>>8)&0xff);
- crc = update_crc16(crc, (shift1>>16)&0xff);
- crc = update_crc16(crc, (shift1>>24)&0xff);
-
- Dbprintf("Info: Tag data: %x%08x, crc=%x",
- (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
- if (crc != (shift2&0xffff)) {
- Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
- } else {
- DbpString("Info: CRC is good");
- }
- }
+ // some hardcoded initial params
+ // when we read a TI tag we sample the zerocross line at 2Mhz
+ // TI tags modulate a 1 as 16 cycles of 123.2Khz
+ // TI tags modulate a 0 as 16 cycles of 134.2Khz
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
+
+ signed char *dest = (signed char *)BigBuf;
+ int n = sizeof(BigBuf);
+ // 128 bit shift register [shift3:shift2:shift1:shift0]
+ uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
+
+ int i, cycles=0, samples=0;
+ // how many sample points fit in 16 cycles of each frequency
+ uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
+ // when to tell if we're close enough to one freq or another
+ uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
+
+ // TI tags charge at 134.2Khz
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+ // connects to SSP_DIN and the SSP_DOUT logic level controls
+ // whether we're modulating the antenna (high)
+ // or listening to the antenna (low)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+
+ // get TI tag data into the buffer
+ AcquireTiType();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+ for (i=0; i<n-1; i++) {
+ // count cycles by looking for lo to hi zero crossings
+ if ( (dest[i]<0) && (dest[i+1]>0) ) {
+ cycles++;
+ // after 16 cycles, measure the frequency
+ if (cycles>15) {
+ cycles=0;
+ samples=i-samples; // number of samples in these 16 cycles
+
+ // TI bits are coming to us lsb first so shift them
+ // right through our 128 bit right shift register
+ shift0 = (shift0>>1) | (shift1 << 31);
+ shift1 = (shift1>>1) | (shift2 << 31);
+ shift2 = (shift2>>1) | (shift3 << 31);
+ shift3 >>= 1;
+
+ // check if the cycles fall close to the number
+ // expected for either the low or high frequency
+ if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
+ // low frequency represents a 1
+ shift3 |= (1<<31);
+ } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
+ // high frequency represents a 0
+ } else {
+ // probably detected a gay waveform or noise
+ // use this as gaydar or discard shift register and start again
+ shift3 = shift2 = shift1 = shift0 = 0;
+ }
+ samples = i;
+
+ // for each bit we receive, test if we've detected a valid tag
+
+ // if we see 17 zeroes followed by 6 ones, we might have a tag
+ // remember the bits are backwards
+ if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
+ // if start and end bytes match, we have a tag so break out of the loop
+ if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
+ cycles = 0xF0B; //use this as a flag (ugly but whatever)
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // if flag is set we have a tag
+ if (cycles!=0xF0B) {
+ DbpString("Info: No valid tag detected.");
+ } else {
+ // put 64 bit data into shift1 and shift0
+ shift0 = (shift0>>24) | (shift1 << 8);
+ shift1 = (shift1>>24) | (shift2 << 8);
+
+ // align 16 bit crc into lower half of shift2
+ shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+
+ // if r/w tag, check ident match
+ if (shift3 & (1<<15) ) {
+ DbpString("Info: TI tag is rewriteable");
+ // only 15 bits compare, last bit of ident is not valid
+ if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
+ DbpString("Error: Ident mismatch!");
+ } else {
+ DbpString("Info: TI tag ident is valid");
+ }
+ } else {
+ DbpString("Info: TI tag is readonly");
+ }
+
+ // WARNING the order of the bytes in which we calc crc below needs checking
+ // i'm 99% sure the crc algorithm is correct, but it may need to eat the
+ // bytes in reverse or something
+ // calculate CRC
+ uint32_t crc=0;
+
+ crc = update_crc16(crc, (shift0)&0xff);
+ crc = update_crc16(crc, (shift0>>8)&0xff);
+ crc = update_crc16(crc, (shift0>>16)&0xff);
+ crc = update_crc16(crc, (shift0>>24)&0xff);
+ crc = update_crc16(crc, (shift1)&0xff);
+ crc = update_crc16(crc, (shift1>>8)&0xff);
+ crc = update_crc16(crc, (shift1>>16)&0xff);
+ crc = update_crc16(crc, (shift1>>24)&0xff);
+
+ Dbprintf("Info: Tag data: %x%08x, crc=%x",
+ (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+ if (crc != (shift2&0xffff)) {
+ Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
+ } else {
+ DbpString("Info: CRC is good");
+ }
+ }
}
void WriteTIbyte(uint8_t b)
{
- int i = 0;
-
- // modulate 8 bits out to the antenna
- for (i=0; i<8; i++)
- {
- if (b&(1<<i)) {
- // stop modulating antenna
- LOW(GPIO_SSC_DOUT);
- SpinDelayUs(1000);
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
- SpinDelayUs(1000);
- } else {
- // stop modulating antenna
- LOW(GPIO_SSC_DOUT);
- SpinDelayUs(300);
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
- SpinDelayUs(1700);
- }
- }
+ int i = 0;
+
+ // modulate 8 bits out to the antenna
+ for (i=0; i<8; i++)
+ {
+ if (b&(1<<i)) {
+ // stop modulating antenna
+ LOW(GPIO_SSC_DOUT);
+ SpinDelayUs(1000);
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelayUs(1000);
+ } else {
+ // stop modulating antenna
+ LOW(GPIO_SSC_DOUT);
+ SpinDelayUs(300);
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelayUs(1700);
+ }
+ }
}
void AcquireTiType(void)
{
- int i, j, n;
- // tag transmission is <20ms, sampling at 2M gives us 40K samples max
- // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
-#define TIBUFLEN 1250
-
- // clear buffer
- memset(BigBuf,0,sizeof(BigBuf));
-
- // Set up the synchronous serial port
- AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
- AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
-
- // steal this pin from the SSP and use it to control the modulation
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
- AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
- AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
-
- // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
- // 48/2 = 24 MHz clock must be divided by 12
- AT91C_BASE_SSC->SSC_CMR = 12;
-
- AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
- AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
- AT91C_BASE_SSC->SSC_TCMR = 0;
- AT91C_BASE_SSC->SSC_TFMR = 0;
-
- LED_D_ON();
-
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
-
- // Charge TI tag for 50ms.
- SpinDelay(50);
-
- // stop modulating antenna and listen
- LOW(GPIO_SSC_DOUT);
-
- LED_D_OFF();
-
- i = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
- i++; if(i >= TIBUFLEN) break;
- }
- WDT_HIT();
- }
-
- // return stolen pin to SSP
- AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
-
- char *dest = (char *)BigBuf;
- n = TIBUFLEN*32;
- // unpack buffer
- for (i=TIBUFLEN-1; i>=0; i--) {
- for (j=0; j<32; j++) {
- if(BigBuf[i] & (1 << j)) {
- dest[--n] = 1;
- } else {
- dest[--n] = -1;
- }
- }
- }
+ int i, j, n;
+ // tag transmission is <20ms, sampling at 2M gives us 40K samples max
+ // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
+ #define TIBUFLEN 1250
+
+ // clear buffer
+ memset(BigBuf,0,sizeof(BigBuf));
+
+ // Set up the synchronous serial port
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
+ AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
+
+ // steal this pin from the SSP and use it to control the modulation
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
+
+ // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
+ // 48/2 = 24 MHz clock must be divided by 12
+ AT91C_BASE_SSC->SSC_CMR = 12;
+
+ AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
+ AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
+ AT91C_BASE_SSC->SSC_TCMR = 0;
+ AT91C_BASE_SSC->SSC_TFMR = 0;
+
+ LED_D_ON();
+
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+
+ // Charge TI tag for 50ms.
+ SpinDelay(50);
+
+ // stop modulating antenna and listen
+ LOW(GPIO_SSC_DOUT);
+
+ LED_D_OFF();
+
+ i = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
+ i++; if(i >= TIBUFLEN) break;
+ }
+ WDT_HIT();
+ }
+
+ // return stolen pin to SSP
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
+
+ char *dest = (char *)BigBuf;
+ n = TIBUFLEN*32;
+ // unpack buffer
+ for (i=TIBUFLEN-1; i>=0; i--) {
+ for (j=0; j<32; j++) {
+ if(BigBuf[i] & (1 << j)) {
+ dest[--n] = 1;
+ } else {
+ dest[--n] = -1;
+ }
+ }
+ }
}
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- if(crc == 0) {
- crc = update_crc16(crc, (idlo)&0xff);
- crc = update_crc16(crc, (idlo>>8)&0xff);
- crc = update_crc16(crc, (idlo>>16)&0xff);
- crc = update_crc16(crc, (idlo>>24)&0xff);
- crc = update_crc16(crc, (idhi)&0xff);
- crc = update_crc16(crc, (idhi>>8)&0xff);
- crc = update_crc16(crc, (idhi>>16)&0xff);
- crc = update_crc16(crc, (idhi>>24)&0xff);
- }
- Dbprintf("Writing to tag: %x%08x, crc=%x",
- (unsigned int) idhi, (unsigned int) idlo, crc);
-
- // TI tags charge at 134.2Khz
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line
- // connects to SSP_DIN and the SSP_DOUT logic level controls
- // whether we're modulating the antenna (high)
- // or listening to the antenna (low)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
- LED_A_ON();
-
- // steal this pin from the SSP and use it to control the modulation
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
- // writing algorithm:
- // a high bit consists of a field off for 1ms and field on for 1ms
- // a low bit consists of a field off for 0.3ms and field on for 1.7ms
- // initiate a charge time of 50ms (field on) then immediately start writing bits
- // start by writing 0xBB (keyword) and 0xEB (password)
- // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
- // finally end with 0x0300 (write frame)
- // all data is sent lsb firts
- // finish with 15ms programming time
-
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
- SpinDelay(50); // charge time
-
- WriteTIbyte(0xbb); // keyword
- WriteTIbyte(0xeb); // password
- WriteTIbyte( (idlo )&0xff );
- WriteTIbyte( (idlo>>8 )&0xff );
- WriteTIbyte( (idlo>>16)&0xff );
- WriteTIbyte( (idlo>>24)&0xff );
- WriteTIbyte( (idhi )&0xff );
- WriteTIbyte( (idhi>>8 )&0xff );
- WriteTIbyte( (idhi>>16)&0xff );
- WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
- WriteTIbyte( (crc )&0xff ); // crc lo
- WriteTIbyte( (crc>>8 )&0xff ); // crc hi
- WriteTIbyte(0x00); // write frame lo
- WriteTIbyte(0x03); // write frame hi
- HIGH(GPIO_SSC_DOUT);
- SpinDelay(50); // programming time
-
- LED_A_OFF();
-
- // get TI tag data into the buffer
- AcquireTiType();
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- DbpString("Now use tiread to check");
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ if(crc == 0) {
+ crc = update_crc16(crc, (idlo)&0xff);
+ crc = update_crc16(crc, (idlo>>8)&0xff);
+ crc = update_crc16(crc, (idlo>>16)&0xff);
+ crc = update_crc16(crc, (idlo>>24)&0xff);
+ crc = update_crc16(crc, (idhi)&0xff);
+ crc = update_crc16(crc, (idhi>>8)&0xff);
+ crc = update_crc16(crc, (idhi>>16)&0xff);
+ crc = update_crc16(crc, (idhi>>24)&0xff);
+ }
+ Dbprintf("Writing to tag: %x%08x, crc=%x",
+ (unsigned int) idhi, (unsigned int) idlo, crc);
+
+ // TI tags charge at 134.2Khz
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+ // connects to SSP_DIN and the SSP_DOUT logic level controls
+ // whether we're modulating the antenna (high)
+ // or listening to the antenna (low)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+ LED_A_ON();
+
+ // steal this pin from the SSP and use it to control the modulation
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+ // writing algorithm:
+ // a high bit consists of a field off for 1ms and field on for 1ms
+ // a low bit consists of a field off for 0.3ms and field on for 1.7ms
+ // initiate a charge time of 50ms (field on) then immediately start writing bits
+ // start by writing 0xBB (keyword) and 0xEB (password)
+ // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
+ // finally end with 0x0300 (write frame)
+ // all data is sent lsb firts
+ // finish with 15ms programming time
+
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelay(50); // charge time
+
+ WriteTIbyte(0xbb); // keyword
+ WriteTIbyte(0xeb); // password
+ WriteTIbyte( (idlo )&0xff );
+ WriteTIbyte( (idlo>>8 )&0xff );
+ WriteTIbyte( (idlo>>16)&0xff );
+ WriteTIbyte( (idlo>>24)&0xff );
+ WriteTIbyte( (idhi )&0xff );
+ WriteTIbyte( (idhi>>8 )&0xff );
+ WriteTIbyte( (idhi>>16)&0xff );
+ WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
+ WriteTIbyte( (crc )&0xff ); // crc lo
+ WriteTIbyte( (crc>>8 )&0xff ); // crc hi
+ WriteTIbyte(0x00); // write frame lo
+ WriteTIbyte(0x03); // write frame hi
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelay(50); // programming time
+
+ LED_A_OFF();
+
+ // get TI tag data into the buffer
+ AcquireTiType();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Now use tiread to check");
}
void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
{
- int i;
- uint8_t *tab = (uint8_t *)BigBuf;
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
-
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-
+ int i;
+ uint8_t *tab = (uint8_t *)BigBuf;
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
+
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
+
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
-
- i = 0;
- for(;;) {
- while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
- WDT_HIT();
- }
-
- if (ledcontrol)
- LED_D_ON();
-
- if(tab[i])
- OPEN_COIL();
- else
- SHORT_COIL();
-
- if (ledcontrol)
- LED_D_OFF();
-
- while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
- WDT_HIT();
- }
-
- i++;
- if(i == period) {
- i = 0;
- if (gap) {
- SHORT_COIL();
- SpinDelayUs(gap);
- }
- }
- }
+
+ i = 0;
+ for(;;) {
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
+ if(BUTTON_PRESS()) {
+ DbpString("Stopped");
+ return;
+ }
+ WDT_HIT();
+ }
+
+ if (ledcontrol)
+ LED_D_ON();
+
+ if(tab[i])
+ OPEN_COIL();
+ else
+ SHORT_COIL();
+
+ if (ledcontrol)
+ LED_D_OFF();
+
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
+ if(BUTTON_PRESS()) {
+ DbpString("Stopped");
+ return;
+ }
+ WDT_HIT();
+ }
+
+ i++;
+ if(i == period) {
+ i = 0;
+ if (gap) {
+ SHORT_COIL();
+ SpinDelayUs(gap);
+ }
+ }
+ }
}
#define DEBUG_FRAME_CONTENTS 1
// compose fc/8 fc/10 waveform
static void fc(int c, int *n) {
- uint8_t *dest = (uint8_t *)BigBuf;
- int idx;
-
- // for when we want an fc8 pattern every 4 logical bits
- if(c==0) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
- if(c==8) {
- for (idx=0; idx<6; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
-
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
- if(c==10) {
- for (idx=0; idx<5; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
+ uint8_t *dest = (uint8_t *)BigBuf;
+ int idx;
+
+ // for when we want an fc8 pattern every 4 logical bits
+ if(c==0) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
+ if(c==8) {
+ for (idx=0; idx<6; idx++) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ }
+
+ // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
+ if(c==10) {
+ for (idx=0; idx<5; idx++) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ }
}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
{
- int n=0, i=0;
- /*
- HID tag bitstream format
- The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
- A 1 bit is represented as 6 fc8 and 5 fc10 patterns
- A 0 bit is represented as 5 fc10 and 6 fc8 patterns
- A fc8 is inserted before every 4 bits
- A special start of frame pattern is used consisting a0b0 where a and b are neither 0
- nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
- */
-
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
- return;
- }
- fc(0,&n);
- // special start of frame marker containing invalid bit sequences
- fc(8, &n); fc(8, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
- fc(10, &n); fc(10, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
-
- WDT_HIT();
- // manchester encode bits 43 to 32
- for (i=11; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((hi>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
-
- WDT_HIT();
- // manchester encode bits 31 to 0
- for (i=31; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((lo>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
-
- if (ledcontrol)
- LED_A_ON();
- SimulateTagLowFrequency(n, 0, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
+ int n=0, i=0;
+ /*
+ HID tag bitstream format
+ The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
+ A 1 bit is represented as 6 fc8 and 5 fc10 patterns
+ A 0 bit is represented as 5 fc10 and 6 fc8 patterns
+ A fc8 is inserted before every 4 bits
+ A special start of frame pattern is used consisting a0b0 where a and b are neither 0
+ nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
+ */
+
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits.");
+ return;
+ }
+ fc(0,&n);
+ // special start of frame marker containing invalid bit sequences
+ fc(8, &n); fc(8, &n); // invalid
+ fc(8, &n); fc(10, &n); // logical 0
+ fc(10, &n); fc(10, &n); // invalid
+ fc(8, &n); fc(10, &n); // logical 0
+
+ WDT_HIT();
+ // manchester encode bits 43 to 32
+ for (i=11; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((hi>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+
+ WDT_HIT();
+ // manchester encode bits 31 to 0
+ for (i=31; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((lo>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+
+ if (ledcontrol)
+ LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
-
- size_t size=0; //, found=0;
- uint32_t hi2=0, hi=0, lo=0;
-
- // Configure to go in 125Khz listen mode
- LFSetupFPGAForADC(95, true);
-
- while(!BUTTON_PRESS()) {
-
- WDT_HIT();
- if (ledcontrol) LED_A_ON();
-
- DoAcquisition125k_internal(-1,true);
- size = sizeof(BigBuf);
- if (size < 2000) continue;
- // FSK demodulator
-
- int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo);
-
- WDT_HIT();
-
- if (bitLen>0 && lo>0){
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- if (hi2 != 0){ //extra large HID tags
- Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }else { //standard HID tags <38 bits
- //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
- uint8_t bitlen = 0;
- uint32_t fc = 0;
- uint32_t cardnum = 0;
- if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
- uint32_t lo2=0;
- lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
- uint8_t idx3 = 1;
- while(lo2>1){ //find last bit set to 1 (format len bit)
- lo2=lo2>>1;
- idx3++;
- }
- bitlen =idx3+19;
- fc =0;
- cardnum=0;
- if(bitlen==26){
- cardnum = (lo>>1)&0xFFFF;
- fc = (lo>>17)&0xFF;
- }
- if(bitlen==37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
- if(bitlen==34){
- cardnum = (lo>>1)&0xFFFF;
- fc= ((hi&1)<<15)|(lo>>17);
- }
- if(bitlen==35){
- cardnum = (lo>>1)&0xFFFFF;
- fc = ((hi&1)<<11)|(lo>>21);
- }
- }
- else { //if bit 38 is not set then 37 bit format is used
- bitlen= 37;
- fc =0;
- cardnum=0;
- if(bitlen==37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
- }
- //Dbprintf("TAG ID: %x%08x (%d)",
- // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
- (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
- }
- if (findone){
- if (ledcontrol) LED_A_OFF();
- return;
- }
- // reset
- hi2 = hi = lo = 0;
- }
- WDT_HIT();
- //SpinDelay(50);
- }
- DbpString("Stopped");
- if (ledcontrol) LED_A_OFF();
+ uint8_t *dest = (uint8_t *)BigBuf;
+
+ size_t size=0; //, found=0;
+ uint32_t hi2=0, hi=0, lo=0;
+
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS()) {
+
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition125k_internal(-1,true);
+ // FSK demodulator
+ size = HIDdemodFSK(dest, sizeof(BigBuf), &hi2, &hi, &lo);
+
+ WDT_HIT();
+
+ if (size>0 && lo>0){
+ // final loop, go over previously decoded manchester data and decode into usable tag ID
+ // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
+ if (hi2 != 0){ //extra large HID tags
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }else { //standard HID tags <38 bits
+ //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+ uint8_t bitlen = 0;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
+ uint32_t lo2=0;
+ lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+ uint8_t idx3 = 1;
+ while(lo2 > 1){ //find last bit set to 1 (format len bit)
+ lo2=lo2 >> 1;
+ idx3++;
+ }
+ bitlen = idx3+19;
+ fc =0;
+ cardnum=0;
+ if(bitlen == 26){
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
+ }
+ if(bitlen == 37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ if(bitlen == 34){
+ cardnum = (lo>>1)&0xFFFF;
+ fc= ((hi&1)<<15)|(lo>>17);
+ }
+ if(bitlen == 35){
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
+ }
+ }
+ else { //if bit 38 is not set then 37 bit format is used
+ bitlen= 37;
+ fc =0;
+ cardnum=0;
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ }
+ //Dbprintf("TAG ID: %x%08x (%d)",
+ // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+ }
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ return;
+ }
+ // reset
+ hi2 = hi = lo = 0;
+ }
+ WDT_HIT();
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
}
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
-
- size_t size=0; //, found=0;
- uint32_t bitLen=0;
- int clk=0, invert=0, errCnt=0;
- uint64_t lo=0;
- // Configure to go in 125Khz listen mode
- LFSetupFPGAForADC(95, true);
-
- while(!BUTTON_PRESS()) {
-
- WDT_HIT();
- if (ledcontrol) LED_A_ON();
-
- DoAcquisition125k_internal(-1,true);
- size = sizeof(BigBuf);
- if (size < 2000) continue;
- // FSK demodulator
- //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
- bitLen=size;
- //Dbprintf("DEBUG: Buffer got");
- errCnt = askmandemod(dest,&bitLen,&clk,&invert); //HIDdemodFSK(dest,size,&hi2,&hi,&lo);
- //Dbprintf("DEBUG: ASK Got");
- WDT_HIT();
-
- if (errCnt>=0){
- lo = Em410xDecode(dest,bitLen);
- //Dbprintf("DEBUG: EM GOT");
- //printEM410x(lo);
- if (lo>0){
- Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo>>32),(uint32_t)lo,(uint32_t)(lo&0xFFFF),(uint32_t)((lo>>16LL) & 0xFF),(uint32_t)(lo & 0xFFFFFF));
- }
- if (findone){
- if (ledcontrol) LED_A_OFF();
- return;
- }
- } else{
- //Dbprintf("DEBUG: No Tag");
- }
- WDT_HIT();
- lo = 0;
- clk=0;
- invert=0;
- errCnt=0;
- size=0;
- //SpinDelay(50);
- }
- DbpString("Stopped");
- if (ledcontrol) LED_A_OFF();
+ uint8_t *dest = (uint8_t *)BigBuf;
+
+ size_t size=0;
+ int clk=0, invert=0, errCnt=0;
+ uint64_t lo=0;
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS()) {
+
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition125k_internal(-1,true);
+ size = sizeof(BigBuf);
+ //Dbprintf("DEBUG: Buffer got");
+ //askdemod and manchester decode
+ errCnt = askmandemod(dest, &size, &clk, &invert);
+ //Dbprintf("DEBUG: ASK Got");
+ WDT_HIT();
+
+ if (errCnt>=0){
+ lo = Em410xDecode(dest,size);
+ //Dbprintf("DEBUG: EM GOT");
+ if (lo>0){
+ Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+ (uint32_t)(lo>>32),
+ (uint32_t)lo,
+ (uint32_t)(lo&0xFFFF),
+ (uint32_t)((lo>>16LL) & 0xFF),
+ (uint32_t)(lo & 0xFFFFFF));
+ }
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ return;
+ }
+ } else{
+ //Dbprintf("DEBUG: No Tag");
+ }
+ WDT_HIT();
+ lo = 0;
+ clk=0;
+ invert=0;
+ errCnt=0;
+ size=0;
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
}
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- int idx=0;
- uint32_t code=0, code2=0;
- uint8_t version=0;
- uint8_t facilitycode=0;
- uint16_t number=0;
- // Configure to go in 125Khz listen mode
- LFSetupFPGAForADC(95, true);
-
- while(!BUTTON_PRESS()) {
- WDT_HIT();
- if (ledcontrol) LED_A_ON();
- DoAcquisition125k_internal(-1,true);
- //fskdemod and get start index
- WDT_HIT();
- idx = IOdemodFSK(dest,sizeof(BigBuf));
- if (idx>0){
- //valid tag found
-
- //Index map
- //0 10 20 30 40 50 60
- //| | | | | | |
- //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
- //-----------------------------------------------------------------------------
- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
- //
- //XSF(version)facility:codeone+codetwo
- //Handle the data
- if(findone){ //only print binary if we are doing one
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
- Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
- }
- code = bytebits_to_byte(dest+idx,32);
- code2 = bytebits_to_byte(dest+idx+32,32);
- version = bytebits_to_byte(dest+idx+27,8); //14,4
- facilitycode = bytebits_to_byte(dest+idx+18,8) ;
- number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
-
- Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
- // if we're only looking for one tag
- if (findone){
- if (ledcontrol) LED_A_OFF();
- //LED_A_OFF();
- return;
- }
- code=code2=0;
- version=facilitycode=0;
- number=0;
- idx=0;
- }
- WDT_HIT();
- }
- DbpString("Stopped");
- if (ledcontrol) LED_A_OFF();
+ uint8_t *dest = (uint8_t *)BigBuf;
+ int idx=0;
+ uint32_t code=0, code2=0;
+ uint8_t version=0;
+ uint8_t facilitycode=0;
+ uint16_t number=0;
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS()) {
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+ DoAcquisition125k_internal(-1,true);
+ //fskdemod and get start index
+ WDT_HIT();
+ idx = IOdemodFSK(dest,sizeof(BigBuf));
+ if (idx>0){
+ //valid tag found
+
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo
+ //Handle the data
+ if(findone){ //only print binary if we are doing one
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ }
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+ version = bytebits_to_byte(dest+idx+27,8); //14,4
+ facilitycode = bytebits_to_byte(dest+idx+18,8) ;
+ number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+ Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
+ // if we're only looking for one tag
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ //LED_A_OFF();
+ return;
+ }
+ code=code2=0;
+ version=facilitycode=0;
+ number=0;
+ idx=0;
+ }
+ WDT_HIT();
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
}
/*------------------------------
// Write one bit to card
void T55xxWriteBit(int bit)
{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- if (bit == 0)
- SpinDelayUs(WRITE_0);
- else
- SpinDelayUs(WRITE_1);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(WRITE_GAP);
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ if (bit == 0)
+ SpinDelayUs(WRITE_0);
+ else
+ SpinDelayUs(WRITE_1);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(WRITE_GAP);
}
// Write one card block in page 0, no lock
void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
- //unsigned int i; //enio adjustment 12/10/14
- uint32_t i;
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // Now start writting
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode
- T55xxWriteBit(1);
- T55xxWriteBit(0); //Page 0
- if (PwdMode == 1){
- // Pwd
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Pwd & i);
- }
- // Lock bit
- T55xxWriteBit(0);
-
- // Data
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Data & i);
-
- // Block
- for (i = 0x04; i != 0; i >>= 1)
- T55xxWriteBit(Block & i);
-
- // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
- // so wait a little more)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- SpinDelay(20);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ //unsigned int i; //enio adjustment 12/10/14
+ uint32_t i;
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // Now start writting
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+ if (PwdMode == 1){
+ // Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Lock bit
+ T55xxWriteBit(0);
+
+ // Data
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Data & i);
+
+ // Block
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+ // so wait a little more)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
// Read one card block in page 0
void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- //int m=0, i=0; //enio adjustment 12/10/14
- uint32_t m=0, i=0;
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- m = sizeof(BigBuf);
- // Clear destination buffer before sending the command
- memset(dest, 128, m);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- LED_D_ON();
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // Now start writting
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode
- T55xxWriteBit(1);
- T55xxWriteBit(0); //Page 0
- if (PwdMode == 1){
- // Pwd
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Pwd & i);
- }
- // Lock bit
- T55xxWriteBit(0);
- // Block
- for (i = 0x04; i != 0; i >>= 1)
- T55xxWriteBit(Block & i);
-
- // Turn field on to read the response
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (i >= m) break;
- }
- }
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
- DbpString("DONE!");
+ uint8_t *dest = (uint8_t *)BigBuf;
+ //int m=0, i=0; //enio adjustment 12/10/14
+ uint32_t m=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ m = sizeof(BigBuf);
+ // Clear destination buffer before sending the command
+ memset(dest, 128, m);
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ LED_D_ON();
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // Now start writting
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+ if (PwdMode == 1){
+ // Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Lock bit
+ T55xxWriteBit(0);
+ // Block
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Turn field on to read the response
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ // we don't care about actual value, only if it's more or less than a
+ // threshold essentially we capture zero crossings for later analysis
+ // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
+ i++;
+ if (i >= m) break;
+ }
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+ DbpString("DONE!");
}
// Read card traceability data (page 1)
void T55xxReadTrace(void){
- uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, i=0;
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- m = sizeof(BigBuf);
- // Clear destination buffer before sending the command
- memset(dest, 128, m);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- LED_D_ON();
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // Now start writting
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode
- T55xxWriteBit(1);
- T55xxWriteBit(1); //Page 1
-
- // Turn field on to read the response
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- if (i >= m) break;
- }
- }
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
- DbpString("DONE!");
+ uint8_t *dest = (uint8_t *)BigBuf;
+ int m=0, i=0;
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ m = sizeof(BigBuf);
+ // Clear destination buffer before sending the command
+ memset(dest, 128, m);
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ LED_D_ON();
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // Now start writting
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(1); //Page 1
+
+ // Turn field on to read the response
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ i++;
+ if (i >= m) break;
+ }
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+ DbpString("DONE!");
}
/*-------------- Cloning routines -----------*/
// Copy HID id to card and setup block 0 config
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
{
- int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
- int last_block = 0;
-
- if (longFMT){
- // Ensure no more than 84 bits supplied
- if (hi2>0xFFFFF) {
- DbpString("Tags can only have 84 bits.");
- return;
- }
- // Build the 6 data blocks for supplied 84bit ID
- last_block = 6;
- data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
- for (int i=0;i<4;i++) {
- if (hi2 & (1<<(19-i)))
- data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((3-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (hi2 & (1<<(15-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(31-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data4 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(15-i)))
- data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data4 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data5 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data5 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data6 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data6 |= (1<<((15-i)*2)); // 0 -> 01
- }
- }
- else {
- // Ensure no more than 44 bits supplied
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
- return;
- }
-
- // Build the 3 data blocks for supplied 44bit ID
- last_block = 3;
-
- data1 = 0x1D000000; // load preamble
-
- for (int i=0;i<12;i++) {
- if (hi & (1<<(11-i)))
- data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((11-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
- }
-
- LED_D_ON();
- // Program the data blocks for supplied ID
- // and the block 0 for HID format
- T55xxWriteBlock(data1,1,0,0);
- T55xxWriteBlock(data2,2,0,0);
- T55xxWriteBlock(data3,3,0,0);
-
- if (longFMT) { // if long format there are 6 blocks
- T55xxWriteBlock(data4,4,0,0);
- T55xxWriteBlock(data5,5,0,0);
- T55xxWriteBlock(data6,6,0,0);
- }
-
- // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
- T55xxWriteBlock(T55x7_BITRATE_RF_50 |
- T55x7_MODULATION_FSK2a |
- last_block << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
-
- LED_D_OFF();
-
- DbpString("DONE!");
+ int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
+ int last_block = 0;
+
+ if (longFMT){
+ // Ensure no more than 84 bits supplied
+ if (hi2>0xFFFFF) {
+ DbpString("Tags can only have 84 bits.");
+ return;
+ }
+ // Build the 6 data blocks for supplied 84bit ID
+ last_block = 6;
+ data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
+ for (int i=0;i<4;i++) {
+ if (hi2 & (1<<(19-i)))
+ data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((3-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi2 & (1<<(15-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(31-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data4 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(15-i)))
+ data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data4 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data5 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data5 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data6 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data6 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+ else {
+ // Ensure no more than 44 bits supplied
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits.");
+ return;
+ }
+
+ // Build the 3 data blocks for supplied 44bit ID
+ last_block = 3;
+
+ data1 = 0x1D000000; // load preamble
+
+ for (int i=0;i<12;i++) {
+ if (hi & (1<<(11-i)))
+ data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((11-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+ T55xxWriteBlock(data3,3,0,0);
+
+ if (longFMT) { // if long format there are 6 blocks
+ T55xxWriteBlock(data4,4,0,0);
+ T55xxWriteBlock(data5,5,0,0);
+ T55xxWriteBlock(data6,6,0,0);
+ }
+
+ // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
+ T55xxWriteBlock(T55x7_BITRATE_RF_50 |
+ T55x7_MODULATION_FSK2a |
+ last_block << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
+
+ LED_D_OFF();
+
+ DbpString("DONE!");
}
void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
{
- int data1=0, data2=0; //up to six blocks for long format
-
- data1 = hi; // load preamble
- data2 = lo;
-
- LED_D_ON();
- // Program the data blocks for supplied ID
- // and the block 0 for HID format
- T55xxWriteBlock(data1,1,0,0);
- T55xxWriteBlock(data2,2,0,0);
-
- //Config Block
- T55xxWriteBlock(0x00147040,0,0,0);
- LED_D_OFF();
-
- DbpString("DONE!");
+ int data1=0, data2=0; //up to six blocks for long format
+
+ data1 = hi; // load preamble
+ data2 = lo;
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+
+ //Config Block
+ T55xxWriteBlock(0x00147040,0,0,0);
+ LED_D_OFF();
+
+ DbpString("DONE!");
}
// Define 9bit header for EM410x tags
void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
{
- int i, id_bit;
- uint64_t id = EM410X_HEADER;
- uint64_t rev_id = 0; // reversed ID
- int c_parity[4]; // column parity
- int r_parity = 0; // row parity
- uint32_t clock = 0;
-
- // Reverse ID bits given as parameter (for simpler operations)
- for (i = 0; i < EM410X_ID_LENGTH; ++i) {
- if (i < 32) {
- rev_id = (rev_id << 1) | (id_lo & 1);
- id_lo >>= 1;
- } else {
- rev_id = (rev_id << 1) | (id_hi & 1);
- id_hi >>= 1;
- }
- }
-
- for (i = 0; i < EM410X_ID_LENGTH; ++i) {
- id_bit = rev_id & 1;
-
- if (i % 4 == 0) {
- // Don't write row parity bit at start of parsing
- if (i)
- id = (id << 1) | r_parity;
- // Start counting parity for new row
- r_parity = id_bit;
- } else {
- // Count row parity
- r_parity ^= id_bit;
- }
-
- // First elements in column?
- if (i < 4)
- // Fill out first elements
- c_parity[i] = id_bit;
- else
- // Count column parity
- c_parity[i % 4] ^= id_bit;
-
- // Insert ID bit
- id = (id << 1) | id_bit;
- rev_id >>= 1;
- }
-
- // Insert parity bit of last row
- id = (id << 1) | r_parity;
-
- // Fill out column parity at the end of tag
- for (i = 0; i < 4; ++i)
- id = (id << 1) | c_parity[i];
-
- // Add stop bit
- id <<= 1;
-
- Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
- LED_D_ON();
-
- // Write EM410x ID
- T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
- T55xxWriteBlock((uint32_t)id, 2, 0, 0);
-
- // Config for EM410x (RF/64, Manchester, Maxblock=2)
- if (card) {
- // Clock rate is stored in bits 8-15 of the card value
- clock = (card & 0xFF00) >> 8;
- Dbprintf("Clock rate: %d", clock);
- switch (clock)
- {
- case 32:
- clock = T55x7_BITRATE_RF_32;
- break;
- case 16:
- clock = T55x7_BITRATE_RF_16;
- break;
- case 0:
- // A value of 0 is assumed to be 64 for backwards-compatibility
- // Fall through...
- case 64:
- clock = T55x7_BITRATE_RF_64;
- break;
- default:
- Dbprintf("Invalid clock rate: %d", clock);
- return;
- }
-
- // Writing configuration for T55x7 tag
- T55xxWriteBlock(clock |
- T55x7_MODULATION_MANCHESTER |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
- }
- else
- // Writing configuration for T5555(Q5) tag
- T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
- T5555_MODULATION_MANCHESTER |
- 2 << T5555_MAXBLOCK_SHIFT,
- 0, 0, 0);
-
- LED_D_OFF();
- Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
- (uint32_t)(id >> 32), (uint32_t)id);
+ int i, id_bit;
+ uint64_t id = EM410X_HEADER;
+ uint64_t rev_id = 0; // reversed ID
+ int c_parity[4]; // column parity
+ int r_parity = 0; // row parity
+ uint32_t clock = 0;
+
+ // Reverse ID bits given as parameter (for simpler operations)
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ if (i < 32) {
+ rev_id = (rev_id << 1) | (id_lo & 1);
+ id_lo >>= 1;
+ } else {
+ rev_id = (rev_id << 1) | (id_hi & 1);
+ id_hi >>= 1;
+ }
+ }
+
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ id_bit = rev_id & 1;
+
+ if (i % 4 == 0) {
+ // Don't write row parity bit at start of parsing
+ if (i)
+ id = (id << 1) | r_parity;
+ // Start counting parity for new row
+ r_parity = id_bit;
+ } else {
+ // Count row parity
+ r_parity ^= id_bit;
+ }
+
+ // First elements in column?
+ if (i < 4)
+ // Fill out first elements
+ c_parity[i] = id_bit;
+ else
+ // Count column parity
+ c_parity[i % 4] ^= id_bit;
+
+ // Insert ID bit
+ id = (id << 1) | id_bit;
+ rev_id >>= 1;
+ }
+
+ // Insert parity bit of last row
+ id = (id << 1) | r_parity;
+
+ // Fill out column parity at the end of tag
+ for (i = 0; i < 4; ++i)
+ id = (id << 1) | c_parity[i];
+
+ // Add stop bit
+ id <<= 1;
+
+ Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
+ LED_D_ON();
+
+ // Write EM410x ID
+ T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
+ T55xxWriteBlock((uint32_t)id, 2, 0, 0);
+
+ // Config for EM410x (RF/64, Manchester, Maxblock=2)
+ if (card) {
+ // Clock rate is stored in bits 8-15 of the card value
+ clock = (card & 0xFF00) >> 8;
+ Dbprintf("Clock rate: %d", clock);
+ switch (clock)
+ {
+ case 32:
+ clock = T55x7_BITRATE_RF_32;
+ break;
+ case 16:
+ clock = T55x7_BITRATE_RF_16;
+ break;
+ case 0:
+ // A value of 0 is assumed to be 64 for backwards-compatibility
+ // Fall through...
+ case 64:
+ clock = T55x7_BITRATE_RF_64;
+ break;
+ default:
+ Dbprintf("Invalid clock rate: %d", clock);
+ return;
+ }
+
+ // Writing configuration for T55x7 tag
+ T55xxWriteBlock(clock |
+ T55x7_MODULATION_MANCHESTER |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+ }
+ else
+ // Writing configuration for T5555(Q5) tag
+ T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
+ T5555_MODULATION_MANCHESTER |
+ 2 << T5555_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+
+ LED_D_OFF();
+ Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
+ (uint32_t)(id >> 32), (uint32_t)id);
}
// Clone Indala 64-bit tag by UID to T55x7
void CopyIndala64toT55x7(int hi, int lo)
{
- //Program the 2 data blocks for supplied 64bit UID
- // and the block 0 for Indala64 format
- T55xxWriteBlock(hi,1,0,0);
- T55xxWriteBlock(lo,2,0,0);
- //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
- T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
- //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
- // T5567WriteBlock(0x603E1042,0);
+ //Program the 2 data blocks for supplied 64bit UID
+ // and the block 0 for Indala64 format
+ T55xxWriteBlock(hi,1,0,0);
+ T55xxWriteBlock(lo,2,0,0);
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
+ T55xxWriteBlock(T55x7_BITRATE_RF_32 |
+ T55x7_MODULATION_PSK1 |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+ // T5567WriteBlock(0x603E1042,0);
- DbpString("DONE!");
+ DbpString("DONE!");
-}
+}
void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
{
- //Program the 7 data blocks for supplied 224bit UID
- // and the block 0 for Indala224 format
- T55xxWriteBlock(uid1,1,0,0);
- T55xxWriteBlock(uid2,2,0,0);
- T55xxWriteBlock(uid3,3,0,0);
- T55xxWriteBlock(uid4,4,0,0);
- T55xxWriteBlock(uid5,5,0,0);
- T55xxWriteBlock(uid6,6,0,0);
- T55xxWriteBlock(uid7,7,0,0);
- //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
- T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 7 << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
- //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
- // T5567WriteBlock(0x603E10E2,0);
-
- DbpString("DONE!");
+ //Program the 7 data blocks for supplied 224bit UID
+ // and the block 0 for Indala224 format
+ T55xxWriteBlock(uid1,1,0,0);
+ T55xxWriteBlock(uid2,2,0,0);
+ T55xxWriteBlock(uid3,3,0,0);
+ T55xxWriteBlock(uid4,4,0,0);
+ T55xxWriteBlock(uid5,5,0,0);
+ T55xxWriteBlock(uid6,6,0,0);
+ T55xxWriteBlock(uid7,7,0,0);
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+ T55xxWriteBlock(T55x7_BITRATE_RF_32 |
+ T55x7_MODULATION_PSK1 |
+ 7 << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+ // T5567WriteBlock(0x603E10E2,0);
+
+ DbpString("DONE!");
}
#define max(x,y) ( x<y ? y:x)
int DemodPCF7931(uint8_t **outBlocks) {
- uint8_t BitStream[256];
- uint8_t Blocks[8][16];
- uint8_t *GraphBuffer = (uint8_t *)BigBuf;
- int GraphTraceLen = sizeof(BigBuf);
- int i, j, lastval, bitidx, half_switch;
- int clock = 64;
- int tolerance = clock / 8;
- int pmc, block_done;
- int lc, warnings = 0;
- int num_blocks = 0;
- int lmin=128, lmax=128;
- uint8_t dir;
-
- AcquireRawAdcSamples125k(0);
-
- lmin = 64;
- lmax = 192;
-
- i = 2;
-
- /* Find first local max/min */
- if(GraphBuffer[1] > GraphBuffer[0]) {
- while(i < GraphTraceLen) {
- if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
- break;
- i++;
- }
- dir = 0;
- }
- else {
- while(i < GraphTraceLen) {
- if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
- break;
- i++;
- }
- dir = 1;
- }
-
- lastval = i++;
- half_switch = 0;
- pmc = 0;
- block_done = 0;
-
- for (bitidx = 0; i < GraphTraceLen; i++)
- {
- if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
- {
- lc = i - lastval;
- lastval = i;
-
- // Switch depending on lc length:
- // Tolerance is 1/8 of clock rate (arbitrary)
- if (abs(lc-clock/4) < tolerance) {
- // 16T0
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33+16)-1;
- lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else {
- pmc = i;
- }
- } else if (abs(lc-clock/2) < tolerance) {
- // 32TO
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33)-1;
- lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else if(half_switch == 1) {
- BitStream[bitidx++] = 0;
- half_switch = 0;
- }
- else
- half_switch++;
- } else if (abs(lc-clock) < tolerance) {
- // 64TO
- BitStream[bitidx++] = 1;
- } else {
- // Error
- warnings++;
- if (warnings > 10)
- {
- Dbprintf("Error: too many detection errors, aborting.");
- return 0;
- }
- }
-
- if(block_done == 1) {
- if(bitidx == 128) {
- for(j=0; j<16; j++) {
- Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
- 64*BitStream[j*8+6]+
- 32*BitStream[j*8+5]+
- 16*BitStream[j*8+4]+
- 8*BitStream[j*8+3]+
- 4*BitStream[j*8+2]+
- 2*BitStream[j*8+1]+
- BitStream[j*8];
- }
- num_blocks++;
- }
- bitidx = 0;
- block_done = 0;
- half_switch = 0;
- }
- if(i < GraphTraceLen)
- {
- if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
- else dir = 1;
- }
- }
- if(bitidx==255)
- bitidx=0;
- warnings = 0;
- if(num_blocks == 4) break;
- }
- memcpy(outBlocks, Blocks, 16*num_blocks);
- return num_blocks;
+ uint8_t BitStream[256];
+ uint8_t Blocks[8][16];
+ uint8_t *GraphBuffer = (uint8_t *)BigBuf;
+ int GraphTraceLen = sizeof(BigBuf);
+ int i, j, lastval, bitidx, half_switch;
+ int clock = 64;
+ int tolerance = clock / 8;
+ int pmc, block_done;
+ int lc, warnings = 0;
+ int num_blocks = 0;
+ int lmin=128, lmax=128;
+ uint8_t dir;
+
+ AcquireRawAdcSamples125k(0);
+
+ lmin = 64;
+ lmax = 192;
+
+ i = 2;
+
+ /* Find first local max/min */
+ if(GraphBuffer[1] > GraphBuffer[0]) {
+ while(i < GraphTraceLen) {
+ if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
+ break;
+ i++;
+ }
+ dir = 0;
+ }
+ else {
+ while(i < GraphTraceLen) {
+ if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
+ break;
+ i++;
+ }
+ dir = 1;
+ }
+
+ lastval = i++;
+ half_switch = 0;
+ pmc = 0;
+ block_done = 0;
+
+ for (bitidx = 0; i < GraphTraceLen; i++)
+ {
+ if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+ {
+ lc = i - lastval;
+ lastval = i;
+
+ // Switch depending on lc length:
+ // Tolerance is 1/8 of clock rate (arbitrary)
+ if (abs(lc-clock/4) < tolerance) {
+ // 16T0
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33+16)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else {
+ pmc = i;
+ }
+ } else if (abs(lc-clock/2) < tolerance) {
+ // 32TO
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else if(half_switch == 1) {
+ BitStream[bitidx++] = 0;
+ half_switch = 0;
+ }
+ else
+ half_switch++;
+ } else if (abs(lc-clock) < tolerance) {
+ // 64TO
+ BitStream[bitidx++] = 1;
+ } else {
+ // Error
+ warnings++;
+ if (warnings > 10)
+ {
+ Dbprintf("Error: too many detection errors, aborting.");
+ return 0;
+ }
+ }
+
+ if(block_done == 1) {
+ if(bitidx == 128) {
+ for(j=0; j<16; j++) {
+ Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
+ 64*BitStream[j*8+6]+
+ 32*BitStream[j*8+5]+
+ 16*BitStream[j*8+4]+
+ 8*BitStream[j*8+3]+
+ 4*BitStream[j*8+2]+
+ 2*BitStream[j*8+1]+
+ BitStream[j*8];
+ }
+ num_blocks++;
+ }
+ bitidx = 0;
+ block_done = 0;
+ half_switch = 0;
+ }
+ if(i < GraphTraceLen)
+ {
+ if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
+ else dir = 1;
+ }
+ }
+ if(bitidx==255)
+ bitidx=0;
+ warnings = 0;
+ if(num_blocks == 4) break;
+ }
+ memcpy(outBlocks, Blocks, 16*num_blocks);
+ return num_blocks;
}
int IsBlock0PCF7931(uint8_t *Block) {
- // Assume RFU means 0 :)
- if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
- return 1;
- if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
- return 1;
- return 0;
+ // Assume RFU means 0 :)
+ if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
+ return 1;
+ if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
+ return 1;
+ return 0;
}
int IsBlock1PCF7931(uint8_t *Block) {
- // Assume RFU means 0 :)
- if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
- if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
- return 1;
+ // Assume RFU means 0 :)
+ if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
+ if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
+ return 1;
- return 0;
+ return 0;
}
#define ALLOC 16
void ReadPCF7931() {
- uint8_t Blocks[8][17];
- uint8_t tmpBlocks[4][16];
- int i, j, ind, ind2, n;
- int num_blocks = 0;
- int max_blocks = 8;
- int ident = 0;
- int error = 0;
- int tries = 0;
-
- memset(Blocks, 0, 8*17*sizeof(uint8_t));
-
- do {
- memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
- n = DemodPCF7931((uint8_t**)tmpBlocks);
- if(!n)
- error++;
- if(error==10 && num_blocks == 0) {
- Dbprintf("Error, no tag or bad tag");
- return;
- }
- else if (tries==20 || error==10) {
- Dbprintf("Error reading the tag");
- Dbprintf("Here is the partial content");
- goto end;
- }
-
- for(i=0; i<n; i++)
- Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
- tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
- if(!ident) {
- for(i=0; i<n; i++) {
- if(IsBlock0PCF7931(tmpBlocks[i])) {
- // Found block 0 ?
- if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
- // Found block 1!
- // \o/
- ident = 1;
- memcpy(Blocks[0], tmpBlocks[i], 16);
- Blocks[0][ALLOC] = 1;
- memcpy(Blocks[1], tmpBlocks[i+1], 16);
- Blocks[1][ALLOC] = 1;
- max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
- // Debug print
- Dbprintf("(dbg) Max blocks: %d", max_blocks);
- num_blocks = 2;
- // Handle following blocks
- for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
- if(j==n) j=0;
- if(j==i) break;
- memcpy(Blocks[ind2], tmpBlocks[j], 16);
- Blocks[ind2][ALLOC] = 1;
- }
- break;
- }
- }
- }
- }
- else {
- for(i=0; i<n; i++) { // Look for identical block in known blocks
- if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
- for(j=0; j<max_blocks; j++) {
- if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
- // Found an identical block
- for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
- if(ind2 < 0)
- ind2 = max_blocks;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
- if(ind2 > max_blocks)
- ind2 = 0;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- }
- }
- }
- }
- }
- tries++;
- if (BUTTON_PRESS()) return;
- } while (num_blocks != max_blocks);
+ uint8_t Blocks[8][17];
+ uint8_t tmpBlocks[4][16];
+ int i, j, ind, ind2, n;
+ int num_blocks = 0;
+ int max_blocks = 8;
+ int ident = 0;
+ int error = 0;
+ int tries = 0;
+
+ memset(Blocks, 0, 8*17*sizeof(uint8_t));
+
+ do {
+ memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
+ n = DemodPCF7931((uint8_t**)tmpBlocks);
+ if(!n)
+ error++;
+ if(error==10 && num_blocks == 0) {
+ Dbprintf("Error, no tag or bad tag");
+ return;
+ }
+ else if (tries==20 || error==10) {
+ Dbprintf("Error reading the tag");
+ Dbprintf("Here is the partial content");
+ goto end;
+ }
+
+ for(i=0; i<n; i++)
+ Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
+ tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
+ if(!ident) {
+ for(i=0; i<n; i++) {
+ if(IsBlock0PCF7931(tmpBlocks[i])) {
+ // Found block 0 ?
+ if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
+ // Found block 1!
+ // \o/
+ ident = 1;
+ memcpy(Blocks[0], tmpBlocks[i], 16);
+ Blocks[0][ALLOC] = 1;
+ memcpy(Blocks[1], tmpBlocks[i+1], 16);
+ Blocks[1][ALLOC] = 1;
+ max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
+ // Debug print
+ Dbprintf("(dbg) Max blocks: %d", max_blocks);
+ num_blocks = 2;
+ // Handle following blocks
+ for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
+ if(j==n) j=0;
+ if(j==i) break;
+ memcpy(Blocks[ind2], tmpBlocks[j], 16);
+ Blocks[ind2][ALLOC] = 1;
+ }
+ break;
+ }
+ }
+ }
+ }
+ else {
+ for(i=0; i<n; i++) { // Look for identical block in known blocks
+ if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
+ for(j=0; j<max_blocks; j++) {
+ if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
+ // Found an identical block
+ for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
+ if(ind2 < 0)
+ ind2 = max_blocks;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
+ if(ind2 > max_blocks)
+ ind2 = 0;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ tries++;
+ if (BUTTON_PRESS()) return;
+ } while (num_blocks != max_blocks);
end:
- Dbprintf("-----------------------------------------");
- Dbprintf("Memory content:");
- Dbprintf("-----------------------------------------");
- for(i=0; i<max_blocks; i++) {
- if(Blocks[i][ALLOC]==1)
- Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
- Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
- else
- Dbprintf("<missing block %d>", i);
- }
- Dbprintf("-----------------------------------------");
-
- return ;
+ Dbprintf("-----------------------------------------");
+ Dbprintf("Memory content:");
+ Dbprintf("-----------------------------------------");
+ for(i=0; i<max_blocks; i++) {
+ if(Blocks[i][ALLOC]==1)
+ Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
+ Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
+ else
+ Dbprintf("<missing block %d>", i);
+ }
+ Dbprintf("-----------------------------------------");
+
+ return ;
}
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Cmd( uint8_t cmd ) {
- //--------------------------------------------------------------------
+ //--------------------------------------------------------------------
- *forward_ptr++ = 0; //start bit
- *forward_ptr++ = 0; //second pause for 4050 code
+ *forward_ptr++ = 0; //start bit
+ *forward_ptr++ = 0; //second pause for 4050 code
- *forward_ptr++ = cmd;
- cmd >>= 1;
- *forward_ptr++ = cmd;
- cmd >>= 1;
- *forward_ptr++ = cmd;
- cmd >>= 1;
- *forward_ptr++ = cmd;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
- return 6; //return number of emited bits
+ return 6; //return number of emited bits
}
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Addr( uint8_t addr ) {
- //--------------------------------------------------------------------
+ //--------------------------------------------------------------------
- register uint8_t line_parity;
+ register uint8_t line_parity;
- uint8_t i;
- line_parity = 0;
- for(i=0;i<6;i++) {
- *forward_ptr++ = addr;
- line_parity ^= addr;
- addr >>= 1;
- }
+ uint8_t i;
+ line_parity = 0;
+ for(i=0;i<6;i++) {
+ *forward_ptr++ = addr;
+ line_parity ^= addr;
+ addr >>= 1;
+ }
- *forward_ptr++ = (line_parity & 1);
+ *forward_ptr++ = (line_parity & 1);
- return 7; //return number of emited bits
+ return 7; //return number of emited bits
}
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
- //--------------------------------------------------------------------
-
- register uint8_t line_parity;
- register uint8_t column_parity;
- register uint8_t i, j;
- register uint16_t data;
-
- data = data_low;
- column_parity = 0;
-
- for(i=0; i<4; i++) {
- line_parity = 0;
- for(j=0; j<8; j++) {
- line_parity ^= data;
- column_parity ^= (data & 1) << j;
- *forward_ptr++ = data;
- data >>= 1;
- }
- *forward_ptr++ = line_parity;
- if(i == 1)
- data = data_hi;
- }
-
- for(j=0; j<8; j++) {
- *forward_ptr++ = column_parity;
- column_parity >>= 1;
- }
- *forward_ptr = 0;
-
- return 45; //return number of emited bits
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+ register uint8_t column_parity;
+ register uint8_t i, j;
+ register uint16_t data;
+
+ data = data_low;
+ column_parity = 0;
+
+ for(i=0; i<4; i++) {
+ line_parity = 0;
+ for(j=0; j<8; j++) {
+ line_parity ^= data;
+ column_parity ^= (data & 1) << j;
+ *forward_ptr++ = data;
+ data >>= 1;
+ }
+ *forward_ptr++ = line_parity;
+ if(i == 1)
+ data = data_hi;
+ }
+
+ for(j=0; j<8; j++) {
+ *forward_ptr++ = column_parity;
+ column_parity >>= 1;
+ }
+ *forward_ptr = 0;
+
+ return 45; //return number of emited bits
}
//====================================================================
//====================================================================
void SendForward(uint8_t fwd_bit_count) {
- fwd_write_ptr = forwardLink_data;
- fwd_bit_sz = fwd_bit_count;
-
- LED_D_ON();
-
- //Field on
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // force 1st mod pulse (start gap must be longer for 4305)
- fwd_bit_sz--; //prepare next bit modulation
- fwd_write_ptr++;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(16*8); //16 cycles on (8us each)
-
- // now start writting
- while(fwd_bit_sz-- > 0) { //prepare next bit modulation
- if(((*fwd_write_ptr++) & 1) == 1)
- SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
- else {
- //These timings work for 4469/4269/4305 (with the 55*8 above)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(23*8); //16-4 cycles off (8us each)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(9*8); //16 cycles on (8us each)
- }
- }
+ fwd_write_ptr = forwardLink_data;
+ fwd_bit_sz = fwd_bit_count;
+
+ LED_D_ON();
+
+ //Field on
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // force 1st mod pulse (start gap must be longer for 4305)
+ fwd_bit_sz--; //prepare next bit modulation
+ fwd_write_ptr++;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(16*8); //16 cycles on (8us each)
+
+ // now start writting
+ while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+ if(((*fwd_write_ptr++) & 1) == 1)
+ SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ else {
+ //These timings work for 4469/4269/4305 (with the 55*8 above)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(23*8); //16-4 cycles off (8us each)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(9*8); //16 cycles on (8us each)
+ }
+ }
}
void EM4xLogin(uint32_t Password) {
- uint8_t fwd_bit_count;
+ uint8_t fwd_bit_count;
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
- fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+ fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
- SendForward(fwd_bit_count);
+ SendForward(fwd_bit_count);
- //Wait for command to complete
- SpinDelay(20);
+ //Wait for command to complete
+ SpinDelay(20);
}
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
- uint8_t fwd_bit_count;
- uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, i=0;
-
- //If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
-
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
- fwd_bit_count += Prepare_Addr( Address );
-
- m = sizeof(BigBuf);
- // Clear destination buffer before sending the command
- memset(dest, 128, m);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- SendForward(fwd_bit_count);
-
- // Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- if (i >= m) break;
- }
- }
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ uint8_t fwd_bit_count;
+ uint8_t *dest = (uint8_t *)BigBuf;
+ int m=0, i=0;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+ fwd_bit_count += Prepare_Addr( Address );
+
+ m = sizeof(BigBuf);
+ // Clear destination buffer before sending the command
+ memset(dest, 128, m);
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ SendForward(fwd_bit_count);
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ i++;
+ if (i >= m) break;
+ }
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
}
void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
- uint8_t fwd_bit_count;
+ uint8_t fwd_bit_count;
- //If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
- fwd_bit_count += Prepare_Addr( Address );
- fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+ fwd_bit_count += Prepare_Addr( Address );
+ fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
- SendForward(fwd_bit_count);
+ SendForward(fwd_bit_count);
- //Wait for write to complete
- SpinDelay(20);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ //Wait for write to complete
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
}
//set the demod buffer with given array of binary (one bit per byte)
//by marshmellow
-void setDemodBuf(uint8_t *buff,int size)
+void setDemodBuf(uint8_t *buff,int size)
{
- int i=0;
- for (; i < size; ++i){
- DemodBuffer[i]=buff[i];
- }
- DemodBufferLen=size;
- return;
+ int i=0;
+ for (; i < size; ++i){
+ DemodBuffer[i]=buff[i];
+ }
+ DemodBufferLen=size;
+ return;
}
//by marshmellow
void printDemodBuff()
{
- uint32_t i = 0;
- int bitLen = DemodBufferLen;
- if (bitLen<16) {
- PrintAndLog("no bits found in demod buffer");
- return;
- }
- if (bitLen>512) bitLen=512; //max output to 512 bits if we have more - should be plenty
- for (i = 0; i <= (bitLen-16); i+=16) {
- PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
- DemodBuffer[i],
- DemodBuffer[i+1],
- DemodBuffer[i+2],
- DemodBuffer[i+3],
- DemodBuffer[i+4],
- DemodBuffer[i+5],
- DemodBuffer[i+6],
- DemodBuffer[i+7],
- DemodBuffer[i+8],
- DemodBuffer[i+9],
- DemodBuffer[i+10],
- DemodBuffer[i+11],
- DemodBuffer[i+12],
- DemodBuffer[i+13],
- DemodBuffer[i+14],
- DemodBuffer[i+15]);
- }
- return;
+ uint32_t i = 0;
+ int bitLen = DemodBufferLen;
+ if (bitLen<16) {
+ PrintAndLog("no bits found in demod buffer");
+ return;
+ }
+ if (bitLen>512) bitLen=512; //max output to 512 bits if we have more - should be plenty
+ for (i = 0; i <= (bitLen-16); i+=16) {
+ PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
+ DemodBuffer[i],
+ DemodBuffer[i+1],
+ DemodBuffer[i+2],
+ DemodBuffer[i+3],
+ DemodBuffer[i+4],
+ DemodBuffer[i+5],
+ DemodBuffer[i+6],
+ DemodBuffer[i+7],
+ DemodBuffer[i+8],
+ DemodBuffer[i+9],
+ DemodBuffer[i+10],
+ DemodBuffer[i+11],
+ DemodBuffer[i+12],
+ DemodBuffer[i+13],
+ DemodBuffer[i+14],
+ DemodBuffer[i+15]);
+ }
+ return;
}
int CmdAmp(const char *Cmd)
{
- int i, rising, falling;
- int max = INT_MIN, min = INT_MAX;
-
- for (i = 10; i < GraphTraceLen; ++i) {
- if (GraphBuffer[i] > max)
- max = GraphBuffer[i];
- if (GraphBuffer[i] < min)
- min = GraphBuffer[i];
- }
-
- if (max != min) {
- rising = falling= 0;
- for (i = 0; i < GraphTraceLen; ++i) {
- if (GraphBuffer[i + 1] < GraphBuffer[i]) {
- if (rising) {
- GraphBuffer[i] = max;
- rising = 0;
- }
- falling = 1;
- }
- if (GraphBuffer[i + 1] > GraphBuffer[i]) {
- if (falling) {
- GraphBuffer[i] = min;
- falling = 0;
- }
- rising= 1;
- }
- }
- }
- RepaintGraphWindow();
- return 0;
+ int i, rising, falling;
+ int max = INT_MIN, min = INT_MAX;
+
+ for (i = 10; i < GraphTraceLen; ++i) {
+ if (GraphBuffer[i] > max)
+ max = GraphBuffer[i];
+ if (GraphBuffer[i] < min)
+ min = GraphBuffer[i];
+ }
+
+ if (max != min) {
+ rising = falling= 0;
+ for (i = 0; i < GraphTraceLen; ++i) {
+ if (GraphBuffer[i + 1] < GraphBuffer[i]) {
+ if (rising) {
+ GraphBuffer[i] = max;
+ rising = 0;
+ }
+ falling = 1;
+ }
+ if (GraphBuffer[i + 1] > GraphBuffer[i]) {
+ if (falling) {
+ GraphBuffer[i] = min;
+ falling = 0;
+ }
+ rising= 1;
+ }
+ }
+ }
+ RepaintGraphWindow();
+ return 0;
}
/*
//this method is dependant on all highs and lows to be the same(or clipped) this creates issues[marshmellow] it also ignores the clock
int Cmdaskdemod(const char *Cmd)
{
- int i;
- int c, high = 0, low = 0;
-
- // TODO: complain if we do not give 2 arguments here !
- // (AL - this doesn't make sense! we're only using one argument!!!)
- sscanf(Cmd, "%i", &c);
-
- /* Detect high and lows and clock */
- // (AL - clock???)
- for (i = 0; i < GraphTraceLen; ++i)
- {
- if (GraphBuffer[i] > high)
- high = GraphBuffer[i];
- else if (GraphBuffer[i] < low)
- low = GraphBuffer[i];
- }
- high=abs(high*.75);
- low=abs(low*.75);
- if (c != 0 && c != 1) {
- PrintAndLog("Invalid argument: %s", Cmd);
- return 0;
- }
- //prime loop
- if (GraphBuffer[0] > 0) {
- GraphBuffer[0] = 1-c;
- } else {
- GraphBuffer[0] = c;
- }
- for (i = 1; i < GraphTraceLen; ++i) {
- /* Transitions are detected at each peak
- * Transitions are either:
- * - we're low: transition if we hit a high
- * - we're high: transition if we hit a low
- * (we need to do it this way because some tags keep high or
- * low for long periods, others just reach the peak and go
- * down)
- */
- //[marhsmellow] change == to >= for high and <= for low for fuzz
- if ((GraphBuffer[i] == high) && (GraphBuffer[i - 1] == c)) {
- GraphBuffer[i] = 1 - c;
- } else if ((GraphBuffer[i] == low) && (GraphBuffer[i - 1] == (1 - c))){
- GraphBuffer[i] = c;
- } else {
- /* No transition */
- GraphBuffer[i] = GraphBuffer[i - 1];
- }
- }
- RepaintGraphWindow();
- return 0;
+ int i;
+ int c, high = 0, low = 0;
+
+ // TODO: complain if we do not give 2 arguments here !
+ // (AL - this doesn't make sense! we're only using one argument!!!)
+ sscanf(Cmd, "%i", &c);
+
+ /* Detect high and lows and clock */
+ // (AL - clock???)
+ for (i = 0; i < GraphTraceLen; ++i)
+ {
+ if (GraphBuffer[i] > high)
+ high = GraphBuffer[i];
+ else if (GraphBuffer[i] < low)
+ low = GraphBuffer[i];
+ }
+ high=abs(high*.75);
+ low=abs(low*.75);
+ if (c != 0 && c != 1) {
+ PrintAndLog("Invalid argument: %s", Cmd);
+ return 0;
+ }
+ //prime loop
+ if (GraphBuffer[0] > 0) {
+ GraphBuffer[0] = 1-c;
+ } else {
+ GraphBuffer[0] = c;
+ }
+ for (i = 1; i < GraphTraceLen; ++i) {
+ /* Transitions are detected at each peak
+ * Transitions are either:
+ * - we're low: transition if we hit a high
+ * - we're high: transition if we hit a low
+ * (we need to do it this way because some tags keep high or
+ * low for long periods, others just reach the peak and go
+ * down)
+ */
+ //[marhsmellow] change == to >= for high and <= for low for fuzz
+ if ((GraphBuffer[i] == high) && (GraphBuffer[i - 1] == c)) {
+ GraphBuffer[i] = 1 - c;
+ } else if ((GraphBuffer[i] == low) && (GraphBuffer[i - 1] == (1 - c))){
+ GraphBuffer[i] = c;
+ } else {
+ /* No transition */
+ GraphBuffer[i] = GraphBuffer[i - 1];
+ }
+ }
+ RepaintGraphWindow();
+ return 0;
}
//by marshmellow
void printBitStream(uint8_t BitStream[], uint32_t bitLen)
{
- uint32_t i = 0;
- if (bitLen<16) {
- PrintAndLog("Too few bits found: %d",bitLen);
- return;
- }
- if (bitLen>512) bitLen=512;
- for (i = 0; i <= (bitLen-16); i+=16) {
- PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
- BitStream[i],
- BitStream[i+1],
- BitStream[i+2],
- BitStream[i+3],
- BitStream[i+4],
- BitStream[i+5],
- BitStream[i+6],
- BitStream[i+7],
- BitStream[i+8],
- BitStream[i+9],
- BitStream[i+10],
- BitStream[i+11],
- BitStream[i+12],
- BitStream[i+13],
- BitStream[i+14],
- BitStream[i+15]);
- }
- return;
+ uint32_t i = 0;
+ if (bitLen<16) {
+ PrintAndLog("Too few bits found: %d",bitLen);
+ return;
+ }
+ if (bitLen>512) bitLen=512;
+ for (i = 0; i <= (bitLen-16); i+=16) {
+ PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
+ BitStream[i],
+ BitStream[i+1],
+ BitStream[i+2],
+ BitStream[i+3],
+ BitStream[i+4],
+ BitStream[i+5],
+ BitStream[i+6],
+ BitStream[i+7],
+ BitStream[i+8],
+ BitStream[i+9],
+ BitStream[i+10],
+ BitStream[i+11],
+ BitStream[i+12],
+ BitStream[i+13],
+ BitStream[i+14],
+ BitStream[i+15]);
+ }
+ return;
}
//by marshmellow
+//print EM410x ID in multiple formats
void printEM410x(uint64_t id)
{
- if (id !=0){
- uint64_t iii=1;
- uint64_t id2lo=0; //id2hi=0,
- uint32_t ii=0;
- uint32_t i=0;
- for (ii=5; ii>0;ii--){
- for (i=0;i<8;i++){
- id2lo=(id2lo<<1LL)|((id & (iii<<(i+((ii-1)*8))))>>(i+((ii-1)*8)));
- }
- }
- //output em id
- PrintAndLog("EM TAG ID : %010llx", id);
- PrintAndLog("Unique TAG ID: %010llx", id2lo); //id2hi,
- PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF);
- PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFF);
- PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF));
- PrintAndLog("DEZ 3.5A : %03lld.%05lld",(id>>32ll),(id & 0xFFFF));
- PrintAndLog("DEZ 14/IK2 : %014lld",id);
- PrintAndLog("DEZ 15/IK3 : %015lld",id2lo);
- PrintAndLog("Other : %05lld_%03lld_%08lld",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
- }
- return;
+ if (id !=0){
+ uint64_t iii=1;
+ uint64_t id2lo=0; //id2hi=0,
+ uint32_t ii=0;
+ uint32_t i=0;
+ for (ii=5; ii>0;ii--){
+ for (i=0;i<8;i++){
+ id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
+ }
+ }
+ //output em id
+ PrintAndLog("EM TAG ID : %010llx", id);
+ PrintAndLog("Unique TAG ID: %010llx", id2lo); //id2hi,
+ PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF);
+ PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFF);
+ PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF));
+ PrintAndLog("DEZ 3.5A : %03lld.%05lld",(id>>32ll),(id & 0xFFFF));
+ PrintAndLog("DEZ 14/IK2 : %014lld",id);
+ PrintAndLog("DEZ 15/IK3 : %015lld",id2lo);
+ PrintAndLog("Other : %05lld_%03lld_%08lld",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
+ }
+ return;
}
//by marshmellow
+//take binary from demod buffer and see if we can find an EM410x ID
int CmdEm410xDecode(const char *Cmd)
{
- uint64_t id=0;
+ uint64_t id=0;
// uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
// uint32_t i=0;
// i=getFromGraphBuf(BitStream);
- id = Em410xDecode(DemodBuffer,DemodBufferLen);
- printEM410x(id);
- if (id>0) return 1;
- return 0;
+ id = Em410xDecode(DemodBuffer,DemodBufferLen);
+ printEM410x(id);
+ if (id>0) return 1;
+ return 0;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
-//attempts to demodulate ask while decoding manchester
+//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int Cmdaskmandemod(const char *Cmd)
{
- int invert=0;
- int clk=0;
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- sscanf(Cmd, "%i %i", &clk, &invert);
- if (invert != 0 && invert != 1) {
- PrintAndLog("Invalid argument: %s", Cmd);
- return 0;
- }
-
- int BitLen = getFromGraphBuf(BitStream);
- // PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen);
- int errCnt=0;
- errCnt = askmandemod(BitStream, &BitLen,&clk,&invert);
- if (errCnt<0||BitLen<16){ //if fatal error (or -1)
- // PrintAndLog("no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
- return 0;
- }
- PrintAndLog("\nUsing Clock: %d - Invert: %d - Bits Found: %d",clk,invert,BitLen);
-
- //output
- if (errCnt>0){
- PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
- }
- PrintAndLog("ASK/Manchester decoded bitstream:");
- // Now output the bitstream to the scrollback by line of 16 bits
- setDemodBuf(BitStream,BitLen);
- printDemodBuff();
- uint64_t lo =0;
- lo = Em410xDecode(BitStream,BitLen);
- if (lo>0){
- //set GraphBuffer for clone or sim command
- PrintAndLog("EM410x pattern found: ");
- printEM410x(lo);
- return 1;
- }
- //if (BitLen>16) return 1;
- return 0;
+ int invert=0;
+ int clk=0;
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ sscanf(Cmd, "%i %i", &clk, &invert);
+ if (invert != 0 && invert != 1) {
+ PrintAndLog("Invalid argument: %s", Cmd);
+ return 0;
+ }
+
+ size_t BitLen = getFromGraphBuf(BitStream);
+ // PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen);
+ int errCnt=0;
+ errCnt = askmandemod(BitStream, &BitLen,&clk,&invert);
+ if (errCnt<0||BitLen<16){ //if fatal error (or -1)
+ // PrintAndLog("no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
+ return 0;
+ }
+ PrintAndLog("\nUsing Clock: %d - Invert: %d - Bits Found: %d",clk,invert,BitLen);
+
+ //output
+ if (errCnt>0){
+ PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
+ }
+ PrintAndLog("ASK/Manchester decoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ setDemodBuf(BitStream,BitLen);
+ printDemodBuff();
+ uint64_t lo =0;
+ lo = Em410xDecode(BitStream,BitLen);
+ if (lo>0){
+ //set GraphBuffer for clone or sim command
+ PrintAndLog("EM410x pattern found: ");
+ printEM410x(lo);
+ return 1;
+ }
+ //if (BitLen>16) return 1;
+ return 0;
}
//by marshmellow
//stricktly take 10 and 01 and convert to 0 and 1
int Cmdmandecoderaw(const char *Cmd)
{
- int i =0;
- int errCnt=0;
- int bitnum=0;
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- int high=0,low=0;
- for (;i<DemodBufferLen;++i){
- if (DemodBuffer[i]>high) high=DemodBuffer[i];
- else if(DemodBuffer[i]<low) low=DemodBuffer[i];
- BitStream[i]=DemodBuffer[i];
- }
- if (high>1 || low <0 ){
- PrintAndLog("Error: please raw demod the wave first then mancheseter raw decode");
- return 0;
- }
- bitnum=i;
- errCnt=manrawdecode(BitStream,&bitnum);
- if (errCnt>=20){
- PrintAndLog("Too many errors: %d",errCnt);
- return 0;
- }
- PrintAndLog("Manchester Decoded - # errors:%d - data:",errCnt);
- printBitStream(BitStream,bitnum);
- if (errCnt==0){
- uint64_t id = 0;
- id = Em410xDecode(BitStream,bitnum);
- if (id>0) setDemodBuf(BitStream,bitnum);
- printEM410x(id);
- }
- return 1;
+ int i =0;
+ int errCnt=0;
+ size_t size=0;
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ int high=0,low=0;
+ for (;i<DemodBufferLen;++i){
+ if (DemodBuffer[i]>high) high=DemodBuffer[i];
+ else if(DemodBuffer[i]<low) low=DemodBuffer[i];
+ BitStream[i]=DemodBuffer[i];
+ }
+ if (high>1 || low <0 ){
+ PrintAndLog("Error: please raw demod the wave first then mancheseter raw decode");
+ return 0;
+ }
+ size=i;
+ errCnt=manrawdecode(BitStream, &size);
+ if (errCnt>=20){
+ PrintAndLog("Too many errors: %d",errCnt);
+ return 0;
+ }
+ PrintAndLog("Manchester Decoded - # errors:%d - data:",errCnt);
+ printBitStream(BitStream, size);
+ if (errCnt==0){
+ uint64_t id = 0;
+ id = Em410xDecode(BitStream, size);
+ if (id>0) setDemodBuf(BitStream, size);
+ printEM410x(id);
+ }
+ return 1;
}
//by marshmellow
//biphase decode
//take 01 or 10 = 0 and 11 or 00 = 1
//takes 1 argument "offset" default = 0 if 1 it will shift the decode by one bit
-// since it is not like manchester and doesn't have an incorrect bit pattern we
+// since it is not like manchester and doesn't have an incorrect bit pattern we
// cannot determine if our decode is correct or if it should be shifted by one bit
// the argument offset allows us to manually shift if the output is incorrect
// (better would be to demod and decode at the same time so we can distinguish large
// width waves vs small width waves to help the decode positioning) or askbiphdemod
int CmdBiphaseDecodeRaw(const char *Cmd)
{
- int i = 0;
- int errCnt=0;
- int bitnum=0;
- int offset=0;
- int high=0, low=0;
- sscanf(Cmd, "%i", &offset);
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- //get graphbuffer & high and low
- for (;i<DemodBufferLen;++i){
- if(DemodBuffer[i]>high)high=DemodBuffer[i];
- else if(DemodBuffer[i]<low)low=DemodBuffer[i];
- BitStream[i]=DemodBuffer[i];
- }
- if (high>1 || low <0){
- PrintAndLog("Error: please raw demod the wave first then decode");
- return 0;
- }
- bitnum=i;
- errCnt=BiphaseRawDecode(BitStream,&bitnum, offset);
- if (errCnt>=20){
- PrintAndLog("Too many errors attempting to decode: %d",errCnt);
- return 0;
- }
- PrintAndLog("Biphase Decoded using offset: %d - # errors:%d - data:",offset,errCnt);
- printBitStream(BitStream,bitnum);
- PrintAndLog("\nif bitstream does not look right try offset=1");
- return 1;
+ int i = 0;
+ int errCnt=0;
+ size_t size=0;
+ int offset=0;
+ int high=0, low=0;
+ sscanf(Cmd, "%i", &offset);
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ //get graphbuffer & high and low
+ for (;i<DemodBufferLen;++i){
+ if(DemodBuffer[i]>high)high=DemodBuffer[i];
+ else if(DemodBuffer[i]<low)low=DemodBuffer[i];
+ BitStream[i]=DemodBuffer[i];
+ }
+ if (high>1 || low <0){
+ PrintAndLog("Error: please raw demod the wave first then decode");
+ return 0;
+ }
+ size=i;
+ errCnt=BiphaseRawDecode(BitStream, &size, offset);
+ if (errCnt>=20){
+ PrintAndLog("Too many errors attempting to decode: %d",errCnt);
+ return 0;
+ }
+ PrintAndLog("Biphase Decoded using offset: %d - # errors:%d - data:",offset,errCnt);
+ printBitStream(BitStream, size);
+ PrintAndLog("\nif bitstream does not look right try offset=1");
+ return 1;
}
//prints binary found and saves in graphbuffer for further commands
int Cmdaskrawdemod(const char *Cmd)
{
- int invert=0;
- int clk=0;
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- sscanf(Cmd, "%i %i", &clk, &invert);
- if (invert != 0 && invert != 1) {
- PrintAndLog("Invalid argument: %s", Cmd);
- return 0;
- }
- int BitLen = getFromGraphBuf(BitStream);
- int errCnt=0;
- errCnt = askrawdemod(BitStream, &BitLen,&clk,&invert);
- if (errCnt==-1||BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
- PrintAndLog("no data found");
- return 0;
- }
- PrintAndLog("Using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
- //PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
- //move BitStream back to DemodBuffer
- setDemodBuf(BitStream,BitLen);
-
- //output
- if (errCnt>0){
- PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
- }
- PrintAndLog("ASK demoded bitstream:");
- // Now output the bitstream to the scrollback by line of 16 bits
- printBitStream(BitStream,BitLen);
-
- return 1;
+ int invert=0;
+ int clk=0;
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ sscanf(Cmd, "%i %i", &clk, &invert);
+ if (invert != 0 && invert != 1) {
+ PrintAndLog("Invalid argument: %s", Cmd);
+ return 0;
+ }
+ size_t BitLen = getFromGraphBuf(BitStream);
+ int errCnt=0;
+ errCnt = askrawdemod(BitStream, &BitLen,&clk,&invert);
+ if (errCnt==-1||BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
+ PrintAndLog("no data found");
+ return 0;
+ }
+ PrintAndLog("Using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
+ //PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
+ //move BitStream back to DemodBuffer
+ setDemodBuf(BitStream,BitLen);
+
+ //output
+ if (errCnt>0){
+ PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
+ }
+ PrintAndLog("ASK demoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ printBitStream(BitStream,BitLen);
+
+ return 1;
}
int CmdAutoCorr(const char *Cmd)
{
- static int CorrelBuffer[MAX_GRAPH_TRACE_LEN];
-
- int window = atoi(Cmd);
-
- if (window == 0) {
- PrintAndLog("needs a window");
- return 0;
- }
- if (window >= GraphTraceLen) {
- PrintAndLog("window must be smaller than trace (%d samples)",
- GraphTraceLen);
- return 0;
- }
-
- PrintAndLog("performing %d correlations", GraphTraceLen - window);
-
- for (int i = 0; i < GraphTraceLen - window; ++i) {
- int sum = 0;
- for (int j = 0; j < window; ++j) {
- sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256;
- }
- CorrelBuffer[i] = sum;
- }
- GraphTraceLen = GraphTraceLen - window;
- memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int));
-
- RepaintGraphWindow();
- return 0;
+ static int CorrelBuffer[MAX_GRAPH_TRACE_LEN];
+
+ int window = atoi(Cmd);
+
+ if (window == 0) {
+ PrintAndLog("needs a window");
+ return 0;
+ }
+ if (window >= GraphTraceLen) {
+ PrintAndLog("window must be smaller than trace (%d samples)",
+ GraphTraceLen);
+ return 0;
+ }
+
+ PrintAndLog("performing %d correlations", GraphTraceLen - window);
+
+ for (int i = 0; i < GraphTraceLen - window; ++i) {
+ int sum = 0;
+ for (int j = 0; j < window; ++j) {
+ sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256;
+ }
+ CorrelBuffer[i] = sum;
+ }
+ GraphTraceLen = GraphTraceLen - window;
+ memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int));
+
+ RepaintGraphWindow();
+ return 0;
}
int CmdBitsamples(const char *Cmd)
{
- int cnt = 0;
- uint8_t got[12288];
-
- GetFromBigBuf(got,sizeof(got),0);
- WaitForResponse(CMD_ACK,NULL);
-
- for (int j = 0; j < sizeof(got); j++) {
- for (int k = 0; k < 8; k++) {
- if(got[j] & (1 << (7 - k))) {
- GraphBuffer[cnt++] = 1;
- } else {
- GraphBuffer[cnt++] = 0;
- }
- }
- }
- GraphTraceLen = cnt;
- RepaintGraphWindow();
- return 0;
+ int cnt = 0;
+ uint8_t got[12288];
+
+ GetFromBigBuf(got,sizeof(got),0);
+ WaitForResponse(CMD_ACK,NULL);
+
+ for (int j = 0; j < sizeof(got); j++) {
+ for (int k = 0; k < 8; k++) {
+ if(got[j] & (1 << (7 - k))) {
+ GraphBuffer[cnt++] = 1;
+ } else {
+ GraphBuffer[cnt++] = 0;
+ }
+ }
+ }
+ GraphTraceLen = cnt;
+ RepaintGraphWindow();
+ return 0;
}
/*
*/
int CmdBitstream(const char *Cmd)
{
- int i, j;
- int bit;
- int gtl;
- int clock;
- int low = 0;
- int high = 0;
- int hithigh, hitlow, first;
-
- /* Detect high and lows and clock */
- for (i = 0; i < GraphTraceLen; ++i)
- {
- if (GraphBuffer[i] > high)
- high = GraphBuffer[i];
- else if (GraphBuffer[i] < low)
- low = GraphBuffer[i];
- }
-
- /* Get our clock */
- clock = GetClock(Cmd, high, 1);
- gtl = ClearGraph(0);
-
- bit = 0;
- for (i = 0; i < (int)(gtl / clock); ++i)
- {
- hithigh = 0;
- hitlow = 0;
- first = 1;
- /* Find out if we hit both high and low peaks */
- for (j = 0; j < clock; ++j)
- {
- if (GraphBuffer[(i * clock) + j] == high)
- hithigh = 1;
- else if (GraphBuffer[(i * clock) + j] == low)
- hitlow = 1;
- /* it doesn't count if it's the first part of our read
- because it's really just trailing from the last sequence */
- if (first && (hithigh || hitlow))
- hithigh = hitlow = 0;
- else
- first = 0;
-
- if (hithigh && hitlow)
- break;
- }
-
- /* If we didn't hit both high and low peaks, we had a bit transition */
- if (!hithigh || !hitlow)
- bit ^= 1;
-
- AppendGraph(0, clock, bit);
- // for (j = 0; j < (int)(clock/2); j++)
- // GraphBuffer[(i * clock) + j] = bit ^ 1;
- // for (j = (int)(clock/2); j < clock; j++)
- // GraphBuffer[(i * clock) + j] = bit;
- }
-
- RepaintGraphWindow();
- return 0;
+ int i, j;
+ int bit;
+ int gtl;
+ int clock;
+ int low = 0;
+ int high = 0;
+ int hithigh, hitlow, first;
+
+ /* Detect high and lows and clock */
+ for (i = 0; i < GraphTraceLen; ++i)
+ {
+ if (GraphBuffer[i] > high)
+ high = GraphBuffer[i];
+ else if (GraphBuffer[i] < low)
+ low = GraphBuffer[i];
+ }
+
+ /* Get our clock */
+ clock = GetClock(Cmd, high, 1);
+ gtl = ClearGraph(0);
+
+ bit = 0;
+ for (i = 0; i < (int)(gtl / clock); ++i)
+ {
+ hithigh = 0;
+ hitlow = 0;
+ first = 1;
+ /* Find out if we hit both high and low peaks */
+ for (j = 0; j < clock; ++j)
+ {
+ if (GraphBuffer[(i * clock) + j] == high)
+ hithigh = 1;
+ else if (GraphBuffer[(i * clock) + j] == low)
+ hitlow = 1;
+ /* it doesn't count if it's the first part of our read
+ because it's really just trailing from the last sequence */
+ if (first && (hithigh || hitlow))
+ hithigh = hitlow = 0;
+ else
+ first = 0;
+
+ if (hithigh && hitlow)
+ break;
+ }
+
+ /* If we didn't hit both high and low peaks, we had a bit transition */
+ if (!hithigh || !hitlow)
+ bit ^= 1;
+
+ AppendGraph(0, clock, bit);
+ // for (j = 0; j < (int)(clock/2); j++)
+ // GraphBuffer[(i * clock) + j] = bit ^ 1;
+ // for (j = (int)(clock/2); j < clock; j++)
+ // GraphBuffer[(i * clock) + j] = bit;
+ }
+
+ RepaintGraphWindow();
+ return 0;
}
int CmdBuffClear(const char *Cmd)
{
- UsbCommand c = {CMD_BUFF_CLEAR};
- SendCommand(&c);
- ClearGraph(true);
- return 0;
+ UsbCommand c = {CMD_BUFF_CLEAR};
+ SendCommand(&c);
+ ClearGraph(true);
+ return 0;
}
int CmdDec(const char *Cmd)
{
- for (int i = 0; i < (GraphTraceLen / 2); ++i)
- GraphBuffer[i] = GraphBuffer[i * 2];
- GraphTraceLen /= 2;
- PrintAndLog("decimated by 2");
- RepaintGraphWindow();
- return 0;
+ for (int i = 0; i < (GraphTraceLen / 2); ++i)
+ GraphBuffer[i] = GraphBuffer[i * 2];
+ GraphTraceLen /= 2;
+ PrintAndLog("decimated by 2");
+ RepaintGraphWindow();
+ return 0;
}
/* Print our clock rate */
-// uses data from graphbuffer
+// uses data from graphbuffer
int CmdDetectClockRate(const char *Cmd)
{
- GetClock("",0,0);
- //int clock = DetectASKClock(0);
- //PrintAndLog("Auto-detected clock rate: %d", clock);
- return 0;
+ GetClock("",0,0);
+ //int clock = DetectASKClock(0);
+ //PrintAndLog("Auto-detected clock rate: %d", clock);
+ return 0;
}
//by marshmellow
//defaults: clock = 50, invert=0, rchigh=10, rclow=8 (RF/10 RF/8 (fsk2a))
int CmdFSKrawdemod(const char *Cmd)
{
- //raw fsk demod no manchester decoding no start bit finding just get binary from wave
- //set defaults
- int rfLen = 50;
- int invert=0;
- int fchigh=10;
- int fclow=8;
- //set options from parameters entered with the command
- sscanf(Cmd, "%i %i %i %i", &rfLen, &invert, &fchigh, &fclow);
-
- if (strlen(Cmd)>0 && strlen(Cmd)<=2) {
- //rfLen=param_get8(Cmd, 0); //if rfLen option only is used
- if (rfLen==1){
- invert=1; //if invert option only is used
- rfLen = 50;
- } else if(rfLen==0) rfLen=50;
- }
- PrintAndLog("Args invert: %d - Clock:%d - fchigh:%d - fclow: %d",invert,rfLen,fchigh, fclow);
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- uint32_t BitLen = getFromGraphBuf(BitStream);
- int size = fskdemod(BitStream,BitLen,(uint8_t)rfLen,(uint8_t)invert,(uint8_t)fchigh,(uint8_t)fclow);
- if (size>0){
- PrintAndLog("FSK decoded bitstream:");
- setDemodBuf(BitStream,size);
-
- // Now output the bitstream to the scrollback by line of 16 bits
- if(size > (8*32)+2) size = (8*32)+2; //only output a max of 8 blocks of 32 bits most tags will have full bit stream inside that sample size
- printBitStream(BitStream,size);
- } else{
- PrintAndLog("no FSK data found");
- }
- return 0;
+ //raw fsk demod no manchester decoding no start bit finding just get binary from wave
+ //set defaults
+ int rfLen = 50;
+ int invert=0;
+ int fchigh=10;
+ int fclow=8;
+ //set options from parameters entered with the command
+ sscanf(Cmd, "%i %i %i %i", &rfLen, &invert, &fchigh, &fclow);
+
+ if (strlen(Cmd)>0 && strlen(Cmd)<=2) {
+ //rfLen=param_get8(Cmd, 0); //if rfLen option only is used
+ if (rfLen==1){
+ invert=1; //if invert option only is used
+ rfLen = 50;
+ } else if(rfLen==0) rfLen=50;
+ }
+ PrintAndLog("Args invert: %d - Clock:%d - fchigh:%d - fclow: %d",invert,rfLen,fchigh, fclow);
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t BitLen = getFromGraphBuf(BitStream);
+ int size = fskdemod(BitStream,BitLen,(uint8_t)rfLen,(uint8_t)invert,(uint8_t)fchigh,(uint8_t)fclow);
+ if (size>0){
+ PrintAndLog("FSK decoded bitstream:");
+ setDemodBuf(BitStream,size);
+
+ // Now output the bitstream to the scrollback by line of 16 bits
+ if(size > (8*32)+2) size = (8*32)+2; //only output a max of 8 blocks of 32 bits most tags will have full bit stream inside that sample size
+ printBitStream(BitStream,size);
+ } else{
+ PrintAndLog("no FSK data found");
+ }
+ return 0;
}
//by marshmellow (based on existing demod + holiman's refactor)
//print full HID Prox ID and some bit format details if found
int CmdFSKdemodHID(const char *Cmd)
{
- //raw fsk demod no manchester decoding no start bit finding just get binary from wave
- uint32_t hi2=0, hi=0, lo=0;
-
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- uint32_t BitLen = getFromGraphBuf(BitStream);
- //get binary from fsk wave
- size_t size = HIDdemodFSK(BitStream,BitLen,&hi2,&hi,&lo);
- if (size<0){
- PrintAndLog("Error demoding fsk");
- return 0;
- }
- if (hi2==0 && hi==0 && lo==0) return 0;
- if (hi2 != 0){ //extra large HID tags
- PrintAndLog("HID Prox TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- setDemodBuf(BitStream,BitLen);
- return 1;
- }
- else { //standard HID tags <38 bits
- //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
- uint8_t fmtLen = 0;
- uint32_t fc = 0;
- uint32_t cardnum = 0;
- if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
- uint32_t lo2=0;
- lo2=(((hi & 15) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
- uint8_t idx3 = 1;
- while(lo2>1){ //find last bit set to 1 (format len bit)
- lo2=lo2>>1;
- idx3++;
- }
- fmtLen =idx3+19;
- fc =0;
- cardnum=0;
- if(fmtLen==26){
- cardnum = (lo>>1)&0xFFFF;
- fc = (lo>>17)&0xFF;
- }
- if(fmtLen==37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
- if(fmtLen==34){
- cardnum = (lo>>1)&0xFFFF;
- fc= ((hi&1)<<15)|(lo>>17);
- }
- if(fmtLen==35){
- cardnum = (lo>>1)&0xFFFFF;
- fc = ((hi&1)<<11)|(lo>>21);
- }
- }
- else { //if bit 38 is not set then 37 bit format is used
- fmtLen= 37;
- fc =0;
- cardnum=0;
- if(fmtLen==37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
- }
- PrintAndLog("HID Prox TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
- (unsigned int) fmtLen, (unsigned int) fc, (unsigned int) cardnum);
- setDemodBuf(BitStream,BitLen);
- return 1;
- }
- return 0;
+ //raw fsk demod no manchester decoding no start bit finding just get binary from wave
+ uint32_t hi2=0, hi=0, lo=0;
+
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t BitLen = getFromGraphBuf(BitStream);
+ //get binary from fsk wave
+ size_t size = HIDdemodFSK(BitStream,BitLen,&hi2,&hi,&lo);
+ if (size<0){
+ PrintAndLog("Error demoding fsk");
+ return 0;
+ }
+ if (hi2==0 && hi==0 && lo==0) return 0;
+ if (hi2 != 0){ //extra large HID tags
+ PrintAndLog("HID Prox TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ setDemodBuf(BitStream,BitLen);
+ return 1;
+ }
+ else { //standard HID tags <38 bits
+ //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+ uint8_t fmtLen = 0;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
+ uint32_t lo2=0;
+ lo2=(((hi & 15) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+ uint8_t idx3 = 1;
+ while(lo2>1){ //find last bit set to 1 (format len bit)
+ lo2=lo2>>1;
+ idx3++;
+ }
+ fmtLen =idx3+19;
+ fc =0;
+ cardnum=0;
+ if(fmtLen==26){
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
+ }
+ if(fmtLen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ if(fmtLen==34){
+ cardnum = (lo>>1)&0xFFFF;
+ fc= ((hi&1)<<15)|(lo>>17);
+ }
+ if(fmtLen==35){
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
+ }
+ }
+ else { //if bit 38 is not set then 37 bit format is used
+ fmtLen= 37;
+ fc =0;
+ cardnum=0;
+ if(fmtLen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ }
+ PrintAndLog("HID Prox TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) fmtLen, (unsigned int) fc, (unsigned int) cardnum);
+ setDemodBuf(BitStream,BitLen);
+ return 1;
+ }
+ return 0;
}
//by marshmellow
//print ioprox ID and some format details
int CmdFSKdemodIO(const char *Cmd)
{
- //raw fsk demod no manchester decoding no start bit finding just get binary from wave
- //set defaults
- int idx=0;
- //something in graphbuffer
- if (GraphTraceLen < 65) return 0;
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- uint32_t BitLen = getFromGraphBuf(BitStream);
- //get binary from fsk wave
- // PrintAndLog("DEBUG: got buff");
- idx = IOdemodFSK(BitStream,BitLen);
- if (idx<0){
- //PrintAndLog("Error demoding fsk");
- return 0;
- }
- // PrintAndLog("DEBUG: Got IOdemodFSK");
- if (idx==0){
- //PrintAndLog("IO Prox Data not found - FSK Data:");
- //if (BitLen > 92) printBitStream(BitStream,92);
- return 0;
- }
- //Index map
- //0 10 20 30 40 50 60
- //| | | | | | |
- //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
- //-----------------------------------------------------------------------------
- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
- //
- //XSF(version)facility:codeone+codetwo (raw)
- //Handle the data
- if (idx+64>BitLen) return 0;
- PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx], BitStream[idx+1], BitStream[idx+2], BitStream[idx+3], BitStream[idx+4], BitStream[idx+5], BitStream[idx+6], BitStream[idx+7], BitStream[idx+8]);
- PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]);
- PrintAndLog("%d%d%d%d%d%d%d%d %d facility",BitStream[idx+18], BitStream[idx+19], BitStream[idx+20],BitStream[idx+21],BitStream[idx+22],BitStream[idx+23],BitStream[idx+24],BitStream[idx+25],BitStream[idx+26]);
- PrintAndLog("%d%d%d%d%d%d%d%d %d version",BitStream[idx+27], BitStream[idx+28], BitStream[idx+29],BitStream[idx+30],BitStream[idx+31],BitStream[idx+32],BitStream[idx+33],BitStream[idx+34],BitStream[idx+35]);
- PrintAndLog("%d%d%d%d%d%d%d%d %d code1",BitStream[idx+36], BitStream[idx+37], BitStream[idx+38],BitStream[idx+39],BitStream[idx+40],BitStream[idx+41],BitStream[idx+42],BitStream[idx+43],BitStream[idx+44]);
- PrintAndLog("%d%d%d%d%d%d%d%d %d code2",BitStream[idx+45], BitStream[idx+46], BitStream[idx+47],BitStream[idx+48],BitStream[idx+49],BitStream[idx+50],BitStream[idx+51],BitStream[idx+52],BitStream[idx+53]);
- PrintAndLog("%d%d%d%d%d%d%d%d %d%d checksum",BitStream[idx+54],BitStream[idx+55],BitStream[idx+56],BitStream[idx+57],BitStream[idx+58],BitStream[idx+59],BitStream[idx+60],BitStream[idx+61],BitStream[idx+62],BitStream[idx+63]);
-
- uint32_t code = bytebits_to_byte(BitStream+idx,32);
- uint32_t code2 = bytebits_to_byte(BitStream+idx+32,32);
- uint8_t version = bytebits_to_byte(BitStream+idx+27,8); //14,4
- uint8_t facilitycode = bytebits_to_byte(BitStream+idx+18,8) ;
- uint16_t number = (bytebits_to_byte(BitStream+idx+36,8)<<8)|(bytebits_to_byte(BitStream+idx+45,8)); //36,9
- PrintAndLog("IO Prox XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
- int i;
- for (i=0;i<64;++i)
- DemodBuffer[i]=BitStream[idx++];
-
- DemodBufferLen=64;
- return 1;
+ //raw fsk demod no manchester decoding no start bit finding just get binary from wave
+ //set defaults
+ int idx=0;
+ //something in graphbuffer
+ if (GraphTraceLen < 65) return 0;
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t BitLen = getFromGraphBuf(BitStream);
+ //get binary from fsk wave
+ // PrintAndLog("DEBUG: got buff");
+ idx = IOdemodFSK(BitStream,BitLen);
+ if (idx<0){
+ //PrintAndLog("Error demoding fsk");
+ return 0;
+ }
+ // PrintAndLog("DEBUG: Got IOdemodFSK");
+ if (idx==0){
+ //PrintAndLog("IO Prox Data not found - FSK Data:");
+ //if (BitLen > 92) printBitStream(BitStream,92);
+ return 0;
+ }
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo (raw)
+ //Handle the data
+ if (idx+64>BitLen) return 0;
+ PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx], BitStream[idx+1], BitStream[idx+2], BitStream[idx+3], BitStream[idx+4], BitStream[idx+5], BitStream[idx+6], BitStream[idx+7], BitStream[idx+8]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d facility",BitStream[idx+18], BitStream[idx+19], BitStream[idx+20],BitStream[idx+21],BitStream[idx+22],BitStream[idx+23],BitStream[idx+24],BitStream[idx+25],BitStream[idx+26]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d version",BitStream[idx+27], BitStream[idx+28], BitStream[idx+29],BitStream[idx+30],BitStream[idx+31],BitStream[idx+32],BitStream[idx+33],BitStream[idx+34],BitStream[idx+35]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d code1",BitStream[idx+36], BitStream[idx+37], BitStream[idx+38],BitStream[idx+39],BitStream[idx+40],BitStream[idx+41],BitStream[idx+42],BitStream[idx+43],BitStream[idx+44]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d code2",BitStream[idx+45], BitStream[idx+46], BitStream[idx+47],BitStream[idx+48],BitStream[idx+49],BitStream[idx+50],BitStream[idx+51],BitStream[idx+52],BitStream[idx+53]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d%d checksum",BitStream[idx+54],BitStream[idx+55],BitStream[idx+56],BitStream[idx+57],BitStream[idx+58],BitStream[idx+59],BitStream[idx+60],BitStream[idx+61],BitStream[idx+62],BitStream[idx+63]);
+
+ uint32_t code = bytebits_to_byte(BitStream+idx,32);
+ uint32_t code2 = bytebits_to_byte(BitStream+idx+32,32);
+ uint8_t version = bytebits_to_byte(BitStream+idx+27,8); //14,4
+ uint8_t facilitycode = bytebits_to_byte(BitStream+idx+18,8) ;
+ uint16_t number = (bytebits_to_byte(BitStream+idx+36,8)<<8)|(bytebits_to_byte(BitStream+idx+45,8)); //36,9
+ PrintAndLog("IO Prox XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
+ int i;
+ for (i=0;i<64;++i)
+ DemodBuffer[i]=BitStream[idx++];
+
+ DemodBufferLen=64;
+ return 1;
}
int CmdFSKdemod(const char *Cmd) //old CmdFSKdemod needs updating
{
- static const int LowTone[] = {
- 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
- 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
- 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
- 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
- 1, 1, 1, 1, 1, -1, -1, -1, -1, -1
- };
- static const int HighTone[] = {
- 1, 1, 1, 1, 1, -1, -1, -1, -1,
- 1, 1, 1, 1, -1, -1, -1, -1,
- 1, 1, 1, 1, -1, -1, -1, -1,
- 1, 1, 1, 1, -1, -1, -1, -1,
- 1, 1, 1, 1, -1, -1, -1, -1,
- 1, 1, 1, 1, -1, -1, -1, -1, -1,
- };
-
- int lowLen = sizeof (LowTone) / sizeof (int);
- int highLen = sizeof (HighTone) / sizeof (int);
- int convLen = (highLen > lowLen) ? highLen : lowLen; //if highlen > lowLen then highlen else lowlen
- uint32_t hi = 0, lo = 0;
-
- int i, j;
- int minMark = 0, maxMark = 0;
-
- for (i = 0; i < GraphTraceLen - convLen; ++i) {
- int lowSum = 0, highSum = 0;
-
- for (j = 0; j < lowLen; ++j) {
- lowSum += LowTone[j]*GraphBuffer[i+j];
- }
- for (j = 0; j < highLen; ++j) {
- highSum += HighTone[j] * GraphBuffer[i + j];
- }
- lowSum = abs(100 * lowSum / lowLen);
- highSum = abs(100 * highSum / highLen);
- GraphBuffer[i] = (highSum << 16) | lowSum;
- }
-
- for(i = 0; i < GraphTraceLen - convLen - 16; ++i) {
- int lowTot = 0, highTot = 0;
- // 10 and 8 are f_s divided by f_l and f_h, rounded
- for (j = 0; j < 10; ++j) {
- lowTot += (GraphBuffer[i+j] & 0xffff);
- }
- for (j = 0; j < 8; j++) {
- highTot += (GraphBuffer[i + j] >> 16);
- }
- GraphBuffer[i] = lowTot - highTot;
- if (GraphBuffer[i] > maxMark) maxMark = GraphBuffer[i];
- if (GraphBuffer[i] < minMark) minMark = GraphBuffer[i];
- }
-
- GraphTraceLen -= (convLen + 16);
- RepaintGraphWindow();
-
- // Find bit-sync (3 lo followed by 3 high) (HID ONLY)
- int max = 0, maxPos = 0;
- for (i = 0; i < 6000; ++i) {
- int dec = 0;
- for (j = 0; j < 3 * lowLen; ++j) {
- dec -= GraphBuffer[i + j];
- }
- for (; j < 3 * (lowLen + highLen ); ++j) {
- dec += GraphBuffer[i + j];
- }
- if (dec > max) {
- max = dec;
- maxPos = i;
- }
- }
-
- // place start of bit sync marker in graph
- GraphBuffer[maxPos] = maxMark;
- GraphBuffer[maxPos + 1] = minMark;
-
- maxPos += j;
-
- // place end of bit sync marker in graph
- GraphBuffer[maxPos] = maxMark;
- GraphBuffer[maxPos+1] = minMark;
-
- PrintAndLog("actual data bits start at sample %d", maxPos);
- PrintAndLog("length %d/%d", highLen, lowLen);
-
- uint8_t bits[46];
- bits[sizeof(bits)-1] = '\0';
-
- // find bit pairs and manchester decode them
- for (i = 0; i < arraylen(bits) - 1; ++i) {
- int dec = 0;
- for (j = 0; j < lowLen; ++j) {
- dec -= GraphBuffer[maxPos + j];
- }
- for (; j < lowLen + highLen; ++j) {
- dec += GraphBuffer[maxPos + j];
- }
- maxPos += j;
- // place inter bit marker in graph
- GraphBuffer[maxPos] = maxMark;
- GraphBuffer[maxPos + 1] = minMark;
-
- // hi and lo form a 64 bit pair
- hi = (hi << 1) | (lo >> 31);
- lo = (lo << 1);
- // store decoded bit as binary (in hi/lo) and text (in bits[])
- if(dec < 0) {
- bits[i] = '1';
- lo |= 1;
- } else {
- bits[i] = '0';
- }
- }
- PrintAndLog("bits: '%s'", bits);
- PrintAndLog("hex: %08x %08x", hi, lo);
- return 0;
+ static const int LowTone[] = {
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1
+ };
+ static const int HighTone[] = {
+ 1, 1, 1, 1, 1, -1, -1, -1, -1,
+ 1, 1, 1, 1, -1, -1, -1, -1,
+ 1, 1, 1, 1, -1, -1, -1, -1,
+ 1, 1, 1, 1, -1, -1, -1, -1,
+ 1, 1, 1, 1, -1, -1, -1, -1,
+ 1, 1, 1, 1, -1, -1, -1, -1, -1,
+ };
+
+ int lowLen = sizeof (LowTone) / sizeof (int);
+ int highLen = sizeof (HighTone) / sizeof (int);
+ int convLen = (highLen > lowLen) ? highLen : lowLen; //if highlen > lowLen then highlen else lowlen
+ uint32_t hi = 0, lo = 0;
+
+ int i, j;
+ int minMark = 0, maxMark = 0;
+
+ for (i = 0; i < GraphTraceLen - convLen; ++i) {
+ int lowSum = 0, highSum = 0;
+
+ for (j = 0; j < lowLen; ++j) {
+ lowSum += LowTone[j]*GraphBuffer[i+j];
+ }
+ for (j = 0; j < highLen; ++j) {
+ highSum += HighTone[j] * GraphBuffer[i + j];
+ }
+ lowSum = abs(100 * lowSum / lowLen);
+ highSum = abs(100 * highSum / highLen);
+ GraphBuffer[i] = (highSum << 16) | lowSum;
+ }
+
+ for(i = 0; i < GraphTraceLen - convLen - 16; ++i) {
+ int lowTot = 0, highTot = 0;
+ // 10 and 8 are f_s divided by f_l and f_h, rounded
+ for (j = 0; j < 10; ++j) {
+ lowTot += (GraphBuffer[i+j] & 0xffff);
+ }
+ for (j = 0; j < 8; j++) {
+ highTot += (GraphBuffer[i + j] >> 16);
+ }
+ GraphBuffer[i] = lowTot - highTot;
+ if (GraphBuffer[i] > maxMark) maxMark = GraphBuffer[i];
+ if (GraphBuffer[i] < minMark) minMark = GraphBuffer[i];
+ }
+
+ GraphTraceLen -= (convLen + 16);
+ RepaintGraphWindow();
+
+ // Find bit-sync (3 lo followed by 3 high) (HID ONLY)
+ int max = 0, maxPos = 0;
+ for (i = 0; i < 6000; ++i) {
+ int dec = 0;
+ for (j = 0; j < 3 * lowLen; ++j) {
+ dec -= GraphBuffer[i + j];
+ }
+ for (; j < 3 * (lowLen + highLen ); ++j) {
+ dec += GraphBuffer[i + j];
+ }
+ if (dec > max) {
+ max = dec;
+ maxPos = i;
+ }
+ }
+
+ // place start of bit sync marker in graph
+ GraphBuffer[maxPos] = maxMark;
+ GraphBuffer[maxPos + 1] = minMark;
+
+ maxPos += j;
+
+ // place end of bit sync marker in graph
+ GraphBuffer[maxPos] = maxMark;
+ GraphBuffer[maxPos+1] = minMark;
+
+ PrintAndLog("actual data bits start at sample %d", maxPos);
+ PrintAndLog("length %d/%d", highLen, lowLen);
+
+ uint8_t bits[46];
+ bits[sizeof(bits)-1] = '\0';
+
+ // find bit pairs and manchester decode them
+ for (i = 0; i < arraylen(bits) - 1; ++i) {
+ int dec = 0;
+ for (j = 0; j < lowLen; ++j) {
+ dec -= GraphBuffer[maxPos + j];
+ }
+ for (; j < lowLen + highLen; ++j) {
+ dec += GraphBuffer[maxPos + j];
+ }
+ maxPos += j;
+ // place inter bit marker in graph
+ GraphBuffer[maxPos] = maxMark;
+ GraphBuffer[maxPos + 1] = minMark;
+
+ // hi and lo form a 64 bit pair
+ hi = (hi << 1) | (lo >> 31);
+ lo = (lo << 1);
+ // store decoded bit as binary (in hi/lo) and text (in bits[])
+ if(dec < 0) {
+ bits[i] = '1';
+ lo |= 1;
+ } else {
+ bits[i] = '0';
+ }
+ }
+ PrintAndLog("bits: '%s'", bits);
+ PrintAndLog("hex: %08x %08x", hi, lo);
+ return 0;
}
int CmdDetectNRZpskClockRate(const char *Cmd)
{
- GetNRZpskClock("",0,0);
- return 0;
+ GetNRZpskClock("",0,0);
+ return 0;
}
int PSKnrzDemod(const char *Cmd){
- int invert=0;
- int clk=0;
- sscanf(Cmd, "%i %i", &clk, &invert);
- if (invert != 0 && invert != 1) {
- PrintAndLog("Invalid argument: %s", Cmd);
- return -1;
- }
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- int BitLen = getFromGraphBuf(BitStream);
- int errCnt=0;
- errCnt = pskNRZrawDemod(BitStream, &BitLen,&clk,&invert);
- if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
- //PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
- return -1;
- }
- PrintAndLog("Tried PSK/NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
-
- //prime demod buffer for output
- setDemodBuf(BitStream,BitLen);
- return errCnt;
+ int invert=0;
+ int clk=0;
+ sscanf(Cmd, "%i %i", &clk, &invert);
+ if (invert != 0 && invert != 1) {
+ PrintAndLog("Invalid argument: %s", Cmd);
+ return -1;
+ }
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t BitLen = getFromGraphBuf(BitStream);
+ int errCnt=0;
+ errCnt = pskNRZrawDemod(BitStream, &BitLen,&clk,&invert);
+ if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
+ //PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
+ return -1;
+ }
+ PrintAndLog("Tried PSK/NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
+
+ //prime demod buffer for output
+ setDemodBuf(BitStream,BitLen);
+ return errCnt;
}
// Indala 26 bit decode
// by marshmellow
int CmdIndalaDecode(const char *Cmd)
{
- int ans=PSKnrzDemod(Cmd);
- if (ans < 0){
- PrintAndLog("Error1: %d",ans);
- return 0;
- }
- uint8_t invert=0;
- ans = indala26decode(DemodBuffer, &DemodBufferLen, &invert);
- if (ans < 1) {
- PrintAndLog("Error2: %d",ans);
- return -1;
- }
- char showbits[251];
- if(invert==1) PrintAndLog("Had to invert bits");
- //convert UID to HEX
- uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
- int idx;
- uid1=0;
- uid2=0;
- PrintAndLog("BitLen: %d",DemodBufferLen);
- if (DemodBufferLen==64){
- for( idx=0; idx<64; idx++) {
- uid1=(uid1<<1)|(uid2>>31);
- if (DemodBuffer[idx] == 0) {
- uid2=(uid2<<1)|0;
- showbits[idx]='0';
- } else {
- uid2=(uid2<<1)|1;
- showbits[idx]='1';
- }
- }
- showbits[idx]='\0';
- PrintAndLog("Indala UID=%s (%x%08x)", showbits, uid1, uid2);
- }
- else {
- uid3=0;
- uid4=0;
- uid5=0;
- uid6=0;
- uid7=0;
- for( idx=0; idx<DemodBufferLen; idx++) {
- uid1=(uid1<<1)|(uid2>>31);
- uid2=(uid2<<1)|(uid3>>31);
- uid3=(uid3<<1)|(uid4>>31);
- uid4=(uid4<<1)|(uid5>>31);
- uid5=(uid5<<1)|(uid6>>31);
- uid6=(uid6<<1)|(uid7>>31);
- if (DemodBuffer[idx] == 0) {
- uid7=(uid7<<1)|0;
- showbits[idx]='0';
- }
- else {
- uid7=(uid7<<1)|1;
- showbits[idx]='1';
- }
- }
- showbits[idx]='\0';
- PrintAndLog("Indala UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
- }
- return 1;
+ int ans=PSKnrzDemod(Cmd);
+ if (ans < 0){
+ PrintAndLog("Error1: %d",ans);
+ return 0;
+ }
+ uint8_t invert=0;
+ ans = indala26decode(DemodBuffer,(size_t *) &DemodBufferLen, &invert);
+ if (ans < 1) {
+ PrintAndLog("Error2: %d",ans);
+ return -1;
+ }
+ char showbits[251];
+ if(invert==1) PrintAndLog("Had to invert bits");
+ //convert UID to HEX
+ uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
+ int idx;
+ uid1=0;
+ uid2=0;
+ PrintAndLog("BitLen: %d",DemodBufferLen);
+ if (DemodBufferLen==64){
+ for( idx=0; idx<64; idx++) {
+ uid1=(uid1<<1)|(uid2>>31);
+ if (DemodBuffer[idx] == 0) {
+ uid2=(uid2<<1)|0;
+ showbits[idx]='0';
+ } else {
+ uid2=(uid2<<1)|1;
+ showbits[idx]='1';
+ }
+ }
+ showbits[idx]='\0';
+ PrintAndLog("Indala UID=%s (%x%08x)", showbits, uid1, uid2);
+ }
+ else {
+ uid3=0;
+ uid4=0;
+ uid5=0;
+ uid6=0;
+ uid7=0;
+ for( idx=0; idx<DemodBufferLen; idx++) {
+ uid1=(uid1<<1)|(uid2>>31);
+ uid2=(uid2<<1)|(uid3>>31);
+ uid3=(uid3<<1)|(uid4>>31);
+ uid4=(uid4<<1)|(uid5>>31);
+ uid5=(uid5<<1)|(uid6>>31);
+ uid6=(uid6<<1)|(uid7>>31);
+ if (DemodBuffer[idx] == 0) {
+ uid7=(uid7<<1)|0;
+ showbits[idx]='0';
+ }
+ else {
+ uid7=(uid7<<1)|1;
+ showbits[idx]='1';
+ }
+ }
+ showbits[idx]='\0';
+ PrintAndLog("Indala UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
+ }
+ return 1;
}
/*
//by marshmellow (attempt to get rid of high immediately after a low)
void pskCleanWave2(uint8_t *bitStream, int bitLen)
{
- int i;
- int low=128;
- int gap = 4;
+ int i;
+ int low=128;
+ int gap = 4;
// int loopMax = 2048;
- int newLow=0;
-
- for (i=0; i<bitLen; ++i)
- if (bitStream[i]<low) low=bitStream[i];
-
- low = (int)(((low-128)*.80)+128);
- PrintAndLog("low: %d",low);
- for (i=0; i<bitLen; ++i){
- if (newLow==1){
- bitStream[i]=low+5;
- gap--;
- if (gap==0){
- newLow=0;
- gap=4;
- }
- }
- if (bitStream[i]<=low) newLow=1;
- }
- return;
+ int newLow=0;
+
+ for (i=0; i<bitLen; ++i)
+ if (bitStream[i]<low) low=bitStream[i];
+
+ low = (int)(((low-128)*.80)+128);
+ PrintAndLog("low: %d",low);
+ for (i=0; i<bitLen; ++i){
+ if (newLow==1){
+ bitStream[i]=low+5;
+ gap--;
+ if (gap==0){
+ newLow=0;
+ gap=4;
+ }
+ }
+ if (bitStream[i]<=low) newLow=1;
+ }
+ return;
}
*/
int CmdPskClean(const char *Cmd)
{
- uint8_t bitStream[MAX_GRAPH_TRACE_LEN]={0};
- int bitLen = getFromGraphBuf(bitStream);
- pskCleanWave(bitStream, bitLen);
- setGraphBuf(bitStream, bitLen);
- return 0;
+ uint8_t bitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t bitLen = getFromGraphBuf(bitStream);
+ pskCleanWave(bitStream, bitLen);
+ setGraphBuf(bitStream, bitLen);
+ return 0;
}
//by marshmellow
//prints binary found and saves in graphbuffer for further commands
int CmdpskNRZrawDemod(const char *Cmd)
{
- int errCnt= PSKnrzDemod(Cmd);
- //output
- if (errCnt<0) return 0;
- if (errCnt>0){
- PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
- }
- PrintAndLog("PSK or NRZ demoded bitstream:");
- // Now output the bitstream to the scrollback by line of 16 bits
- printDemodBuff();
-
- return 1;
+ int errCnt= PSKnrzDemod(Cmd);
+ //output
+ if (errCnt<0) return 0;
+ if (errCnt>0){
+ PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
+ }
+ PrintAndLog("PSK or NRZ demoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ printDemodBuff();
+
+ return 1;
}
int CmdGrid(const char *Cmd)
{
- sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY);
- PlotGridXdefault= PlotGridX;
- PlotGridYdefault= PlotGridY;
- RepaintGraphWindow();
- return 0;
+ sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY);
+ PlotGridXdefault= PlotGridX;
+ PlotGridYdefault= PlotGridY;
+ RepaintGraphWindow();
+ return 0;
}
int CmdHexsamples(const char *Cmd)
{
- int i, j;
- int requested = 0;
- int offset = 0;
- char string_buf[25];
- char* string_ptr = string_buf;
- uint8_t got[40000];
-
- sscanf(Cmd, "%i %i", &requested, &offset);
-
- /* if no args send something */
- if (requested == 0) {
- requested = 8;
- }
- if (offset + requested > sizeof(got)) {
- PrintAndLog("Tried to read past end of buffer, <bytes> + <offset> > 40000");
- return 0;
- }
-
- GetFromBigBuf(got,requested,offset);
- WaitForResponse(CMD_ACK,NULL);
-
- i = 0;
- for (j = 0; j < requested; j++) {
- i++;
- string_ptr += sprintf(string_ptr, "%02x ", got[j]);
- if (i == 8) {
- *(string_ptr - 1) = '\0'; // remove the trailing space
- PrintAndLog("%s", string_buf);
- string_buf[0] = '\0';
- string_ptr = string_buf;
- i = 0;
- }
- if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes
- *(string_ptr - 1) = '\0';
- PrintAndLog("%s", string_buf);
- string_buf[0] = '\0';
- }
- }
- return 0;
+ int i, j;
+ int requested = 0;
+ int offset = 0;
+ char string_buf[25];
+ char* string_ptr = string_buf;
+ uint8_t got[40000];
+
+ sscanf(Cmd, "%i %i", &requested, &offset);
+
+ /* if no args send something */
+ if (requested == 0) {
+ requested = 8;
+ }
+ if (offset + requested > sizeof(got)) {
+ PrintAndLog("Tried to read past end of buffer, <bytes> + <offset> > 40000");
+ return 0;
+ }
+
+ GetFromBigBuf(got,requested,offset);
+ WaitForResponse(CMD_ACK,NULL);
+
+ i = 0;
+ for (j = 0; j < requested; j++) {
+ i++;
+ string_ptr += sprintf(string_ptr, "%02x ", got[j]);
+ if (i == 8) {
+ *(string_ptr - 1) = '\0'; // remove the trailing space
+ PrintAndLog("%s", string_buf);
+ string_buf[0] = '\0';
+ string_ptr = string_buf;
+ i = 0;
+ }
+ if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes
+ *(string_ptr - 1) = '\0';
+ PrintAndLog("%s", string_buf);
+ string_buf[0] = '\0';
+ }
+ }
+ return 0;
}
int CmdHide(const char *Cmd)
{
- HideGraphWindow();
- return 0;
+ HideGraphWindow();
+ return 0;
}
int CmdHpf(const char *Cmd)
{
- int i;
- int accum = 0;
+ int i;
+ int accum = 0;
- for (i = 10; i < GraphTraceLen; ++i)
- accum += GraphBuffer[i];
- accum /= (GraphTraceLen - 10);
- for (i = 0; i < GraphTraceLen; ++i)
- GraphBuffer[i] -= accum;
+ for (i = 10; i < GraphTraceLen; ++i)
+ accum += GraphBuffer[i];
+ accum /= (GraphTraceLen - 10);
+ for (i = 0; i < GraphTraceLen; ++i)
+ GraphBuffer[i] -= accum;
- RepaintGraphWindow();
- return 0;
+ RepaintGraphWindow();
+ return 0;
}
int CmdSamples(const char *Cmd)
{
- int cnt = 0;
- int n;
- uint8_t got[40000];
-
- n = strtol(Cmd, NULL, 0);
- if (n == 0) n = 6000;
- if (n > sizeof(got)) n = sizeof(got);
-
- PrintAndLog("Reading %d samples\n", n);
- GetFromBigBuf(got,n,0);
- WaitForResponse(CMD_ACK,NULL);
- for (int j = 0; j < n; j++) {
- GraphBuffer[cnt++] = ((int)got[j]) - 128;
- }
-
- PrintAndLog("Done!\n");
- GraphTraceLen = n;
- RepaintGraphWindow();
- return 0;
+ int cnt = 0;
+ int n;
+ uint8_t got[40000];
+
+ n = strtol(Cmd, NULL, 0);
+ if (n == 0) n = 6000;
+ if (n > sizeof(got)) n = sizeof(got);
+
+ PrintAndLog("Reading %d samples\n", n);
+ GetFromBigBuf(got,n,0);
+ WaitForResponse(CMD_ACK,NULL);
+ for (int j = 0; j < n; j++) {
+ GraphBuffer[cnt++] = ((int)got[j]) - 128;
+ }
+
+ PrintAndLog("Done!\n");
+ GraphTraceLen = n;
+ RepaintGraphWindow();
+ return 0;
}
int CmdTuneSamples(const char *Cmd)
{
- int cnt = 0;
- int n = 255;
- uint8_t got[255];
-
- PrintAndLog("Reading %d samples\n", n);
- GetFromBigBuf(got,n,7256); // armsrc/apps.h: #define FREE_BUFFER_OFFSET 7256
- WaitForResponse(CMD_ACK,NULL);
- for (int j = 0; j < n; j++) {
- GraphBuffer[cnt++] = ((int)got[j]) - 128;
- }
-
- PrintAndLog("Done! Divisor 89 is 134khz, 95 is 125khz.\n");
- PrintAndLog("\n");
- GraphTraceLen = n;
- RepaintGraphWindow();
- return 0;
+ int cnt = 0;
+ int n = 255;
+ uint8_t got[255];
+
+ PrintAndLog("Reading %d samples\n", n);
+ GetFromBigBuf(got,n,7256); // armsrc/apps.h: #define FREE_BUFFER_OFFSET 7256
+ WaitForResponse(CMD_ACK,NULL);
+ for (int j = 0; j < n; j++) {
+ GraphBuffer[cnt++] = ((int)got[j]) - 128;
+ }
+
+ PrintAndLog("Done! Divisor 89 is 134khz, 95 is 125khz.\n");
+ PrintAndLog("\n");
+ GraphTraceLen = n;
+ RepaintGraphWindow();
+ return 0;
}
int CmdLoad(const char *Cmd)
{
- FILE *f = fopen(Cmd, "r");
- if (!f) {
- PrintAndLog("couldn't open '%s'", Cmd);
- return 0;
- }
-
- GraphTraceLen = 0;
- char line[80];
- while (fgets(line, sizeof (line), f)) {
- GraphBuffer[GraphTraceLen] = atoi(line);
- GraphTraceLen++;
- }
- fclose(f);
- PrintAndLog("loaded %d samples", GraphTraceLen);
- RepaintGraphWindow();
- return 0;
+ FILE *f = fopen(Cmd, "r");
+ if (!f) {
+ PrintAndLog("couldn't open '%s'", Cmd);
+ return 0;
+ }
+
+ GraphTraceLen = 0;
+ char line[80];
+ while (fgets(line, sizeof (line), f)) {
+ GraphBuffer[GraphTraceLen] = atoi(line);
+ GraphTraceLen++;
+ }
+ fclose(f);
+ PrintAndLog("loaded %d samples", GraphTraceLen);
+ RepaintGraphWindow();
+ return 0;
}
int CmdLtrim(const char *Cmd)
{
- int ds = atoi(Cmd);
+ int ds = atoi(Cmd);
- for (int i = ds; i < GraphTraceLen; ++i)
- GraphBuffer[i-ds] = GraphBuffer[i];
- GraphTraceLen -= ds;
+ for (int i = ds; i < GraphTraceLen; ++i)
+ GraphBuffer[i-ds] = GraphBuffer[i];
+ GraphTraceLen -= ds;
- RepaintGraphWindow();
- return 0;
+ RepaintGraphWindow();
+ return 0;
}
int CmdRtrim(const char *Cmd)
{
- int ds = atoi(Cmd);
+ int ds = atoi(Cmd);
- GraphTraceLen = ds;
+ GraphTraceLen = ds;
- RepaintGraphWindow();
- return 0;
+ RepaintGraphWindow();
+ return 0;
}
/*
*/
int CmdManchesterDemod(const char *Cmd)
{
- int i, j, invert= 0;
- int bit;
- int clock;
- int lastval = 0;
- int low = 0;
- int high = 0;
- int hithigh, hitlow, first;
- int lc = 0;
- int bitidx = 0;
- int bit2idx = 0;
- int warnings = 0;
-
- /* check if we're inverting output */
- if (*Cmd == 'i')
- {
- PrintAndLog("Inverting output");
- invert = 1;
- ++Cmd;
- do
- ++Cmd;
- while(*Cmd == ' '); // in case a 2nd argument was given
- }
-
- /* Holds the decoded bitstream: each clock period contains 2 bits */
- /* later simplified to 1 bit after manchester decoding. */
- /* Add 10 bits to allow for noisy / uncertain traces without aborting */
- /* int BitStream[GraphTraceLen*2/clock+10]; */
-
- /* But it does not work if compiling on WIndows: therefore we just allocate a */
- /* large array */
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN] = {0};
-
- /* Detect high and lows */
- for (i = 0; i < GraphTraceLen; i++)
- {
- if (GraphBuffer[i] > high)
- high = GraphBuffer[i];
- else if (GraphBuffer[i] < low)
- low = GraphBuffer[i];
- }
-
- /* Get our clock */
- clock = GetClock(Cmd, high, 1);
-
- int tolerance = clock/4;
-
- /* Detect first transition */
- /* Lo-Hi (arbitrary) */
- /* skip to the first high */
- for (i= 0; i < GraphTraceLen; i++)
- if (GraphBuffer[i] == high)
- break;
- /* now look for the first low */
- for (; i < GraphTraceLen; i++)
- {
- if (GraphBuffer[i] == low)
- {
- lastval = i;
- break;
- }
- }
-
- /* If we're not working with 1/0s, demod based off clock */
- if (high != 1)
- {
- bit = 0; /* We assume the 1st bit is zero, it may not be
- * the case: this routine (I think) has an init problem.
- * Ed.
- */
- for (; i < (int)(GraphTraceLen / clock); i++)
- {
- hithigh = 0;
- hitlow = 0;
- first = 1;
-
- /* Find out if we hit both high and low peaks */
- for (j = 0; j < clock; j++)
- {
- if (GraphBuffer[(i * clock) + j] == high)
- hithigh = 1;
- else if (GraphBuffer[(i * clock) + j] == low)
- hitlow = 1;
-
- /* it doesn't count if it's the first part of our read
- because it's really just trailing from the last sequence */
- if (first && (hithigh || hitlow))
- hithigh = hitlow = 0;
- else
- first = 0;
-
- if (hithigh && hitlow)
- break;
- }
-
- /* If we didn't hit both high and low peaks, we had a bit transition */
- if (!hithigh || !hitlow)
- bit ^= 1;
-
- BitStream[bit2idx++] = bit ^ invert;
- }
- }
-
- /* standard 1/0 bitstream */
- else
- {
-
- /* Then detect duration between 2 successive transitions */
- for (bitidx = 1; i < GraphTraceLen; i++)
- {
- if (GraphBuffer[i-1] != GraphBuffer[i])
- {
- lc = i-lastval;
- lastval = i;
-
- // Error check: if bitidx becomes too large, we do not
- // have a Manchester encoded bitstream or the clock is really
- // wrong!
- if (bitidx > (GraphTraceLen*2/clock+8) ) {
- PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
- return 0;
- }
- // Then switch depending on lc length:
- // Tolerance is 1/4 of clock rate (arbitrary)
- if (abs(lc-clock/2) < tolerance) {
- // Short pulse : either "1" or "0"
- BitStream[bitidx++]=GraphBuffer[i-1];
- } else if (abs(lc-clock) < tolerance) {
- // Long pulse: either "11" or "00"
- BitStream[bitidx++]=GraphBuffer[i-1];
- BitStream[bitidx++]=GraphBuffer[i-1];
- } else {
- // Error
- warnings++;
- PrintAndLog("Warning: Manchester decode error for pulse width detection.");
- PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)");
-
- if (warnings > 10)
- {
- PrintAndLog("Error: too many detection errors, aborting.");
- return 0;
- }
- }
- }
- }
-
- // At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream
- // Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful
- // to stop output at the final bitidx2 value, not bitidx
- for (i = 0; i < bitidx; i += 2) {
- if ((BitStream[i] == 0) && (BitStream[i+1] == 1)) {
- BitStream[bit2idx++] = 1 ^ invert;
- } else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) {
- BitStream[bit2idx++] = 0 ^ invert;
- } else {
- // We cannot end up in this state, this means we are unsynchronized,
- // move up 1 bit:
- i++;
- warnings++;
- PrintAndLog("Unsynchronized, resync...");
- PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
-
- if (warnings > 10)
- {
- PrintAndLog("Error: too many decode errors, aborting.");
- return 0;
- }
- }
- }
- }
-
- PrintAndLog("Manchester decoded bitstream");
- // Now output the bitstream to the scrollback by line of 16 bits
- for (i = 0; i < (bit2idx-16); i+=16) {
- PrintAndLog("%i %i %i %i %i %i %i %i %i %i %i %i %i %i %i %i",
- BitStream[i],
- BitStream[i+1],
- BitStream[i+2],
- BitStream[i+3],
- BitStream[i+4],
- BitStream[i+5],
- BitStream[i+6],
- BitStream[i+7],
- BitStream[i+8],
- BitStream[i+9],
- BitStream[i+10],
- BitStream[i+11],
- BitStream[i+12],
- BitStream[i+13],
- BitStream[i+14],
- BitStream[i+15]);
- }
- return 0;
+ int i, j, invert= 0;
+ int bit;
+ int clock;
+ int lastval = 0;
+ int low = 0;
+ int high = 0;
+ int hithigh, hitlow, first;
+ int lc = 0;
+ int bitidx = 0;
+ int bit2idx = 0;
+ int warnings = 0;
+
+ /* check if we're inverting output */
+ if (*Cmd == 'i')
+ {
+ PrintAndLog("Inverting output");
+ invert = 1;
+ ++Cmd;
+ do
+ ++Cmd;
+ while(*Cmd == ' '); // in case a 2nd argument was given
+ }
+
+ /* Holds the decoded bitstream: each clock period contains 2 bits */
+ /* later simplified to 1 bit after manchester decoding. */
+ /* Add 10 bits to allow for noisy / uncertain traces without aborting */
+ /* int BitStream[GraphTraceLen*2/clock+10]; */
+
+ /* But it does not work if compiling on WIndows: therefore we just allocate a */
+ /* large array */
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN] = {0};
+
+ /* Detect high and lows */
+ for (i = 0; i < GraphTraceLen; i++)
+ {
+ if (GraphBuffer[i] > high)
+ high = GraphBuffer[i];
+ else if (GraphBuffer[i] < low)
+ low = GraphBuffer[i];
+ }
+
+ /* Get our clock */
+ clock = GetClock(Cmd, high, 1);
+
+ int tolerance = clock/4;
+
+ /* Detect first transition */
+ /* Lo-Hi (arbitrary) */
+ /* skip to the first high */
+ for (i= 0; i < GraphTraceLen; i++)
+ if (GraphBuffer[i] == high)
+ break;
+ /* now look for the first low */
+ for (; i < GraphTraceLen; i++)
+ {
+ if (GraphBuffer[i] == low)
+ {
+ lastval = i;
+ break;
+ }
+ }
+
+ /* If we're not working with 1/0s, demod based off clock */
+ if (high != 1)
+ {
+ bit = 0; /* We assume the 1st bit is zero, it may not be
+ * the case: this routine (I think) has an init problem.
+ * Ed.
+ */
+ for (; i < (int)(GraphTraceLen / clock); i++)
+ {
+ hithigh = 0;
+ hitlow = 0;
+ first = 1;
+
+ /* Find out if we hit both high and low peaks */
+ for (j = 0; j < clock; j++)
+ {
+ if (GraphBuffer[(i * clock) + j] == high)
+ hithigh = 1;
+ else if (GraphBuffer[(i * clock) + j] == low)
+ hitlow = 1;
+
+ /* it doesn't count if it's the first part of our read
+ because it's really just trailing from the last sequence */
+ if (first && (hithigh || hitlow))
+ hithigh = hitlow = 0;
+ else
+ first = 0;
+
+ if (hithigh && hitlow)
+ break;
+ }
+
+ /* If we didn't hit both high and low peaks, we had a bit transition */
+ if (!hithigh || !hitlow)
+ bit ^= 1;
+
+ BitStream[bit2idx++] = bit ^ invert;
+ }
+ }
+
+ /* standard 1/0 bitstream */
+ else
+ {
+
+ /* Then detect duration between 2 successive transitions */
+ for (bitidx = 1; i < GraphTraceLen; i++)
+ {
+ if (GraphBuffer[i-1] != GraphBuffer[i])
+ {
+ lc = i-lastval;
+ lastval = i;
+
+ // Error check: if bitidx becomes too large, we do not
+ // have a Manchester encoded bitstream or the clock is really
+ // wrong!
+ if (bitidx > (GraphTraceLen*2/clock+8) ) {
+ PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
+ return 0;
+ }
+ // Then switch depending on lc length:
+ // Tolerance is 1/4 of clock rate (arbitrary)
+ if (abs(lc-clock/2) < tolerance) {
+ // Short pulse : either "1" or "0"
+ BitStream[bitidx++]=GraphBuffer[i-1];
+ } else if (abs(lc-clock) < tolerance) {
+ // Long pulse: either "11" or "00"
+ BitStream[bitidx++]=GraphBuffer[i-1];
+ BitStream[bitidx++]=GraphBuffer[i-1];
+ } else {
+ // Error
+ warnings++;
+ PrintAndLog("Warning: Manchester decode error for pulse width detection.");
+ PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)");
+
+ if (warnings > 10)
+ {
+ PrintAndLog("Error: too many detection errors, aborting.");
+ return 0;
+ }
+ }
+ }
+ }
+
+ // At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream
+ // Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful
+ // to stop output at the final bitidx2 value, not bitidx
+ for (i = 0; i < bitidx; i += 2) {
+ if ((BitStream[i] == 0) && (BitStream[i+1] == 1)) {
+ BitStream[bit2idx++] = 1 ^ invert;
+ } else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) {
+ BitStream[bit2idx++] = 0 ^ invert;
+ } else {
+ // We cannot end up in this state, this means we are unsynchronized,
+ // move up 1 bit:
+ i++;
+ warnings++;
+ PrintAndLog("Unsynchronized, resync...");
+ PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
+
+ if (warnings > 10)
+ {
+ PrintAndLog("Error: too many decode errors, aborting.");
+ return 0;
+ }
+ }
+ }
+ }
+
+ PrintAndLog("Manchester decoded bitstream");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ for (i = 0; i < (bit2idx-16); i+=16) {
+ PrintAndLog("%i %i %i %i %i %i %i %i %i %i %i %i %i %i %i %i",
+ BitStream[i],
+ BitStream[i+1],
+ BitStream[i+2],
+ BitStream[i+3],
+ BitStream[i+4],
+ BitStream[i+5],
+ BitStream[i+6],
+ BitStream[i+7],
+ BitStream[i+8],
+ BitStream[i+9],
+ BitStream[i+10],
+ BitStream[i+11],
+ BitStream[i+12],
+ BitStream[i+13],
+ BitStream[i+14],
+ BitStream[i+15]);
+ }
+ return 0;
}
/* Modulate our data into manchester */
int CmdManchesterMod(const char *Cmd)
{
- int i, j;
- int clock;
- int bit, lastbit, wave;
-
- /* Get our clock */
- clock = GetClock(Cmd, 0, 1);
-
- wave = 0;
- lastbit = 1;
- for (i = 0; i < (int)(GraphTraceLen / clock); i++)
- {
- bit = GraphBuffer[i * clock] ^ 1;
-
- for (j = 0; j < (int)(clock/2); j++)
- GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave;
- for (j = (int)(clock/2); j < clock; j++)
- GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave ^ 1;
-
- /* Keep track of how we start our wave and if we changed or not this time */
- wave ^= bit ^ lastbit;
- lastbit = bit;
- }
-
- RepaintGraphWindow();
- return 0;
+ int i, j;
+ int clock;
+ int bit, lastbit, wave;
+
+ /* Get our clock */
+ clock = GetClock(Cmd, 0, 1);
+
+ wave = 0;
+ lastbit = 1;
+ for (i = 0; i < (int)(GraphTraceLen / clock); i++)
+ {
+ bit = GraphBuffer[i * clock] ^ 1;
+
+ for (j = 0; j < (int)(clock/2); j++)
+ GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave;
+ for (j = (int)(clock/2); j < clock; j++)
+ GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave ^ 1;
+
+ /* Keep track of how we start our wave and if we changed or not this time */
+ wave ^= bit ^ lastbit;
+ lastbit = bit;
+ }
+
+ RepaintGraphWindow();
+ return 0;
}
int CmdNorm(const char *Cmd)
{
- int i;
- int max = INT_MIN, min = INT_MAX;
-
- for (i = 10; i < GraphTraceLen; ++i) {
- if (GraphBuffer[i] > max)
- max = GraphBuffer[i];
- if (GraphBuffer[i] < min)
- min = GraphBuffer[i];
- }
-
- if (max != min) {
- for (i = 0; i < GraphTraceLen; ++i) {
- GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 256 /
- (max - min);
- //marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work
- }
- }
- RepaintGraphWindow();
- return 0;
+ int i;
+ int max = INT_MIN, min = INT_MAX;
+
+ for (i = 10; i < GraphTraceLen; ++i) {
+ if (GraphBuffer[i] > max)
+ max = GraphBuffer[i];
+ if (GraphBuffer[i] < min)
+ min = GraphBuffer[i];
+ }
+
+ if (max != min) {
+ for (i = 0; i < GraphTraceLen; ++i) {
+ GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 256 /
+ (max - min);
+ //marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work
+ }
+ }
+ RepaintGraphWindow();
+ return 0;
}
int CmdPlot(const char *Cmd)
{
- ShowGraphWindow();
- return 0;
+ ShowGraphWindow();
+ return 0;
}
int CmdSave(const char *Cmd)
{
- FILE *f = fopen(Cmd, "w");
- if(!f) {
- PrintAndLog("couldn't open '%s'", Cmd);
- return 0;
- }
- int i;
- for (i = 0; i < GraphTraceLen; i++) {
- fprintf(f, "%d\n", GraphBuffer[i]);
- }
- fclose(f);
- PrintAndLog("saved to '%s'", Cmd);
- return 0;
+ FILE *f = fopen(Cmd, "w");
+ if(!f) {
+ PrintAndLog("couldn't open '%s'", Cmd);
+ return 0;
+ }
+ int i;
+ for (i = 0; i < GraphTraceLen; i++) {
+ fprintf(f, "%d\n", GraphBuffer[i]);
+ }
+ fclose(f);
+ PrintAndLog("saved to '%s'", Cmd);
+ return 0;
}
int CmdScale(const char *Cmd)
{
- CursorScaleFactor = atoi(Cmd);
- if (CursorScaleFactor == 0) {
- PrintAndLog("bad, can't have zero scale");
- CursorScaleFactor = 1;
- }
- RepaintGraphWindow();
- return 0;
+ CursorScaleFactor = atoi(Cmd);
+ if (CursorScaleFactor == 0) {
+ PrintAndLog("bad, can't have zero scale");
+ CursorScaleFactor = 1;
+ }
+ RepaintGraphWindow();
+ return 0;
}
int CmdThreshold(const char *Cmd)
{
- int threshold = atoi(Cmd);
-
- for (int i = 0; i < GraphTraceLen; ++i) {
- if (GraphBuffer[i] >= threshold)
- GraphBuffer[i] = 1;
- else
- GraphBuffer[i] = -1;
- }
- RepaintGraphWindow();
- return 0;
+ int threshold = atoi(Cmd);
+
+ for (int i = 0; i < GraphTraceLen; ++i) {
+ if (GraphBuffer[i] >= threshold)
+ GraphBuffer[i] = 1;
+ else
+ GraphBuffer[i] = -1;
+ }
+ RepaintGraphWindow();
+ return 0;
}
int CmdDirectionalThreshold(const char *Cmd)
{
int8_t upThres = param_get8(Cmd, 0);
int8_t downThres = param_get8(Cmd, 1);
-
- printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres);
-
- int lastValue = GraphBuffer[0];
- GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in.
-
- for (int i = 1; i < GraphTraceLen; ++i) {
- // Apply first threshold to samples heading up
- if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue)
- {
- lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
- GraphBuffer[i] = 1;
- }
- // Apply second threshold to samples heading down
- else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue)
- {
- lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
- GraphBuffer[i] = -1;
- }
- else
- {
- lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
- GraphBuffer[i] = GraphBuffer[i-1];
-
- }
- }
- GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample.
- RepaintGraphWindow();
- return 0;
+
+ printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres);
+
+ int lastValue = GraphBuffer[0];
+ GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in.
+
+ for (int i = 1; i < GraphTraceLen; ++i) {
+ // Apply first threshold to samples heading up
+ if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue)
+ {
+ lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
+ GraphBuffer[i] = 1;
+ }
+ // Apply second threshold to samples heading down
+ else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue)
+ {
+ lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
+ GraphBuffer[i] = -1;
+ }
+ else
+ {
+ lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
+ GraphBuffer[i] = GraphBuffer[i-1];
+
+ }
+ }
+ GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample.
+ RepaintGraphWindow();
+ return 0;
}
int CmdZerocrossings(const char *Cmd)
{
- // Zero-crossings aren't meaningful unless the signal is zero-mean.
- CmdHpf("");
-
- int sign = 1;
- int zc = 0;
- int lastZc = 0;
-
- for (int i = 0; i < GraphTraceLen; ++i) {
- if (GraphBuffer[i] * sign >= 0) {
- // No change in sign, reproduce the previous sample count.
- zc++;
- GraphBuffer[i] = lastZc;
- } else {
- // Change in sign, reset the sample count.
- sign = -sign;
- GraphBuffer[i] = lastZc;
- if (sign > 0) {
- lastZc = zc;
- zc = 0;
- }
- }
- }
-
- RepaintGraphWindow();
- return 0;
+ // Zero-crossings aren't meaningful unless the signal is zero-mean.
+ CmdHpf("");
+
+ int sign = 1;
+ int zc = 0;
+ int lastZc = 0;
+
+ for (int i = 0; i < GraphTraceLen; ++i) {
+ if (GraphBuffer[i] * sign >= 0) {
+ // No change in sign, reproduce the previous sample count.
+ zc++;
+ GraphBuffer[i] = lastZc;
+ } else {
+ // Change in sign, reset the sample count.
+ sign = -sign;
+ GraphBuffer[i] = lastZc;
+ if (sign > 0) {
+ lastZc = zc;
+ zc = 0;
+ }
+ }
+ }
+
+ RepaintGraphWindow();
+ return 0;
}
-static command_t CommandTable[] =
+static command_t CommandTable[] =
{
- {"help", CmdHelp, 1, "This help"},
- {"amp", CmdAmp, 1, "Amplify peaks"},
- {"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"},
- {"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional[clock will try Auto-detect])"},
- {"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate ASK tags and output binary (args optional[clock will try Auto-detect])"},
- {"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
- {"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] Biphase decode binary stream already in graph buffer (offset = bit to start decode from)"},
- {"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
- {"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
- {"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
- {"dec", CmdDec, 1, "Decimate samples"},
- {"detectclock", CmdDetectClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
- {"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
- {"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK using raw"},
- {"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox FSK using raw"},
- {"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to binary (clock = 50)(invert = 1 or 0)(rchigh = 10)(rclow=8)"},
- {"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
- {"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
- {"hide", CmdHide, 1, "Hide graph window"},
- {"hpf", CmdHpf, 1, "Remove DC offset from trace"},
- {"load", CmdLoad, 1, "<filename> -- Load trace (to graph window"},
- {"ltrim", CmdLtrim, 1, "<samples> -- Trim samples from left of trace"},
- {"rtrim", CmdRtrim, 1, "<location to end trace> -- Trim samples from right of trace"},
- {"mandemod", CmdManchesterDemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"},
- {"manrawdecode", Cmdmandecoderaw, 1, "Manchester decode binary stream already in graph buffer"},
- {"manmod", CmdManchesterMod, 1, "[clock rate] -- Manchester modulate a binary stream"},
- {"norm", CmdNorm, 1, "Normalize max/min to +/-128"},
- {"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
- {"pskclean", CmdPskClean, 1, "Attempt to clean psk wave"},
- {"pskdetectclock",CmdDetectNRZpskClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
- {"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate psk indala tags and output ID binary & hex (args optional[clock will try Auto-detect])"},
- {"psknrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate psk or nrz tags and output binary (args optional[clock will try Auto-detect])"},
- {"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"},
- {"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
- {"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
- {"threshold", CmdThreshold, 1, "<threshold> -- Maximize/minimize every value in the graph window depending on threshold"},
- {"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
- {"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"},
- {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
- {NULL, NULL, 0, NULL}
+ {"help", CmdHelp, 1, "This help"},
+ {"amp", CmdAmp, 1, "Amplify peaks"},
+ {"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"},
+ {"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional[clock will try Auto-detect])"},
+ {"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate ASK tags and output binary (args optional[clock will try Auto-detect])"},
+ {"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
+ {"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] Biphase decode binary stream already in graph buffer (offset = bit to start decode from)"},
+ {"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
+ {"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
+ {"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
+ {"dec", CmdDec, 1, "Decimate samples"},
+ {"detectclock", CmdDetectClockRate, 1, "Detect ASK clock rate"},
+ {"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
+ {"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK using raw"},
+ {"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox FSK using raw"},
+ {"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to binary (clock = 50)(invert = 1 or 0)(rchigh = 10)(rclow=8)"},
+ {"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
+ {"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
+ {"hide", CmdHide, 1, "Hide graph window"},
+ {"hpf", CmdHpf, 1, "Remove DC offset from trace"},
+ {"load", CmdLoad, 1, "<filename> -- Load trace (to graph window"},
+ {"ltrim", CmdLtrim, 1, "<samples> -- Trim samples from left of trace"},
+ {"rtrim", CmdRtrim, 1, "<location to end trace> -- Trim samples from right of trace"},
+ {"mandemod", CmdManchesterDemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"},
+ {"manrawdecode", Cmdmandecoderaw, 1, "Manchester decode binary stream already in graph buffer"},
+ {"manmod", CmdManchesterMod, 1, "[clock rate] -- Manchester modulate a binary stream"},
+ {"norm", CmdNorm, 1, "Normalize max/min to +/-128"},
+ {"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
+ {"pskclean", CmdPskClean, 1, "Attempt to clean psk wave"},
+ {"pskdetectclock",CmdDetectNRZpskClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
+ {"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate psk indala tags and output ID binary & hex (args optional[clock will try Auto-detect])"},
+ {"psknrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate psk or nrz tags and output binary (args optional[clock will try Auto-detect])"},
+ {"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"},
+ {"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
+ {"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
+ {"threshold", CmdThreshold, 1, "<threshold> -- Maximize/minimize every value in the graph window depending on threshold"},
+ {"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
+ {"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"},
+ {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
+ {NULL, NULL, 0, NULL}
};
int CmdData(const char *Cmd)
{
- CmdsParse(CommandTable, Cmd);
- return 0;
+ CmdsParse(CommandTable, Cmd);
+ return 0;
}
int CmdHelp(const char *Cmd)
{
- CmdsHelp(CommandTable);
- return 0;
+ CmdsHelp(CommandTable);
+ return 0;
}
/* send a command before reading */
int CmdLFCommandRead(const char *Cmd)
{
- static char dummy[3];
+ static char dummy[3];
- dummy[0]= ' ';
+ dummy[0]= ' ';
- UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K};
- sscanf(Cmd, "%"lli" %"lli" %"lli" %s %s", &c.arg[0], &c.arg[1], &c.arg[2],(char*)(&c.d.asBytes),(char*)(&dummy+1));
- // in case they specified 'h'
- strcpy((char *)&c.d.asBytes + strlen((char *)c.d.asBytes), dummy);
- SendCommand(&c);
- return 0;
+ UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K};
+ sscanf(Cmd, "%"lli" %"lli" %"lli" %s %s", &c.arg[0], &c.arg[1], &c.arg[2],(char*)(&c.d.asBytes),(char*)(&dummy+1));
+ // in case they specified 'h'
+ strcpy((char *)&c.d.asBytes + strlen((char *)c.d.asBytes), dummy);
+ SendCommand(&c);
+ return 0;
}
int CmdFlexdemod(const char *Cmd)
{
- int i;
- for (i = 0; i < GraphTraceLen; ++i) {
- if (GraphBuffer[i] < 0) {
- GraphBuffer[i] = -1;
- } else {
- GraphBuffer[i] = 1;
- }
- }
-
- #define LONG_WAIT 100
- int start;
- for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) {
- int first = GraphBuffer[start];
- for (i = start; i < start + LONG_WAIT; i++) {
- if (GraphBuffer[i] != first) {
- break;
- }
- }
- if (i == (start + LONG_WAIT)) {
- break;
- }
- }
- if (start == GraphTraceLen - LONG_WAIT) {
- PrintAndLog("nothing to wait for");
- return 0;
- }
-
- GraphBuffer[start] = 2;
- GraphBuffer[start+1] = -2;
-
- uint8_t bits[64];
-
- int bit;
- i = start;
- for (bit = 0; bit < 64; bit++) {
- int j;
- int sum = 0;
- for (j = 0; j < 16; j++) {
- sum += GraphBuffer[i++];
- }
- if (sum > 0) {
- bits[bit] = 1;
- } else {
- bits[bit] = 0;
- }
- PrintAndLog("bit %d sum %d", bit, sum);
- }
-
- for (bit = 0; bit < 64; bit++) {
- int j;
- int sum = 0;
- for (j = 0; j < 16; j++) {
- sum += GraphBuffer[i++];
- }
- if (sum > 0 && bits[bit] != 1) {
- PrintAndLog("oops1 at %d", bit);
- }
- if (sum < 0 && bits[bit] != 0) {
- PrintAndLog("oops2 at %d", bit);
- }
- }
-
- GraphTraceLen = 32*64;
- i = 0;
- int phase = 0;
- for (bit = 0; bit < 64; bit++) {
- if (bits[bit] == 0) {
- phase = 0;
- } else {
- phase = 1;
- }
- int j;
- for (j = 0; j < 32; j++) {
- GraphBuffer[i++] = phase;
- phase = !phase;
- }
- }
-
- RepaintGraphWindow();
- return 0;
+ int i;
+ for (i = 0; i < GraphTraceLen; ++i) {
+ if (GraphBuffer[i] < 0) {
+ GraphBuffer[i] = -1;
+ } else {
+ GraphBuffer[i] = 1;
+ }
+ }
+
+ #define LONG_WAIT 100
+ int start;
+ for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) {
+ int first = GraphBuffer[start];
+ for (i = start; i < start + LONG_WAIT; i++) {
+ if (GraphBuffer[i] != first) {
+ break;
+ }
+ }
+ if (i == (start + LONG_WAIT)) {
+ break;
+ }
+ }
+ if (start == GraphTraceLen - LONG_WAIT) {
+ PrintAndLog("nothing to wait for");
+ return 0;
+ }
+
+ GraphBuffer[start] = 2;
+ GraphBuffer[start+1] = -2;
+
+ uint8_t bits[64];
+
+ int bit;
+ i = start;
+ for (bit = 0; bit < 64; bit++) {
+ int j;
+ int sum = 0;
+ for (j = 0; j < 16; j++) {
+ sum += GraphBuffer[i++];
+ }
+ if (sum > 0) {
+ bits[bit] = 1;
+ } else {
+ bits[bit] = 0;
+ }
+ PrintAndLog("bit %d sum %d", bit, sum);
+ }
+
+ for (bit = 0; bit < 64; bit++) {
+ int j;
+ int sum = 0;
+ for (j = 0; j < 16; j++) {
+ sum += GraphBuffer[i++];
+ }
+ if (sum > 0 && bits[bit] != 1) {
+ PrintAndLog("oops1 at %d", bit);
+ }
+ if (sum < 0 && bits[bit] != 0) {
+ PrintAndLog("oops2 at %d", bit);
+ }
+ }
+
+ GraphTraceLen = 32*64;
+ i = 0;
+ int phase = 0;
+ for (bit = 0; bit < 64; bit++) {
+ if (bits[bit] == 0) {
+ phase = 0;
+ } else {
+ phase = 1;
+ }
+ int j;
+ for (j = 0; j < 32; j++) {
+ GraphBuffer[i++] = phase;
+ phase = !phase;
+ }
+ }
+
+ RepaintGraphWindow();
+ return 0;
}
-
+
int CmdIndalaDemod(const char *Cmd)
{
- // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
-
- int state = -1;
- int count = 0;
- int i, j;
- // worst case with GraphTraceLen=64000 is < 4096
- // under normal conditions it's < 2048
- uint8_t rawbits[4096];
- int rawbit = 0;
- int worst = 0, worstPos = 0;
+ // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
+
+ int state = -1;
+ int count = 0;
+ int i, j;
+ // worst case with GraphTraceLen=64000 is < 4096
+ // under normal conditions it's < 2048
+ uint8_t rawbits[4096];
+ int rawbit = 0;
+ int worst = 0, worstPos = 0;
// PrintAndLog("Expecting a bit less than %d raw bits", GraphTraceLen / 32);
- for (i = 0; i < GraphTraceLen-1; i += 2) {
- count += 1;
- if ((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) {
- if (state == 0) {
- for (j = 0; j < count - 8; j += 16) {
- rawbits[rawbit++] = 0;
- }
- if ((abs(count - j)) > worst) {
- worst = abs(count - j);
- worstPos = i;
- }
- }
- state = 1;
- count = 0;
- } else if ((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) {
- if (state == 1) {
- for (j = 0; j < count - 8; j += 16) {
- rawbits[rawbit++] = 1;
- }
- if ((abs(count - j)) > worst) {
- worst = abs(count - j);
- worstPos = i;
- }
- }
- state = 0;
- count = 0;
- }
- }
- if (rawbit>0){
- PrintAndLog("Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32);
- PrintAndLog("worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
- } else return 0;
- // Finding the start of a UID
- int uidlen, long_wait;
- if (strcmp(Cmd, "224") == 0) {
- uidlen = 224;
- long_wait = 30;
- } else {
- uidlen = 64;
- long_wait = 29;
- }
- int start;
- int first = 0;
- for (start = 0; start <= rawbit - uidlen; start++) {
- first = rawbits[start];
- for (i = start; i < start + long_wait; i++) {
- if (rawbits[i] != first) {
- break;
- }
- }
- if (i == (start + long_wait)) {
- break;
- }
- }
- if (start == rawbit - uidlen + 1) {
- PrintAndLog("nothing to wait for");
- return 0;
- }
-
- // Inverting signal if needed
- if (first == 1) {
- for (i = start; i < rawbit; i++) {
- rawbits[i] = !rawbits[i];
- }
- }
-
- // Dumping UID
- uint8_t bits[224];
- char showbits[225];
- showbits[uidlen]='\0';
- int bit;
- i = start;
- int times = 0;
- if (uidlen > rawbit) {
- PrintAndLog("Warning: not enough raw bits to get a full UID");
- for (bit = 0; bit < rawbit; bit++) {
- bits[bit] = rawbits[i++];
- // As we cannot know the parity, let's use "." and "/"
- showbits[bit] = '.' + bits[bit];
- }
- showbits[bit+1]='\0';
- PrintAndLog("Partial UID=%s", showbits);
- return 0;
- } else {
- for (bit = 0; bit < uidlen; bit++) {
- bits[bit] = rawbits[i++];
- showbits[bit] = '0' + bits[bit];
- }
- times = 1;
- }
-
- //convert UID to HEX
- uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
- int idx;
- uid1=0;
- uid2=0;
- if (uidlen==64){
- for( idx=0; idx<64; idx++) {
- if (showbits[idx] == '0') {
- uid1=(uid1<<1)|(uid2>>31);
- uid2=(uid2<<1)|0;
- } else {
- uid1=(uid1<<1)|(uid2>>31);
- uid2=(uid2<<1)|1;
- }
- }
- PrintAndLog("UID=%s (%x%08x)", showbits, uid1, uid2);
- }
- else {
- uid3=0;
- uid4=0;
- uid5=0;
- uid6=0;
- uid7=0;
- for( idx=0; idx<224; idx++) {
- uid1=(uid1<<1)|(uid2>>31);
- uid2=(uid2<<1)|(uid3>>31);
- uid3=(uid3<<1)|(uid4>>31);
- uid4=(uid4<<1)|(uid5>>31);
- uid5=(uid5<<1)|(uid6>>31);
- uid6=(uid6<<1)|(uid7>>31);
- if (showbits[idx] == '0') uid7=(uid7<<1)|0;
- else uid7=(uid7<<1)|1;
- }
- PrintAndLog("UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
- }
-
- // Checking UID against next occurrences
- for (; i + uidlen <= rawbit;) {
- int failed = 0;
- for (bit = 0; bit < uidlen; bit++) {
- if (bits[bit] != rawbits[i++]) {
- failed = 1;
- break;
- }
- }
- if (failed == 1) {
- break;
- }
- times += 1;
- }
- PrintAndLog("Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen);
-
- // Remodulating for tag cloning
- GraphTraceLen = 32*uidlen;
- i = 0;
- int phase = 0;
- for (bit = 0; bit < uidlen; bit++) {
- if (bits[bit] == 0) {
- phase = 0;
- } else {
- phase = 1;
- }
- int j;
- for (j = 0; j < 32; j++) {
- GraphBuffer[i++] = phase;
- phase = !phase;
- }
- }
-
- RepaintGraphWindow();
- return 1;
+ for (i = 0; i < GraphTraceLen-1; i += 2) {
+ count += 1;
+ if ((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) {
+ if (state == 0) {
+ for (j = 0; j < count - 8; j += 16) {
+ rawbits[rawbit++] = 0;
+ }
+ if ((abs(count - j)) > worst) {
+ worst = abs(count - j);
+ worstPos = i;
+ }
+ }
+ state = 1;
+ count = 0;
+ } else if ((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) {
+ if (state == 1) {
+ for (j = 0; j < count - 8; j += 16) {
+ rawbits[rawbit++] = 1;
+ }
+ if ((abs(count - j)) > worst) {
+ worst = abs(count - j);
+ worstPos = i;
+ }
+ }
+ state = 0;
+ count = 0;
+ }
+ }
+ if (rawbit>0){
+ PrintAndLog("Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32);
+ PrintAndLog("worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
+ } else return 0;
+ // Finding the start of a UID
+ int uidlen, long_wait;
+ if (strcmp(Cmd, "224") == 0) {
+ uidlen = 224;
+ long_wait = 30;
+ } else {
+ uidlen = 64;
+ long_wait = 29;
+ }
+ int start;
+ int first = 0;
+ for (start = 0; start <= rawbit - uidlen; start++) {
+ first = rawbits[start];
+ for (i = start; i < start + long_wait; i++) {
+ if (rawbits[i] != first) {
+ break;
+ }
+ }
+ if (i == (start + long_wait)) {
+ break;
+ }
+ }
+ if (start == rawbit - uidlen + 1) {
+ PrintAndLog("nothing to wait for");
+ return 0;
+ }
+
+ // Inverting signal if needed
+ if (first == 1) {
+ for (i = start; i < rawbit; i++) {
+ rawbits[i] = !rawbits[i];
+ }
+ }
+
+ // Dumping UID
+ uint8_t bits[224];
+ char showbits[225];
+ showbits[uidlen]='\0';
+ int bit;
+ i = start;
+ int times = 0;
+ if (uidlen > rawbit) {
+ PrintAndLog("Warning: not enough raw bits to get a full UID");
+ for (bit = 0; bit < rawbit; bit++) {
+ bits[bit] = rawbits[i++];
+ // As we cannot know the parity, let's use "." and "/"
+ showbits[bit] = '.' + bits[bit];
+ }
+ showbits[bit+1]='\0';
+ PrintAndLog("Partial UID=%s", showbits);
+ return 0;
+ } else {
+ for (bit = 0; bit < uidlen; bit++) {
+ bits[bit] = rawbits[i++];
+ showbits[bit] = '0' + bits[bit];
+ }
+ times = 1;
+ }
+
+ //convert UID to HEX
+ uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
+ int idx;
+ uid1=0;
+ uid2=0;
+ if (uidlen==64){
+ for( idx=0; idx<64; idx++) {
+ if (showbits[idx] == '0') {
+ uid1=(uid1<<1)|(uid2>>31);
+ uid2=(uid2<<1)|0;
+ } else {
+ uid1=(uid1<<1)|(uid2>>31);
+ uid2=(uid2<<1)|1;
+ }
+ }
+ PrintAndLog("UID=%s (%x%08x)", showbits, uid1, uid2);
+ }
+ else {
+ uid3=0;
+ uid4=0;
+ uid5=0;
+ uid6=0;
+ uid7=0;
+ for( idx=0; idx<224; idx++) {
+ uid1=(uid1<<1)|(uid2>>31);
+ uid2=(uid2<<1)|(uid3>>31);
+ uid3=(uid3<<1)|(uid4>>31);
+ uid4=(uid4<<1)|(uid5>>31);
+ uid5=(uid5<<1)|(uid6>>31);
+ uid6=(uid6<<1)|(uid7>>31);
+ if (showbits[idx] == '0') uid7=(uid7<<1)|0;
+ else uid7=(uid7<<1)|1;
+ }
+ PrintAndLog("UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
+ }
+
+ // Checking UID against next occurrences
+ for (; i + uidlen <= rawbit;) {
+ int failed = 0;
+ for (bit = 0; bit < uidlen; bit++) {
+ if (bits[bit] != rawbits[i++]) {
+ failed = 1;
+ break;
+ }
+ }
+ if (failed == 1) {
+ break;
+ }
+ times += 1;
+ }
+ PrintAndLog("Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen);
+
+ // Remodulating for tag cloning
+ GraphTraceLen = 32*uidlen;
+ i = 0;
+ int phase = 0;
+ for (bit = 0; bit < uidlen; bit++) {
+ if (bits[bit] == 0) {
+ phase = 0;
+ } else {
+ phase = 1;
+ }
+ int j;
+ for (j = 0; j < 32; j++) {
+ GraphBuffer[i++] = phase;
+ phase = !phase;
+ }
+ }
+
+ RepaintGraphWindow();
+ return 1;
}
int CmdIndalaClone(const char *Cmd)
{
- unsigned int uid1, uid2, uid3, uid4, uid5, uid6, uid7;
- UsbCommand c;
- uid1=0;
- uid2=0;
- uid3=0;
- uid4=0;
- uid5=0;
- uid6=0;
- uid7=0;
- int n = 0, i = 0;
-
- if (strchr(Cmd,'l') != 0) {
- while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
- uid1 = (uid1 << 4) | (uid2 >> 28);
- uid2 = (uid2 << 4) | (uid3 >> 28);
- uid3 = (uid3 << 4) | (uid4 >> 28);
- uid4 = (uid4 << 4) | (uid5 >> 28);
- uid5 = (uid5 << 4) | (uid6 >> 28);
- uid6 = (uid6 << 4) | (uid7 >> 28);
- uid7 = (uid7 << 4) | (n & 0xf);
- }
- PrintAndLog("Cloning 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7);
- c.cmd = CMD_INDALA_CLONE_TAG_L;
- c.d.asDwords[0] = uid1;
- c.d.asDwords[1] = uid2;
- c.d.asDwords[2] = uid3;
- c.d.asDwords[3] = uid4;
- c.d.asDwords[4] = uid5;
- c.d.asDwords[5] = uid6;
- c.d.asDwords[6] = uid7;
- }
- else
- {
- while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
- uid1 = (uid1 << 4) | (uid2 >> 28);
- uid2 = (uid2 << 4) | (n & 0xf);
- }
- PrintAndLog("Cloning 64bit tag with UID %x%08x", uid1, uid2);
- c.cmd = CMD_INDALA_CLONE_TAG;
- c.arg[0] = uid1;
- c.arg[1] = uid2;
- }
-
- SendCommand(&c);
- return 0;
+ unsigned int uid1, uid2, uid3, uid4, uid5, uid6, uid7;
+ UsbCommand c;
+ uid1=0;
+ uid2=0;
+ uid3=0;
+ uid4=0;
+ uid5=0;
+ uid6=0;
+ uid7=0;
+ int n = 0, i = 0;
+
+ if (strchr(Cmd,'l') != 0) {
+ while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
+ uid1 = (uid1 << 4) | (uid2 >> 28);
+ uid2 = (uid2 << 4) | (uid3 >> 28);
+ uid3 = (uid3 << 4) | (uid4 >> 28);
+ uid4 = (uid4 << 4) | (uid5 >> 28);
+ uid5 = (uid5 << 4) | (uid6 >> 28);
+ uid6 = (uid6 << 4) | (uid7 >> 28);
+ uid7 = (uid7 << 4) | (n & 0xf);
+ }
+ PrintAndLog("Cloning 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7);
+ c.cmd = CMD_INDALA_CLONE_TAG_L;
+ c.d.asDwords[0] = uid1;
+ c.d.asDwords[1] = uid2;
+ c.d.asDwords[2] = uid3;
+ c.d.asDwords[3] = uid4;
+ c.d.asDwords[4] = uid5;
+ c.d.asDwords[5] = uid6;
+ c.d.asDwords[6] = uid7;
+ }
+ else
+ {
+ while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
+ uid1 = (uid1 << 4) | (uid2 >> 28);
+ uid2 = (uid2 << 4) | (n & 0xf);
+ }
+ PrintAndLog("Cloning 64bit tag with UID %x%08x", uid1, uid2);
+ c.cmd = CMD_INDALA_CLONE_TAG;
+ c.arg[0] = uid1;
+ c.arg[1] = uid2;
+ }
+
+ SendCommand(&c);
+ return 0;
}
int CmdLFRead(const char *Cmd)
{
- UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K};
- // 'h' means higher-low-frequency, 134 kHz
- if(*Cmd == 'h') {
- c.arg[0] = 1;
- } else if (*Cmd == '\0') {
- c.arg[0] = 0;
- } else if (sscanf(Cmd, "%"lli, &c.arg[0]) != 1) {
- PrintAndLog("use 'read' or 'read h', or 'read <divisor>'");
- return 0;
- }
- SendCommand(&c);
- WaitForResponse(CMD_ACK,NULL);
- return 0;
+ UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K};
+ // 'h' means higher-low-frequency, 134 kHz
+ if(*Cmd == 'h') {
+ c.arg[0] = 1;
+ } else if (*Cmd == '\0') {
+ c.arg[0] = 0;
+ } else if (sscanf(Cmd, "%"lli, &c.arg[0]) != 1) {
+ PrintAndLog("use 'read' or 'read h', or 'read <divisor>'");
+ return 0;
+ }
+ SendCommand(&c);
+ WaitForResponse(CMD_ACK,NULL);
+ return 0;
}
static void ChkBitstream(const char *str)
{
- int i;
-
- /* convert to bitstream if necessary */
- for (i = 0; i < (int)(GraphTraceLen / 2); i++)
- {
- if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0)
- {
- CmdBitstream(str);
- break;
- }
- }
+ int i;
+
+ /* convert to bitstream if necessary */
+ for (i = 0; i < (int)(GraphTraceLen / 2); i++)
+ {
+ if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0)
+ {
+ CmdBitstream(str);
+ break;
+ }
+ }
}
int CmdLFSim(const char *Cmd)
{
- int i;
- static int gap;
-
- sscanf(Cmd, "%i", &gap);
-
- /* convert to bitstream if necessary */
- ChkBitstream(Cmd);
-
- PrintAndLog("Sending data, please wait...");
- for (i = 0; i < GraphTraceLen; i += 48) {
- UsbCommand c={CMD_DOWNLOADED_SIM_SAMPLES_125K, {i, 0, 0}};
- int j;
- for (j = 0; j < 48; j++) {
- c.d.asBytes[j] = GraphBuffer[i+j];
- }
- SendCommand(&c);
- WaitForResponse(CMD_ACK,NULL);
- }
-
- PrintAndLog("Starting simulator...");
- UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}};
- SendCommand(&c);
- return 0;
+ int i;
+ static int gap;
+
+ sscanf(Cmd, "%i", &gap);
+
+ /* convert to bitstream if necessary */
+ ChkBitstream(Cmd);
+
+ PrintAndLog("Sending data, please wait...");
+ for (i = 0; i < GraphTraceLen; i += 48) {
+ UsbCommand c={CMD_DOWNLOADED_SIM_SAMPLES_125K, {i, 0, 0}};
+ int j;
+ for (j = 0; j < 48; j++) {
+ c.d.asBytes[j] = GraphBuffer[i+j];
+ }
+ SendCommand(&c);
+ WaitForResponse(CMD_ACK,NULL);
+ }
+
+ PrintAndLog("Starting simulator...");
+ UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}};
+ SendCommand(&c);
+ return 0;
}
int CmdLFSimBidir(const char *Cmd)
{
- /* Set ADC to twice the carrier for a slight supersampling */
- UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}};
- SendCommand(&c);
- return 0;
+ /* Set ADC to twice the carrier for a slight supersampling */
+ UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}};
+ SendCommand(&c);
+ return 0;
}
/* simulate an LF Manchester encoded tag with specified bitstream, clock rate and inter-id gap */
int CmdLFSimManchester(const char *Cmd)
{
- static int clock, gap;
- static char data[1024], gapstring[8];
+ static int clock, gap;
+ static char data[1024], gapstring[8];
- /* get settings/bits */
- sscanf(Cmd, "%i %s %i", &clock, &data[0], &gap);
+ /* get settings/bits */
+ sscanf(Cmd, "%i %s %i", &clock, &data[0], &gap);
- /* clear our graph */
- ClearGraph(0);
+ /* clear our graph */
+ ClearGraph(0);
- /* fill it with our bitstream */
- for (int i = 0; i < strlen(data) ; ++i)
- AppendGraph(0, clock, data[i]- '0');
+ /* fill it with our bitstream */
+ for (int i = 0; i < strlen(data) ; ++i)
+ AppendGraph(0, clock, data[i]- '0');
- /* modulate */
- CmdManchesterMod("");
+ /* modulate */
+ CmdManchesterMod("");
- /* show what we've done */
- RepaintGraphWindow();
+ /* show what we've done */
+ RepaintGraphWindow();
- /* simulate */
- sprintf(&gapstring[0], "%i", gap);
- CmdLFSim(gapstring);
- return 0;
+ /* simulate */
+ sprintf(&gapstring[0], "%i", gap);
+ CmdLFSim(gapstring);
+ return 0;
}
int CmdLFSnoop(const char *Cmd)
{
- UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES};
- // 'h' means higher-low-frequency, 134 kHz
- c.arg[0] = 0;
- c.arg[1] = -1;
- if (*Cmd == 0) {
- // empty
- } else if (*Cmd == 'l') {
- sscanf(Cmd, "l %"lli, &c.arg[1]);
- } else if(*Cmd == 'h') {
- c.arg[0] = 1;
- sscanf(Cmd, "h %"lli, &c.arg[1]);
- } else if (sscanf(Cmd, "%"lli" %"lli, &c.arg[0], &c.arg[1]) < 1) {
- PrintAndLog("use 'snoop' or 'snoop {l,h} [trigger threshold]', or 'snoop <divisor> [trigger threshold]'");
- return 0;
- }
- SendCommand(&c);
- WaitForResponse(CMD_ACK,NULL);
- return 0;
+ UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES};
+ // 'h' means higher-low-frequency, 134 kHz
+ c.arg[0] = 0;
+ c.arg[1] = -1;
+ if (*Cmd == 0) {
+ // empty
+ } else if (*Cmd == 'l') {
+ sscanf(Cmd, "l %"lli, &c.arg[1]);
+ } else if(*Cmd == 'h') {
+ c.arg[0] = 1;
+ sscanf(Cmd, "h %"lli, &c.arg[1]);
+ } else if (sscanf(Cmd, "%"lli" %"lli, &c.arg[0], &c.arg[1]) < 1) {
+ PrintAndLog("use 'snoop' or 'snoop {l,h} [trigger threshold]', or 'snoop <divisor> [trigger threshold]'");
+ return 0;
+ }
+ SendCommand(&c);
+ WaitForResponse(CMD_ACK,NULL);
+ return 0;
}
int CmdVchDemod(const char *Cmd)
{
- // Is this the entire sync pattern, or does this also include some
- // data bits that happen to be the same everywhere? That would be
- // lovely to know.
- static const int SyncPattern[] = {
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- };
-
- // So first, we correlate for the sync pattern, and mark that.
- int bestCorrel = 0, bestPos = 0;
- int i;
- // It does us no good to find the sync pattern, with fewer than
- // 2048 samples after it...
- for (i = 0; i < (GraphTraceLen-2048); i++) {
- int sum = 0;
- int j;
- for (j = 0; j < arraylen(SyncPattern); j++) {
- sum += GraphBuffer[i+j]*SyncPattern[j];
- }
- if (sum > bestCorrel) {
- bestCorrel = sum;
- bestPos = i;
- }
- }
- PrintAndLog("best sync at %d [metric %d]", bestPos, bestCorrel);
-
- char bits[257];
- bits[256] = '\0';
-
- int worst = INT_MAX;
- int worstPos = 0;
-
- for (i = 0; i < 2048; i += 8) {
- int sum = 0;
- int j;
- for (j = 0; j < 8; j++) {
- sum += GraphBuffer[bestPos+i+j];
- }
- if (sum < 0) {
- bits[i/8] = '.';
- } else {
- bits[i/8] = '1';
- }
- if(abs(sum) < worst) {
- worst = abs(sum);
- worstPos = i;
- }
- }
- PrintAndLog("bits:");
- PrintAndLog("%s", bits);
- PrintAndLog("worst metric: %d at pos %d", worst, worstPos);
-
- if (strcmp(Cmd, "clone")==0) {
- GraphTraceLen = 0;
- char *s;
- for(s = bits; *s; s++) {
- int j;
- for(j = 0; j < 16; j++) {
- GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0;
- }
- }
- RepaintGraphWindow();
- }
- return 0;
+ // Is this the entire sync pattern, or does this also include some
+ // data bits that happen to be the same everywhere? That would be
+ // lovely to know.
+ static const int SyncPattern[] = {
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ };
+
+ // So first, we correlate for the sync pattern, and mark that.
+ int bestCorrel = 0, bestPos = 0;
+ int i;
+ // It does us no good to find the sync pattern, with fewer than
+ // 2048 samples after it...
+ for (i = 0; i < (GraphTraceLen-2048); i++) {
+ int sum = 0;
+ int j;
+ for (j = 0; j < arraylen(SyncPattern); j++) {
+ sum += GraphBuffer[i+j]*SyncPattern[j];
+ }
+ if (sum > bestCorrel) {
+ bestCorrel = sum;
+ bestPos = i;
+ }
+ }
+ PrintAndLog("best sync at %d [metric %d]", bestPos, bestCorrel);
+
+ char bits[257];
+ bits[256] = '\0';
+
+ int worst = INT_MAX;
+ int worstPos = 0;
+
+ for (i = 0; i < 2048; i += 8) {
+ int sum = 0;
+ int j;
+ for (j = 0; j < 8; j++) {
+ sum += GraphBuffer[bestPos+i+j];
+ }
+ if (sum < 0) {
+ bits[i/8] = '.';
+ } else {
+ bits[i/8] = '1';
+ }
+ if(abs(sum) < worst) {
+ worst = abs(sum);
+ worstPos = i;
+ }
+ }
+ PrintAndLog("bits:");
+ PrintAndLog("%s", bits);
+ PrintAndLog("worst metric: %d at pos %d", worst, worstPos);
+
+ if (strcmp(Cmd, "clone")==0) {
+ GraphTraceLen = 0;
+ char *s;
+ for(s = bits; *s; s++) {
+ int j;
+ for(j = 0; j < 16; j++) {
+ GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0;
+ }
+ }
+ RepaintGraphWindow();
+ }
+ return 0;
}
//by marshmellow
int CmdLFfind(const char *Cmd)
{
- int ans=0;
- if (!offline){
- ans=CmdLFRead("");
- ans=CmdSamples("20000");
- }
- if (GraphTraceLen<1000) return 0;
- PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag");
- PrintAndLog("Checking for known tags:");
-
- ans=Cmdaskmandemod("");
- if (ans>0) {
- PrintAndLog("Valid EM410x ID Found!");
- return 1;
- }
- ans=CmdFSKdemodHID("");
- if (ans>0) {
- PrintAndLog("Valid HID Prox ID Found!");
- return 1;
- }
- ans=CmdFSKdemodIO("");
- if (ans>0) {
- PrintAndLog("Valid IO Prox ID Found!");
- return 1;
- }
- //add psk and indala
- ans=CmdIndalaDecode("");
- if (ans>0) {
- PrintAndLog("Valid Indala ID Found!");
- return 1;
- }
+ int ans=0;
+ if (!offline){
+ ans=CmdLFRead("");
+ ans=CmdSamples("20000");
+ }
+ if (GraphTraceLen<1000) return 0;
+ PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag");
+ PrintAndLog("Checking for known tags:");
+
+ ans=Cmdaskmandemod("");
+ if (ans>0) {
+ PrintAndLog("Valid EM410x ID Found!");
+ return 1;
+ }
+ ans=CmdFSKdemodHID("");
+ if (ans>0) {
+ PrintAndLog("Valid HID Prox ID Found!");
+ return 1;
+ }
+ ans=CmdFSKdemodIO("");
+ if (ans>0) {
+ PrintAndLog("Valid IO Prox ID Found!");
+ return 1;
+ }
+ //add psk and indala
+ ans=CmdIndalaDecode("");
+ if (ans>0) {
+ PrintAndLog("Valid Indala ID Found!");
+ return 1;
+ }
// ans=CmdIndalaDemod("224");
// if (ans>0) return 1;
- PrintAndLog("No Known Tags Found!\n");
- return 0;
+ PrintAndLog("No Known Tags Found!\n");
+ return 0;
}
static command_t CommandTable[] =
{
- {"help", CmdHelp, 1, "This help"},
- {"cmdread", CmdLFCommandRead, 0, "<off period> <'0' period> <'1' period> <command> ['h'] -- Modulate LF reader field to send command before read (all periods in microseconds) (option 'h' for 134)"},
- {"em4x", CmdLFEM4X, 1, "{ EM4X RFIDs... }"},
- {"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"},
- {"hid", CmdLFHID, 1, "{ HID RFIDs... }"},
- {"io", CmdLFIO, 1, "{ ioProx tags... }"},
- {"indalademod", CmdIndalaDemod, 1, "['224'] -- Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
- {"indalaclone", CmdIndalaClone, 0, "<UID> ['l']-- Clone Indala to T55x7 (tag must be in antenna)(UID in HEX)(option 'l' for 224 UID"},
- {"read", CmdLFRead, 0, "['h' or <divisor>] -- Read 125/134 kHz LF ID-only tag (option 'h' for 134, alternatively: f=12MHz/(divisor+1))"},
- {"search", CmdLFfind, 1, "Read and Search for valid known tag (in offline mode it you can load first then search)"},
- {"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
- {"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
- {"simman", CmdLFSimManchester, 0, "<Clock> <Bitstream> [GAP] Simulate arbitrary Manchester LF tag"},
- {"snoop", CmdLFSnoop, 0, "['l'|'h'|<divisor>] [trigger threshold]-- Snoop LF (l:125khz, h:134khz)"},
- {"ti", CmdLFTI, 1, "{ TI RFIDs... }"},
- {"hitag", CmdLFHitag, 1, "{ Hitag tags and transponders... }"},
- {"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"},
- {"t55xx", CmdLFT55XX, 1, "{ T55xx RFIDs... }"},
- {"pcf7931", CmdLFPCF7931, 1, "{PCF7931 RFIDs...}"},
- {NULL, NULL, 0, NULL}
+ {"help", CmdHelp, 1, "This help"},
+ {"cmdread", CmdLFCommandRead, 0, "<off period> <'0' period> <'1' period> <command> ['h'] -- Modulate LF reader field to send command before read (all periods in microseconds) (option 'h' for 134)"},
+ {"em4x", CmdLFEM4X, 1, "{ EM4X RFIDs... }"},
+ {"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"},
+ {"hid", CmdLFHID, 1, "{ HID RFIDs... }"},
+ {"io", CmdLFIO, 1, "{ ioProx tags... }"},
+ {"indalademod", CmdIndalaDemod, 1, "['224'] -- Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
+ {"indalaclone", CmdIndalaClone, 0, "<UID> ['l']-- Clone Indala to T55x7 (tag must be in antenna)(UID in HEX)(option 'l' for 224 UID"},
+ {"read", CmdLFRead, 0, "['h' or <divisor>] -- Read 125/134 kHz LF ID-only tag (option 'h' for 134, alternatively: f=12MHz/(divisor+1))"},
+ {"search", CmdLFfind, 1, "Read and Search for valid known tag (in offline mode it you can load first then search)"},
+ {"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
+ {"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
+ {"simman", CmdLFSimManchester, 0, "<Clock> <Bitstream> [GAP] Simulate arbitrary Manchester LF tag"},
+ {"snoop", CmdLFSnoop, 0, "['l'|'h'|<divisor>] [trigger threshold]-- Snoop LF (l:125khz, h:134khz)"},
+ {"ti", CmdLFTI, 1, "{ TI RFIDs... }"},
+ {"hitag", CmdLFHitag, 1, "{ Hitag tags and transponders... }"},
+ {"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"},
+ {"t55xx", CmdLFT55XX, 1, "{ T55xx RFIDs... }"},
+ {"pcf7931", CmdLFPCF7931, 1, "{PCF7931 RFIDs...}"},
+ {NULL, NULL, 0, NULL}
};
int CmdLF(const char *Cmd)
{
- CmdsParse(CommandTable, Cmd);
- return 0;
+ CmdsParse(CommandTable, Cmd);
+ return 0;
}
int CmdHelp(const char *Cmd)
{
- CmdsHelp(CommandTable);
- return 0;
+ CmdsHelp(CommandTable);
+ return 0;
}
/* write a bit to the graph */
void AppendGraph(int redraw, int clock, int bit)
{
- int i;
+ int i;
- for (i = 0; i < (int)(clock / 2); ++i)
- GraphBuffer[GraphTraceLen++] = bit ^ 1;
-
- for (i = (int)(clock / 2); i < clock; ++i)
- GraphBuffer[GraphTraceLen++] = bit;
+ for (i = 0; i < (int)(clock / 2); ++i)
+ GraphBuffer[GraphTraceLen++] = bit ^ 1;
- if (redraw)
- RepaintGraphWindow();
+ for (i = (int)(clock / 2); i < clock; ++i)
+ GraphBuffer[GraphTraceLen++] = bit;
+
+ if (redraw)
+ RepaintGraphWindow();
}
/* clear out our graph window */
int ClearGraph(int redraw)
{
- int gtl = GraphTraceLen;
- GraphTraceLen = 0;
+ int gtl = GraphTraceLen;
+ GraphTraceLen = 0;
- if (redraw)
- RepaintGraphWindow();
+ if (redraw)
+ RepaintGraphWindow();
- return gtl;
+ return gtl;
}
/*
* Detect clock rate
*/
- //decommissioned - has difficulty detecting rf/32
+ //decommissioned - has difficulty detecting rf/32
/*
int DetectClockOld(int peak)
{
- int i;
- int clock = 0xFFFF;
- int lastpeak = 0;
+ int i;
+ int clock = 0xFFFF;
+ int lastpeak = 0;
- // Detect peak if we don't have one
- if (!peak)
- for (i = 0; i < GraphTraceLen; ++i)
- if (GraphBuffer[i] > peak)
- peak = GraphBuffer[i];
+ // Detect peak if we don't have one
+ if (!peak)
+ for (i = 0; i < GraphTraceLen; ++i)
+ if (GraphBuffer[i] > peak)
+ peak = GraphBuffer[i];
// peak=(int)(peak*.75);
- for (i = 1; i < GraphTraceLen; ++i)
- {
- // If this is the beginning of a peak
- if (GraphBuffer[i - 1] != GraphBuffer[i] && GraphBuffer[i] >= peak)
- {
- // Find lowest difference between peaks
- if (lastpeak && i - lastpeak < clock)
- clock = i - lastpeak;
- lastpeak = i;
- }
- }
-
- return clock;
+ for (i = 1; i < GraphTraceLen; ++i)
+ {
+ // If this is the beginning of a peak
+ if (GraphBuffer[i - 1] != GraphBuffer[i] && GraphBuffer[i] >= peak)
+ {
+ // Find lowest difference between peaks
+ if (lastpeak && i - lastpeak < clock)
+ clock = i - lastpeak;
+ lastpeak = i;
+ }
+ }
+
+ return clock;
}
*/
/*
// maybe somehow adjust peak trimming value based on samples to fix?
int DetectASKClock(int peak)
{
- int i=0;
- int low=0;
- int clk[]={16,32,40,50,64,100,128,256};
- int loopCnt = 256;
- if (GraphTraceLen<loopCnt) loopCnt = GraphTraceLen;
- if (!peak){
- for (i=0;i<loopCnt;++i){
- if(GraphBuffer[i]>peak){
- peak = GraphBuffer[i];
- }
- if(GraphBuffer[i]<low){
- low = GraphBuffer[i];
- }
- }
- peak=(int)(peak*.75);
- low= (int)(low*.75);
- }
- int ii;
- int clkCnt;
- int tol = 0;
- int bestErr=1000;
- int errCnt[]={0,0,0,0,0,0,0,0};
- for(clkCnt=0; clkCnt<6;++clkCnt){
- if (clk[clkCnt]==32){
- tol=1;
- }else{
- tol=0;
- }
- bestErr=1000;
- for (ii=0; ii<loopCnt; ++ii){
- if ((GraphBuffer[ii]>=peak) || (GraphBuffer[ii]<=low)){
- errCnt[clkCnt]=0;
- for (i=0; i<((int)(GraphTraceLen/clk[clkCnt])-1); ++i){
- if (GraphBuffer[ii+(i*clk[clkCnt])]>=peak || GraphBuffer[ii+(i*clk[clkCnt])]<=low){
- }else if(GraphBuffer[ii+(i*clk[clkCnt])-tol]>=peak || GraphBuffer[ii+(i*clk[clkCnt])-tol]<=low){
- }else if(GraphBuffer[ii+(i*clk[clkCnt])+tol]>=peak || GraphBuffer[ii+(i*clk[clkCnt])+tol]<=low){
- }else{ //error no peak detected
- errCnt[clkCnt]++;
- }
- }
- if(errCnt[clkCnt]==0) return clk[clkCnt];
- if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt];
- }
- }
- }
- int iii=0;
- int best=0;
- for (iii=0; iii<6;++iii){
- if (errCnt[iii]<errCnt[best]){
- best = iii;
- }
- }
- // PrintAndLog("DEBUG: clkCnt: %d, ii: %d, i: %d peak: %d, low: %d, errcnt: %d, errCnt64: %d",clkCnt,ii,i,peak,low,errCnt[best],errCnt[4]);
- return clk[best];
+ int i=0;
+ int low=0;
+ int clk[]={16,32,40,50,64,100,128,256};
+ int loopCnt = 256;
+ if (GraphTraceLen<loopCnt) loopCnt = GraphTraceLen;
+ if (!peak){
+ for (i=0;i<loopCnt;++i){
+ if(GraphBuffer[i]>peak){
+ peak = GraphBuffer[i];
+ }
+ if(GraphBuffer[i]<low){
+ low = GraphBuffer[i];
+ }
+ }
+ peak=(int)(peak*.75);
+ low= (int)(low*.75);
+ }
+ int ii;
+ int clkCnt;
+ int tol = 0;
+ int bestErr=1000;
+ int errCnt[]={0,0,0,0,0,0,0,0};
+ for(clkCnt=0; clkCnt<6;++clkCnt){
+ if (clk[clkCnt]==32){
+ tol=1;
+ }else{
+ tol=0;
+ }
+ bestErr=1000;
+ for (ii=0; ii<loopCnt; ++ii){
+ if ((GraphBuffer[ii]>=peak) || (GraphBuffer[ii]<=low)){
+ errCnt[clkCnt]=0;
+ for (i=0; i<((int)(GraphTraceLen/clk[clkCnt])-1); ++i){
+ if (GraphBuffer[ii+(i*clk[clkCnt])]>=peak || GraphBuffer[ii+(i*clk[clkCnt])]<=low){
+ }else if(GraphBuffer[ii+(i*clk[clkCnt])-tol]>=peak || GraphBuffer[ii+(i*clk[clkCnt])-tol]<=low){
+ }else if(GraphBuffer[ii+(i*clk[clkCnt])+tol]>=peak || GraphBuffer[ii+(i*clk[clkCnt])+tol]<=low){
+ }else{ //error no peak detected
+ errCnt[clkCnt]++;
+ }
+ }
+ if(errCnt[clkCnt]==0) return clk[clkCnt];
+ if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt];
+ }
+ }
+ }
+ int iii=0;
+ int best=0;
+ for (iii=0; iii<6;++iii){
+ if (errCnt[iii]<errCnt[best]){
+ best = iii;
+ }
+ }
+ // PrintAndLog("DEBUG: clkCnt: %d, ii: %d, i: %d peak: %d, low: %d, errcnt: %d, errCnt64: %d",clkCnt,ii,i,peak,low,errCnt[best],errCnt[4]);
+ return clk[best];
}
*/
-void setGraphBuf(uint8_t *buff,int size)
+void setGraphBuf(uint8_t *buff, size_t size)
{
- int i=0;
- ClearGraph(0);
- for (; i < size; ++i){
- GraphBuffer[i]=buff[i]-128;
- }
- GraphTraceLen=size;
- RepaintGraphWindow();
- return;
+ int i=0;
+ ClearGraph(0);
+ for (; i < size; ++i){
+ GraphBuffer[i]=buff[i]-128;
+ }
+ GraphTraceLen=size;
+ RepaintGraphWindow();
+ return;
}
-int getFromGraphBuf(uint8_t *buff)
+size_t getFromGraphBuf(uint8_t *buff)
{
- uint32_t i;
- for (i=0;i<GraphTraceLen;++i){
- if (GraphBuffer[i]>127) GraphBuffer[i]=127; //trim
- if (GraphBuffer[i]<-127) GraphBuffer[i]=-127; //trim
- buff[i]=(uint8_t)(GraphBuffer[i]+128);
- }
- return i;
+ uint32_t i;
+ for (i=0;i<GraphTraceLen;++i){
+ if (GraphBuffer[i]>127) GraphBuffer[i]=127; //trim
+ if (GraphBuffer[i]<-127) GraphBuffer[i]=-127; //trim
+ buff[i]=(uint8_t)(GraphBuffer[i]+128);
+ }
+ return i;
}
/* Get or auto-detect clock rate */
int GetClock(const char *str, int peak, int verbose)
{
- int clock;
+ int clock;
// int clock2;
- sscanf(str, "%i", &clock);
- if (!strcmp(str, ""))
- clock = 0;
-
- /* Auto-detect clock */
- if (!clock)
- {
- uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
- int size = getFromGraphBuf(grph);
- clock = DetectASKClock(grph,size,0);
- //clock2 = DetectClock2(peak);
- /* Only print this message if we're not looping something */
- if (!verbose){
- PrintAndLog("Auto-detected clock rate: %d", clock);
- //PrintAndLog("clock2: %d",clock2);
- }
- }
-
- return clock;
+ sscanf(str, "%i", &clock);
+ if (!strcmp(str, ""))
+ clock = 0;
+
+ /* Auto-detect clock */
+ if (!clock)
+ {
+ uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
+ size_t size = getFromGraphBuf(grph);
+ clock = DetectASKClock(grph,size,0);
+ //clock2 = DetectClock2(peak);
+ /* Only print this message if we're not looping something */
+ if (!verbose){
+ PrintAndLog("Auto-detected clock rate: %d", clock);
+ //PrintAndLog("clock2: %d",clock2);
+ }
+ }
+
+ return clock;
}
int GetNRZpskClock(const char *str, int peak, int verbose)
{
// return GetClock(str,peak,verbose);
- int clock;
- // int clock2;
- sscanf(str, "%i", &clock);
- if (!strcmp(str, ""))
- clock = 0;
-
- /* Auto-detect clock */
- if (!clock)
- {
- uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
- int size = getFromGraphBuf(grph);
- clock = DetectpskNRZClock(grph,size,0);
- //clock2 = DetectClock2(peak);
- /* Only print this message if we're not looping something */
- if (!verbose){
- PrintAndLog("Auto-detected clock rate: %d", clock);
- //PrintAndLog("clock2: %d",clock2);
- }
- }
- return clock;
+ int clock;
+ // int clock2;
+ sscanf(str, "%i", &clock);
+ if (!strcmp(str, ""))
+ clock = 0;
+
+ /* Auto-detect clock */
+ if (!clock)
+ {
+ uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
+ size_t size = getFromGraphBuf(grph);
+ clock = DetectpskNRZClock(grph,size,0);
+ //clock2 = DetectClock2(peak);
+ /* Only print this message if we're not looping something */
+ if (!verbose){
+ PrintAndLog("Auto-detected clock rate: %d", clock);
+ //PrintAndLog("clock2: %d",clock2);
+ }
+ }
+ return clock;
}
-// Get or auto-detect clock rate
+// Get or auto-detect clock rate
/*
int GetNRZpskClock(const char *str, int peak, int verbose)
{
- int clock;
+ int clock;
// int clock2;
- sscanf(str, "%i", &clock);
- if (!strcmp(str, ""))
- clock = 0;
-
- // Auto-detect clock
- if (!clock)
- {
- uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
- int size = getFromGraphBuf(grph);
- clock = DetectASKClock(grph,size,0);
- //clock2 = DetectClock2(peak);
- // Only print this message if we're not looping something
- if (!verbose){
- PrintAndLog("Auto-detected clock rate: %d", clock);
- //PrintAndLog("clock2: %d",clock2);
- }
- }
- return clock;
+ sscanf(str, "%i", &clock);
+ if (!strcmp(str, ""))
+ clock = 0;
+
+ // Auto-detect clock
+ if (!clock)
+ {
+ uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
+ int size = getFromGraphBuf(grph);
+ clock = DetectASKClock(grph,size,0);
+ //clock2 = DetectClock2(peak);
+ // Only print this message if we're not looping something
+ if (!verbose){
+ PrintAndLog("Auto-detected clock rate: %d", clock);
+ //PrintAndLog("clock2: %d",clock2);
+ }
+ }
+ return clock;
}
-*/
\ No newline at end of file
+*/
void AppendGraph(int redraw, int clock, int bit);
int ClearGraph(int redraw);
//int DetectClock(int peak);
-int getFromGraphBuf(uint8_t *buff);
+size_t getFromGraphBuf(uint8_t *buff);
int GetClock(const char *str, int peak, int verbose);
int GetNRZpskClock(const char *str, int peak, int verbose);
-void setGraphBuf(uint8_t *buff,int size);
+void setGraphBuf(uint8_t *buff, size_t size);
#define MAX_GRAPH_TRACE_LEN (1024*128)
extern int GraphBuffer[MAX_GRAPH_TRACE_LEN];
//-----------------------------------------------------------------------------
-// Copyright (C) 2014
+// Copyright (C) 2014
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
-uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen)
+uint64_t Em410xDecode(uint8_t *BitStream, size_t size)
{
- //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
- // otherwise could be a void with no arguments
- //set defaults
- int high=0, low=128;
- uint64_t lo=0; //hi=0,
-
- uint32_t i = 0;
- uint32_t initLoopMax = 65;
- if (initLoopMax>BitLen) initLoopMax=BitLen;
-
- for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values
- {
- if (BitStream[i] > high)
- high = BitStream[i];
- else if (BitStream[i] < low)
- low = BitStream[i];
- }
- if (((high !=1)||(low !=0))){ //allow only 1s and 0s
- // PrintAndLog("no data found");
- return 0;
- }
- uint8_t parityTest=0;
- // 111111111 bit pattern represent start of frame
- uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1};
- uint32_t idx = 0;
- uint32_t ii=0;
- uint8_t resetCnt = 0;
- while( (idx + 64) < BitLen) {
-restart:
- // search for a start of frame marker
- if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
- { // frame marker found
- idx+=9;//sizeof(frame_marker_mask);
- for (i=0; i<10;i++){
- for(ii=0; ii<5; ++ii){
- parityTest += BitStream[(i*5)+ii+idx];
- }
- if (parityTest== ((parityTest>>1)<<1)){
- parityTest=0;
- for (ii=0; ii<4;++ii){
- //hi = (hi<<1)|(lo>>31);
- lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]);
- }
- //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo);
- }else {//parity failed
- //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]);
- parityTest=0;
- idx-=8;
- if (resetCnt>5)return 0;
- resetCnt++;
- goto restart;//continue;
- }
- }
- //skip last 5 bit parity test for simplicity.
- return lo;
- }else{
- idx++;
- }
- }
- return 0;
+ //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
+ // otherwise could be a void with no arguments
+ //set defaults
+ int high=0, low=128;
+ uint64_t lo=0; //hi=0,
+
+ uint32_t i = 0;
+ uint32_t initLoopMax = 65;
+ if (initLoopMax>size) initLoopMax=size;
+
+ for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values
+ {
+ if (BitStream[i] > high)
+ high = BitStream[i];
+ else if (BitStream[i] < low)
+ low = BitStream[i];
+ }
+ if (((high !=1)||(low !=0))){ //allow only 1s and 0s
+ // PrintAndLog("no data found");
+ return 0;
+ }
+ uint8_t parityTest=0;
+ // 111111111 bit pattern represent start of frame
+ uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1};
+ uint32_t idx = 0;
+ uint32_t ii=0;
+ uint8_t resetCnt = 0;
+ while( (idx + 64) < size) {
+ restart:
+ // search for a start of frame marker
+ if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ { // frame marker found
+ idx+=9;//sizeof(frame_marker_mask);
+ for (i=0; i<10;i++){
+ for(ii=0; ii<5; ++ii){
+ parityTest += BitStream[(i*5)+ii+idx];
+ }
+ if (parityTest== ((parityTest>>1)<<1)){
+ parityTest=0;
+ for (ii=0; ii<4;++ii){
+ //hi = (hi<<1)|(lo>>31);
+ lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]);
+ }
+ //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo);
+ }else {//parity failed
+ //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]);
+ parityTest=0;
+ idx-=8;
+ if (resetCnt>5)return 0;
+ resetCnt++;
+ goto restart;//continue;
+ }
+ }
+ //skip last 5 bit parity test for simplicity.
+ return lo;
+ }else{
+ idx++;
+ }
+ }
+ return 0;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
-//attempts to demodulate ask while decoding manchester
+//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
-int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert)
+int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
{
- int i;
- int high = 0, low = 128;
- *clk=DetectASKClock(BinStream,(size_t)*BitLen,*clk); //clock default
-
- if (*clk<8) *clk =64;
- if (*clk<32) *clk=32;
- if (*invert != 0 && *invert != 1) *invert=0;
- uint32_t initLoopMax = 200;
- if (initLoopMax>*BitLen) initLoopMax=*BitLen;
- // Detect high and lows
- for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values
- {
- if (BinStream[i] > high)
- high = BinStream[i];
- else if (BinStream[i] < low)
- low = BinStream[i];
- }
- if ((high < 158) ){ //throw away static
- //PrintAndLog("no data found");
- return -2;
- }
- //25% fuzz in case highs and lows aren't clipped [marshmellow]
- high=(int)((high-128)*.75)+128;
- low= (int)((low-128)*.75)+128;
-
- //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
- int lastBit = 0; //set first clock check
- uint32_t bitnum = 0; //output counter
- int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
- if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
- int iii = 0;
- uint32_t gLen = *BitLen;
- if (gLen > 3000) gLen=3000;
- uint8_t errCnt =0;
- uint32_t bestStart = *BitLen;
- uint32_t bestErrCnt = (*BitLen/1000);
- uint32_t maxErr = (*BitLen/1000);
- //PrintAndLog("DEBUG - lastbit - %d",lastBit);
- //loop to find first wave that works
- for (iii=0; iii < gLen; ++iii){
- if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){
- lastBit=iii-*clk;
- errCnt=0;
- //loop through to see if this start location works
- for (i = iii; i < *BitLen; ++i) {
- if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
- lastBit+=*clk;
- } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
- //low found and we are expecting a bar
- lastBit+=*clk;
- } else {
- //mid value found or no bar supposed to be here
- if ((i-lastBit)>(*clk+tol)){
- //should have hit a high or low based on clock!!
-
- //debug
- //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
-
- errCnt++;
- lastBit+=*clk;//skip over until hit too many errors
- if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over
- }
- }
- if ((i-iii) >(400 * *clk)) break; //got plenty of bits
- }
- //we got more than 64 good bits and not all errors
- if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) {
- //possible good read
- if (errCnt==0){
- bestStart=iii;
- bestErrCnt=errCnt;
- break; //great read - finish
- }
- if (errCnt<bestErrCnt){ //set this as new best run
- bestErrCnt=errCnt;
- bestStart = iii;
- }
- }
- }
- }
- if (bestErrCnt<maxErr){
- //best run is good enough set to best run and set overwrite BinStream
- iii=bestStart;
- lastBit=bestStart-*clk;
- bitnum=0;
- for (i = iii; i < *BitLen; ++i) {
- if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
- lastBit+=*clk;
- BinStream[bitnum] = *invert;
- bitnum++;
- } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
- //low found and we are expecting a bar
- lastBit+=*clk;
- BinStream[bitnum] = 1-*invert;
- bitnum++;
- } else {
- //mid value found or no bar supposed to be here
- if ((i-lastBit)>(*clk+tol)){
- //should have hit a high or low based on clock!!
-
- //debug
- //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
- if (bitnum > 0){
- BinStream[bitnum]=77;
- bitnum++;
- }
-
- lastBit+=*clk;//skip over error
- }
- }
- if (bitnum >=400) break;
- }
- *BitLen=bitnum;
- } else{
- *invert=bestStart;
- *clk=iii;
- return -1;
- }
- return bestErrCnt;
+ int i;
+ int high = 0, low = 128;
+ *clk=DetectASKClock(BinStream, *size, *clk); //clock default
+
+ if (*clk<8) *clk =64;
+ if (*clk<32) *clk=32;
+ if (*invert != 0 && *invert != 1) *invert=0;
+ uint32_t initLoopMax = 200;
+ if (initLoopMax > *size) initLoopMax=*size;
+ // Detect high and lows
+ for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values
+ {
+ if (BinStream[i] > high)
+ high = BinStream[i];
+ else if (BinStream[i] < low)
+ low = BinStream[i];
+ }
+ if ((high < 158) ){ //throw away static
+ //PrintAndLog("no data found");
+ return -2;
+ }
+ //25% fuzz in case highs and lows aren't clipped [marshmellow]
+ high=(int)((high-128)*.75)+128;
+ low= (int)((low-128)*.75)+128;
+
+ //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
+ int lastBit = 0; //set first clock check
+ uint32_t bitnum = 0; //output counter
+ int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+ if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
+ int iii = 0;
+ uint32_t gLen = *size;
+ if (gLen > 3000) gLen=3000;
+ uint8_t errCnt =0;
+ uint32_t bestStart = *size;
+ uint32_t bestErrCnt = (*size/1000);
+ uint32_t maxErr = (*size/1000);
+ //PrintAndLog("DEBUG - lastbit - %d",lastBit);
+ //loop to find first wave that works
+ for (iii=0; iii < gLen; ++iii){
+ if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){
+ lastBit=iii-*clk;
+ errCnt=0;
+ //loop through to see if this start location works
+ for (i = iii; i < *size; ++i) {
+ if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
+ lastBit+=*clk;
+ } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
+ //low found and we are expecting a bar
+ lastBit+=*clk;
+ } else {
+ //mid value found or no bar supposed to be here
+ if ((i-lastBit)>(*clk+tol)){
+ //should have hit a high or low based on clock!!
+
+ //debug
+ //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
+
+ errCnt++;
+ lastBit+=*clk;//skip over until hit too many errors
+ if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over
+ }
+ }
+ if ((i-iii) >(400 * *clk)) break; //got plenty of bits
+ }
+ //we got more than 64 good bits and not all errors
+ if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) {
+ //possible good read
+ if (errCnt==0){
+ bestStart=iii;
+ bestErrCnt=errCnt;
+ break; //great read - finish
+ }
+ if (errCnt<bestErrCnt){ //set this as new best run
+ bestErrCnt=errCnt;
+ bestStart = iii;
+ }
+ }
+ }
+ }
+ if (bestErrCnt<maxErr){
+ //best run is good enough set to best run and set overwrite BinStream
+ iii=bestStart;
+ lastBit = bestStart - *clk;
+ bitnum=0;
+ for (i = iii; i < *size; ++i) {
+ if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
+ lastBit += *clk;
+ BinStream[bitnum] = *invert;
+ bitnum++;
+ } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
+ //low found and we are expecting a bar
+ lastBit+=*clk;
+ BinStream[bitnum] = 1-*invert;
+ bitnum++;
+ } else {
+ //mid value found or no bar supposed to be here
+ if ((i-lastBit)>(*clk+tol)){
+ //should have hit a high or low based on clock!!
+
+ //debug
+ //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
+ if (bitnum > 0){
+ BinStream[bitnum]=77;
+ bitnum++;
+ }
+
+ lastBit+=*clk;//skip over error
+ }
+ }
+ if (bitnum >=400) break;
+ }
+ *size=bitnum;
+ } else{
+ *invert=bestStart;
+ *clk=iii;
+ return -1;
+ }
+ return bestErrCnt;
}
//by marshmellow
//take 10 and 01 and manchester decode
//run through 2 times and take least errCnt
-int manrawdecode(uint8_t * BitStream, int *bitLen)
+int manrawdecode(uint8_t * BitStream, size_t *size)
{
- int bitnum=0;
- int errCnt =0;
- int i=1;
- int bestErr = 1000;
- int bestRun = 0;
- int ii=1;
- for (ii=1;ii<3;++ii){
- i=1;
- for (i=i+ii;i<*bitLen-2;i+=2){
- if(BitStream[i]==1 && (BitStream[i+1]==0)){
- } else if((BitStream[i]==0)&& BitStream[i+1]==1){
- } else {
- errCnt++;
- }
- if(bitnum>300) break;
- }
- if (bestErr>errCnt){
- bestErr=errCnt;
- bestRun=ii;
- }
- errCnt=0;
- }
- errCnt=bestErr;
- if (errCnt<20){
- ii=bestRun;
- i=1;
- for (i=i+ii;i<*bitLen-2;i+=2){
- if(BitStream[i]==1 && (BitStream[i+1]==0)){
- BitStream[bitnum++]=0;
- } else if((BitStream[i]==0)&& BitStream[i+1]==1){
- BitStream[bitnum++]=1;
- } else {
- BitStream[bitnum++]=77;
- //errCnt++;
- }
- if(bitnum>300) break;
- }
- *bitLen=bitnum;
- }
- return errCnt;
+ int bitnum=0;
+ int errCnt =0;
+ int i=1;
+ int bestErr = 1000;
+ int bestRun = 0;
+ int ii=1;
+ for (ii=1;ii<3;++ii){
+ i=1;
+ for (i=i+ii;i<*size-2;i+=2){
+ if(BitStream[i]==1 && (BitStream[i+1]==0)){
+ } else if((BitStream[i]==0)&& BitStream[i+1]==1){
+ } else {
+ errCnt++;
+ }
+ if(bitnum>300) break;
+ }
+ if (bestErr>errCnt){
+ bestErr=errCnt;
+ bestRun=ii;
+ }
+ errCnt=0;
+ }
+ errCnt=bestErr;
+ if (errCnt<20){
+ ii=bestRun;
+ i=1;
+ for (i=i+ii;i < *size-2;i+=2){
+ if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
+ BitStream[bitnum++]=0;
+ } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
+ BitStream[bitnum++]=1;
+ } else {
+ BitStream[bitnum++]=77;
+ //errCnt++;
+ }
+ if(bitnum>300) break;
+ }
+ *size=bitnum;
+ }
+ return errCnt;
}
//by marshmellow
//take 01 or 10 = 0 and 11 or 00 = 1
-int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset)
+int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset)
{
- uint8_t bitnum=0;
- uint32_t errCnt =0;
- uint32_t i=1;
- i=offset;
- for (;i<*bitLen-2;i+=2){
- if((BitStream[i]==1 && BitStream[i+1]==0)||(BitStream[i]==0 && BitStream[i+1]==1)){
- BitStream[bitnum++]=1;
- } else if((BitStream[i]==0 && BitStream[i+1]==0)||(BitStream[i]==1 && BitStream[i+1]==1)){
- BitStream[bitnum++]=0;
- } else {
- BitStream[bitnum++]=77;
- errCnt++;
- }
- if(bitnum>250) break;
- }
- *bitLen=bitnum;
- return errCnt;
+ uint8_t bitnum=0;
+ uint32_t errCnt =0;
+ uint32_t i=1;
+ i=offset;
+ for (;i<*size-2;i+=2){
+ if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
+ BitStream[bitnum++]=1;
+ } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
+ BitStream[bitnum++]=0;
+ } else {
+ BitStream[bitnum++]=77;
+ errCnt++;
+ }
+ if(bitnum>250) break;
+ }
+ *size=bitnum;
+ return errCnt;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
//attempts to demodulate ask only
//prints binary found and saves in graphbuffer for further commands
-int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert)
+int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
{
- uint32_t i;
- // int invert=0; //invert default
- int high = 0, low = 128;
- *clk=DetectASKClock(BinStream,*bitLen,*clk); //clock default
- uint8_t BitStream[502] = {0};
-
- if (*clk<8) *clk =64;
- if (*clk<32) *clk=32;
- if (*invert != 0 && *invert != 1) *invert =0;
- uint32_t initLoopMax = 200;
- if (initLoopMax>*bitLen) initLoopMax=*bitLen;
- // Detect high and lows
- for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values
- {
- if (BinStream[i] > high)
- high = BinStream[i];
- else if (BinStream[i] < low)
- low = BinStream[i];
- }
- if ((high < 158)){ //throw away static
- // PrintAndLog("no data found");
- return -2;
- }
- //25% fuzz in case highs and lows aren't clipped [marshmellow]
- high=(int)((high-128)*.75)+128;
- low= (int)((low-128)*.75)+128;
-
- //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
- int lastBit = 0; //set first clock check
- uint32_t bitnum = 0; //output counter
- uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
- if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
- uint32_t iii = 0;
- uint32_t gLen = *bitLen;
- if (gLen > 500) gLen=500;
- uint8_t errCnt =0;
- uint32_t bestStart = *bitLen;
- uint32_t bestErrCnt = (*bitLen/1000);
- uint8_t midBit=0;
- //PrintAndLog("DEBUG - lastbit - %d",lastBit);
- //loop to find first wave that works
- for (iii=0; iii < gLen; ++iii){
- if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){
- lastBit=iii-*clk;
- //loop through to see if this start location works
- for (i = iii; i < *bitLen; ++i) {
- if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
- lastBit+=*clk;
- BitStream[bitnum] = *invert;
- bitnum++;
- midBit=0;
- } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
- //low found and we are expecting a bar
- lastBit+=*clk;
- BitStream[bitnum] = 1-*invert;
- bitnum++;
- midBit=0;
- } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
- //mid bar?
- midBit=1;
- BitStream[bitnum]= 1-*invert;
- bitnum++;
- } else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
- //mid bar?
- midBit=1;
- BitStream[bitnum]= *invert;
- bitnum++;
- } else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){
- //no mid bar found
- midBit=1;
- BitStream[bitnum]= BitStream[bitnum-1];
- bitnum++;
- } else {
- //mid value found or no bar supposed to be here
-
- if ((i-lastBit)>(*clk+tol)){
- //should have hit a high or low based on clock!!
- //debug
- //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
- if (bitnum > 0){
- BitStream[bitnum]=77;
- bitnum++;
- }
-
-
- errCnt++;
- lastBit+=*clk;//skip over until hit too many errors
- if (errCnt>((*bitLen/1000))){ //allow 1 error for every 1000 samples else start over
- errCnt=0;
- bitnum=0;//start over
- break;
- }
- }
- }
- if (bitnum>500) break;
- }
- //we got more than 64 good bits and not all errors
- if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) {
- //possible good read
- if (errCnt==0) break; //great read - finish
- if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
- if (errCnt<bestErrCnt){ //set this as new best run
- bestErrCnt=errCnt;
- bestStart = iii;
- }
- }
- }
- if (iii>=gLen){ //exhausted test
- //if there was a ok test go back to that one and re-run the best run (then dump after that run)
- if (bestErrCnt < (*bitLen/1000)) iii=bestStart;
- }
- }
- if (bitnum>16){
-
- // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
- //move BitStream back to BinStream
- // ClearGraph(0);
- for (i=0; i < bitnum; ++i){
- BinStream[i]=BitStream[i];
- }
- *bitLen=bitnum;
- // RepaintGraphWindow();
- //output
- // if (errCnt>0){
- // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
- // }
- // PrintAndLog("ASK decoded bitstream:");
- // Now output the bitstream to the scrollback by line of 16 bits
- // printBitStream2(BitStream,bitnum);
- //int errCnt=0;
- //errCnt=manrawdemod(BitStream,bitnum);
-
- // Em410xDecode(Cmd);
- } else return -1;
- return errCnt;
+ uint32_t i;
+ // int invert=0; //invert default
+ int high = 0, low = 128;
+ *clk=DetectASKClock(BinStream, *size, *clk); //clock default
+ uint8_t BitStream[502] = {0};
+
+ if (*clk<8) *clk =64;
+ if (*clk<32) *clk=32;
+ if (*invert != 0 && *invert != 1) *invert =0;
+ uint32_t initLoopMax = 200;
+ if (initLoopMax>*size) initLoopMax=*size;
+ // Detect high and lows
+ for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values
+ {
+ if (BinStream[i] > high)
+ high = BinStream[i];
+ else if (BinStream[i] < low)
+ low = BinStream[i];
+ }
+ if ((high < 158)){ //throw away static
+ // PrintAndLog("no data found");
+ return -2;
+ }
+ //25% fuzz in case highs and lows aren't clipped [marshmellow]
+ high=(int)((high-128)*.75)+128;
+ low= (int)((low-128)*.75)+128;
+
+ //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
+ int lastBit = 0; //set first clock check
+ uint32_t bitnum = 0; //output counter
+ uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+ if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
+ uint32_t iii = 0;
+ uint32_t gLen = *size;
+ if (gLen > 500) gLen=500;
+ uint8_t errCnt =0;
+ uint32_t bestStart = *size;
+ uint32_t bestErrCnt = (*size/1000);
+ uint8_t midBit=0;
+ //PrintAndLog("DEBUG - lastbit - %d",lastBit);
+ //loop to find first wave that works
+ for (iii=0; iii < gLen; ++iii){
+ if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){
+ lastBit=iii-*clk;
+ //loop through to see if this start location works
+ for (i = iii; i < *size; ++i) {
+ if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
+ lastBit+=*clk;
+ BitStream[bitnum] = *invert;
+ bitnum++;
+ midBit=0;
+ } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
+ //low found and we are expecting a bar
+ lastBit+=*clk;
+ BitStream[bitnum] = 1- *invert;
+ bitnum++;
+ midBit=0;
+ } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
+ //mid bar?
+ midBit=1;
+ BitStream[bitnum]= 1- *invert;
+ bitnum++;
+ } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
+ //mid bar?
+ midBit=1;
+ BitStream[bitnum]= *invert;
+ bitnum++;
+ } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
+ //no mid bar found
+ midBit=1;
+ BitStream[bitnum]= BitStream[bitnum-1];
+ bitnum++;
+ } else {
+ //mid value found or no bar supposed to be here
+
+ if ((i-lastBit)>(*clk+tol)){
+ //should have hit a high or low based on clock!!
+ //debug
+ //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
+ if (bitnum > 0){
+ BitStream[bitnum]=77;
+ bitnum++;
+ }
+
+
+ errCnt++;
+ lastBit+=*clk;//skip over until hit too many errors
+ if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over
+ errCnt=0;
+ bitnum=0;//start over
+ break;
+ }
+ }
+ }
+ if (bitnum>500) break;
+ }
+ //we got more than 64 good bits and not all errors
+ if ((bitnum > (64+errCnt)) && (errCnt<(*size/1000))) {
+ //possible good read
+ if (errCnt==0) break; //great read - finish
+ if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
+ if (errCnt<bestErrCnt){ //set this as new best run
+ bestErrCnt=errCnt;
+ bestStart = iii;
+ }
+ }
+ }
+ if (iii>=gLen){ //exhausted test
+ //if there was a ok test go back to that one and re-run the best run (then dump after that run)
+ if (bestErrCnt < (*size/1000)) iii=bestStart;
+ }
+ }
+ if (bitnum>16){
+
+ // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
+ //move BitStream back to BinStream
+ // ClearGraph(0);
+ for (i=0; i < bitnum; ++i){
+ BinStream[i]=BitStream[i];
+ }
+ *size=bitnum;
+ // RepaintGraphWindow();
+ //output
+ // if (errCnt>0){
+ // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
+ // }
+ // PrintAndLog("ASK decoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ // printBitStream2(BitStream,bitnum);
+ //int errCnt=0;
+ //errCnt=manrawdemod(BitStream,bitnum);
+
+ // Em410xDecode(Cmd);
+ } else return -1;
+ return errCnt;
}
-//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
+//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
{
- uint32_t last_transition = 0;
- uint32_t idx = 1;
- uint32_t maxVal=0;
- if (fchigh==0) fchigh=10;
- if (fclow==0) fclow=8;
- // we do care about the actual theshold value as sometimes near the center of the
- // wave we may get static that changes direction of wave for one value
- // if our value is too low it might affect the read. and if our tag or
- // antenna is weak a setting too high might not see anything. [marshmellow]
- if (size<100) return 0;
- for(idx=1; idx<100; idx++){
- if(maxVal<dest[idx]) maxVal = dest[idx];
- }
- // set close to the top of the wave threshold with 25% margin for error
- // less likely to get a false transition up there.
- // (but have to be careful not to go too high and miss some short waves)
- uint8_t threshold_value = (uint8_t)(((maxVal-128)*.75)+128);
- // idx=1;
- //uint8_t threshold_value = 127;
-
- // sync to first lo-hi transition, and threshold
-
- // Need to threshold first sample
-
- if(dest[0] < threshold_value) dest[0] = 0;
- else dest[0] = 1;
-
- size_t numBits = 0;
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for(idx = 1; idx < size; idx++) {
- // threshold current value
-
- if (dest[idx] < threshold_value) dest[idx] = 0;
- else dest[idx] = 1;
-
- // Check for 0->1 transition
- if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
- if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise
- //do nothing with extra garbage
- } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves
- dest[numBits]=1;
- } else { //9+ = 10 waves
- dest[numBits]=0;
- }
- last_transition = idx;
- numBits++;
- }
- }
- return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+ uint32_t last_transition = 0;
+ uint32_t idx = 1;
+ uint32_t maxVal=0;
+ if (fchigh==0) fchigh=10;
+ if (fclow==0) fclow=8;
+ // we do care about the actual theshold value as sometimes near the center of the
+ // wave we may get static that changes direction of wave for one value
+ // if our value is too low it might affect the read. and if our tag or
+ // antenna is weak a setting too high might not see anything. [marshmellow]
+ if (size<100) return 0;
+ for(idx=1; idx<100; idx++){
+ if(maxVal<dest[idx]) maxVal = dest[idx];
+ }
+ // set close to the top of the wave threshold with 25% margin for error
+ // less likely to get a false transition up there.
+ // (but have to be careful not to go too high and miss some short waves)
+ uint8_t threshold_value = (uint8_t)(((maxVal-128)*.75)+128);
+
+ // sync to first lo-hi transition, and threshold
+
+ // Need to threshold first sample
+
+ if(dest[0] < threshold_value) dest[0] = 0;
+ else dest[0] = 1;
+
+ size_t numBits = 0;
+ // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+ // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
+ // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+ for(idx = 1; idx < size; idx++) {
+ // threshold current value
+
+ if (dest[idx] < threshold_value) dest[idx] = 0;
+ else dest[idx] = 1;
+
+ // Check for 0->1 transition
+ if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
+ if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise
+ //do nothing with extra garbage
+ } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves
+ dest[numBits]=1;
+ } else { //9+ = 10 waves
+ dest[numBits]=0;
+ }
+ last_transition = idx;
+ numBits++;
+ }
+ }
+ return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
uint32_t myround2(float f)
{
- if (f >= 2000) return 2000;//something bad happened
- return (uint32_t) (f + (float)0.5);
+ if (f >= 2000) return 2000;//something bad happened
+ return (uint32_t) (f + (float)0.5);
}
-//translate 11111100000 to 10
-size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert,uint8_t fchigh,uint8_t fclow )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
+//translate 11111100000 to 10
+size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits,
+ uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
- uint8_t lastval=dest[0];
- uint32_t idx=0;
- size_t numBits=0;
- uint32_t n=1;
-
- for( idx=1; idx < size; idx++) {
-
- if (dest[idx]==lastval) {
- n++;
- continue;
- }
- //if lastval was 1, we have a 1->0 crossing
- if ( dest[idx-1]==1 ) {
- n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
- //n=(n+1) / h2l_crossing_value;
- } else {// 0->1 crossing
- n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor
- //n=(n+1) / l2h_crossing_value;
- }
- if (n == 0) n = 1;
-
- if(n < maxConsequtiveBits) //Consecutive
- {
- if(invert==0){ //invert bits
- memset(dest+numBits, dest[idx-1] , n);
- }else{
- memset(dest+numBits, dest[idx-1]^1 , n);
- }
- numBits += n;
- }
- n=0;
- lastval=dest[idx];
- }//end for
- return numBits;
+ uint8_t lastval=dest[0];
+ uint32_t idx=0;
+ size_t numBits=0;
+ uint32_t n=1;
+
+ for( idx=1; idx < size; idx++) {
+
+ if (dest[idx]==lastval) {
+ n++;
+ continue;
+ }
+ //if lastval was 1, we have a 1->0 crossing
+ if ( dest[idx-1]==1 ) {
+ n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
+ //n=(n+1) / h2l_crossing_value;
+ } else {// 0->1 crossing
+ n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor
+ //n=(n+1) / l2h_crossing_value;
+ }
+ if (n == 0) n = 1;
+
+ if(n < maxConsequtiveBits) //Consecutive
+ {
+ if(invert==0){ //invert bits
+ memset(dest+numBits, dest[idx-1] , n);
+ }else{
+ memset(dest+numBits, dest[idx-1]^1 , n);
+ }
+ numBits += n;
+ }
+ n=0;
+ lastval=dest[idx];
+ }//end for
+ return numBits;
}
//by marshmellow (from holiman's base)
// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
- // FSK demodulator
- size = fsk_wave_demod(dest, size, fchigh, fclow);
- size = aggregate_bits(dest, size,rfLen,192,invert,fchigh,fclow);
- return size;
+ // FSK demodulator
+ size = fsk_wave_demod(dest, size, fchigh, fclow);
+ size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow);
+ return size;
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
- size_t idx=0; //, found=0; //size=0,
- // FSK demodulator
- size = fskdemod(dest, size,50,0,10,8);
-
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
- int numshifts = 0;
- idx = 0;
- //one scan
- while( idx + sizeof(frame_marker_mask) < size) {
- // search for a start of frame marker
- if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
- { // frame marker found
- idx+=sizeof(frame_marker_mask);
- while(dest[idx] != dest[idx+1] && idx < size-2)
- {
- // Keep going until next frame marker (or error)
- // Shift in a bit. Start by shifting high registers
- *hi2 = (*hi2<<1)|(*hi>>31);
- *hi = (*hi<<1)|(*lo>>31);
- //Then, shift in a 0 or one into low
- if (dest[idx] && !dest[idx+1]) // 1 0
- *lo=(*lo<<1)|0;
- else // 0 1
- *lo=(*lo<<1)|1;
- numshifts++;
- idx += 2;
- }
- // Hopefully, we read a tag and hit upon the next frame marker
- if(idx + sizeof(frame_marker_mask) < size)
- {
- if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
- {
- //good return
- return idx;
- }
- }
- // reset
- *hi2 = *hi = *lo = 0;
- numshifts = 0;
- }else {
- idx++;
- }
- }
- return -1;
+ size_t idx=0; //, found=0; //size=0,
+ // FSK demodulator
+ size = fskdemod(dest, size,50,0,10,8);
+
+ // final loop, go over previously decoded manchester data and decode into usable tag ID
+ // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
+ uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
+ int numshifts = 0;
+ idx = 0;
+ //one scan
+ while( idx + sizeof(frame_marker_mask) < size) {
+ // search for a start of frame marker
+ if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ { // frame marker found
+ idx+=sizeof(frame_marker_mask);
+ while(dest[idx] != dest[idx+1] && idx < size-2)
+ {
+ // Keep going until next frame marker (or error)
+ // Shift in a bit. Start by shifting high registers
+ *hi2 = (*hi2<<1)|(*hi>>31);
+ *hi = (*hi<<1)|(*lo>>31);
+ //Then, shift in a 0 or one into low
+ if (dest[idx] && !dest[idx+1]) // 1 0
+ *lo=(*lo<<1)|0;
+ else // 0 1
+ *lo=(*lo<<1)|1;
+ numshifts++;
+ idx += 2;
+ }
+ // Hopefully, we read a tag and hit upon the next frame marker
+ if(idx + sizeof(frame_marker_mask) < size)
+ {
+ if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ {
+ //good return
+ return idx;
+ }
+ }
+ // reset
+ *hi2 = *hi = *lo = 0;
+ numshifts = 0;
+ }else {
+ idx++;
+ }
+ }
+ return -1;
}
-uint32_t bytebits_to_byte(uint8_t* src, int numbits)
+uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
{
- uint32_t num = 0;
- for(int i = 0 ; i < numbits ; i++)
- {
- num = (num << 1) | (*src);
- src++;
- }
- return num;
+ uint32_t num = 0;
+ for(int i = 0 ; i < numbits ; i++)
+ {
+ num = (num << 1) | (*src);
+ src++;
+ }
+ return num;
}
int IOdemodFSK(uint8_t *dest, size_t size)
{
static const uint8_t THRESHOLD = 140;
- uint32_t idx=0;
- //make sure buffer has data
- if (size < 66) return -1;
- //test samples are not just noise
+ uint32_t idx=0;
+ //make sure buffer has data
+ if (size < 66) return -1;
+ //test samples are not just noise
uint8_t justNoise = 1;
for(idx=0;idx< size && justNoise ;idx++){
justNoise = dest[idx] < THRESHOLD;
if(justNoise) return 0;
// FSK demodulator
- size = fskdemod(dest, size,64,1,10,8); // RF/64 and invert
+ size = fskdemod(dest, size, 64, 1, 10, 8); // RF/64 and invert
if (size < 65) return -1; //did we get a good demod?
//Index map
//0 10 20 30 40 50 60
}
}
}
- return 0;
+ return 0;
}
// by marshmellow
// maybe somehow adjust peak trimming value based on samples to fix?
int DetectASKClock(uint8_t dest[], size_t size, int clock)
{
- int i=0;
- int peak=0;
- int low=128;
- int clk[]={16,32,40,50,64,100,128,256};
- int loopCnt = 256; //don't need to loop through entire array...
- if (size<loopCnt) loopCnt = size;
-
- //if we already have a valid clock quit
- for (;i<8;++i)
- if (clk[i]==clock) return clock;
-
- //get high and low peak
- for (i=0;i<loopCnt;++i){
- if(dest[i]>peak){
- peak = dest[i];
- }
- if(dest[i]<low){
- low = dest[i];
- }
- }
- peak=(int)((peak-128)*.75)+128;
- low= (int)((low-128)*.75)+128;
- int ii;
- int clkCnt;
- int tol = 0;
- int bestErr=1000;
- int errCnt[]={0,0,0,0,0,0,0,0};
- //test each valid clock from smallest to greatest to see which lines up
- for(clkCnt=0; clkCnt<6;++clkCnt){
- if (clk[clkCnt]==32){
- tol=1;
- }else{
- tol=0;
- }
- bestErr=1000;
- //try lining up the peaks by moving starting point (try first 256)
- for (ii=0; ii<loopCnt; ++ii){
- if ((dest[ii]>=peak) || (dest[ii]<=low)){
- errCnt[clkCnt]=0;
- // now that we have the first one lined up test rest of wave array
- for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){
- if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
- }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
- }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
- }else{ //error no peak detected
- errCnt[clkCnt]++;
- }
- }
- //if we found no errors this is correct one - return this clock
- if(errCnt[clkCnt]==0) return clk[clkCnt];
- //if we found errors see if it is lowest so far and save it as best run
- if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt];
- }
- }
- }
- int iii=0;
- int best=0;
- for (iii=0; iii<6;++iii){
- if (errCnt[iii]<errCnt[best]){
- best = iii;
- }
- }
- return clk[best];
+ int i=0;
+ int peak=0;
+ int low=128;
+ int clk[]={16,32,40,50,64,100,128,256};
+ int loopCnt = 256; //don't need to loop through entire array...
+ if (size<loopCnt) loopCnt = size;
+
+ //if we already have a valid clock quit
+ for (;i<8;++i)
+ if (clk[i]==clock) return clock;
+
+ //get high and low peak
+ for (i=0;i<loopCnt;++i){
+ if(dest[i]>peak){
+ peak = dest[i];
+ }
+ if(dest[i]<low){
+ low = dest[i];
+ }
+ }
+ peak=(int)(((peak-128)*.75)+128);
+ low= (int)(((low-128)*.75)+128);
+ int ii;
+ int clkCnt;
+ int tol = 0;
+ int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
+ int errCnt=0;
+ //test each valid clock from smallest to greatest to see which lines up
+ for(clkCnt=0; clkCnt<6;++clkCnt){
+ if (clk[clkCnt]==32){
+ tol=1;
+ }else{
+ tol=0;
+ }
+ bestErr[clkCnt]=1000;
+ //try lining up the peaks by moving starting point (try first 256)
+ for (ii=0; ii<loopCnt; ++ii){
+ if ((dest[ii]>=peak) || (dest[ii]<=low)){
+ errCnt=0;
+ // now that we have the first one lined up test rest of wave array
+ for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){
+ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+ }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
+ }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
+ }else{ //error no peak detected
+ errCnt++;
+ }
+ }
+ //if we found no errors this is correct one - return this clock
+ if(errCnt==0) return clk[clkCnt];
+ //if we found errors see if it is lowest so far and save it as best run
+ if(errCnt<bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
+ }
+ }
+ }
+ int iii=0;
+ int best=0;
+ for (iii=0; iii<7;++iii){
+ if (bestErr[iii]<bestErr[best]){
+ // current best bit to error ratio vs new bit to error ratio
+ if (((size/clk[best])/bestErr[best]<(size/clk[iii])/bestErr[iii]) ){
+ best = iii;
+ }
+ }
+ }
+ return clk[best];
+}
+
+//by marshmellow
+//detect psk clock by reading #peaks vs no peaks(or errors)
+int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
+{
+ int i=0;
+ int peak=0;
+ int low=128;
+ int clk[]={16,32,40,50,64,100,128,256};
+ int loopCnt = 2048; //don't need to loop through entire array...
+ if (size<loopCnt) loopCnt = size;
+
+ //if we already have a valid clock quit
+ for (;i<8;++i)
+ if (clk[i]==clock) return clock;
+
+ //get high and low peak
+ for (i=0;i<loopCnt;++i){
+ if(dest[i]>peak){
+ peak = dest[i];
+ }
+ if(dest[i]<low){
+ low = dest[i];
+ }
+ }
+ peak=(int)(((peak-128)*.90)+128);
+ low= (int)(((low-128)*.90)+128);
+ //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
+ int ii;
+ uint8_t clkCnt;
+ uint8_t tol = 0;
+ int peakcnt=0;
+ int errCnt=0;
+ int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+ int peaksdet[]={0,0,0,0,0,0,0,0,0};
+ //test each valid clock from smallest to greatest to see which lines up
+ for(clkCnt=0; clkCnt<6;++clkCnt){
+ if (clk[clkCnt]==32){
+ tol=0;
+ }else{
+ tol=0;
+ }
+ //try lining up the peaks by moving starting point (try first 256)
+ for (ii=0; ii<loopCnt; ++ii){
+ if ((dest[ii]>=peak) || (dest[ii]<=low)){
+ errCnt=0;
+ peakcnt=0;
+ // now that we have the first one lined up test rest of wave array
+ for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){
+ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+ peakcnt++;
+ }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
+ peakcnt++;
+ }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
+ peakcnt++;
+ }else{ //error no peak detected
+ errCnt++;
+ }
+ }
+ if(peakcnt>peaksdet[clkCnt]) {
+ peaksdet[clkCnt]=peakcnt;
+ bestErr[clkCnt]=errCnt;
+ }
+ }
+ }
+ }
+ int iii=0;
+ int best=0;
+ //int ratio2; //debug
+ int ratio;
+ //int bits;
+ for (iii=0; iii<7;++iii){
+ ratio=1000;
+ //ratio2=1000; //debug
+ //bits=size/clk[iii]; //debug
+ if (peaksdet[iii]>0){
+ ratio=bestErr[iii]/peaksdet[iii];
+ if (((bestErr[best]/peaksdet[best])>(ratio)+1)){
+ best = iii;
+ }
+ //ratio2=bits/peaksdet[iii]; //debug
+ }
+ //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2);
+ }
+ return clk[best];
+}
+
+//by marshmellow (attempt to get rid of high immediately after a low)
+void pskCleanWave(uint8_t *bitStream, size_t size)
+{
+ int i;
+ int low=128;
+ int high=0;
+ int gap = 4;
+ // int loopMax = 2048;
+ int newLow=0;
+ int newHigh=0;
+ for (i=0; i<size; ++i){
+ if (bitStream[i]<low) low=bitStream[i];
+ if (bitStream[i]>high) high=bitStream[i];
+ }
+ high = (int)(((high-128)*.80)+128);
+ low = (int)(((low-128)*.90)+128);
+ //low = (uint8_t)(((int)(low)-128)*.80)+128;
+ for (i=0; i<size; ++i){
+ if (newLow==1){
+ bitStream[i]=low+8;
+ gap--;
+ if (gap==0){
+ newLow=0;
+ gap=4;
+ }
+ }else if (newHigh==1){
+ bitStream[i]=high-8;
+ gap--;
+ if (gap==0){
+ newHigh=0;
+ gap=4;
+ }
+ }
+ if (bitStream[i]<=low) newLow=1;
+ if (bitStream[i]>=high) newHigh=1;
+ }
+ return;
+}
+
+
+//redesigned by marshmellow adjusted from existing decode functions
+//indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
+int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
+{
+ //26 bit 40134 format (don't know other formats)
+ int i;
+ int long_wait;
+ long_wait = 29;//29 leading zeros in format
+ int start;
+ int first = 0;
+ int first2 = 0;
+ int bitCnt = 0;
+ int ii;
+ // Finding the start of a UID
+ for (start = 0; start <= *size - 250; start++) {
+ first = bitStream[start];
+ for (i = start; i < start + long_wait; i++) {
+ if (bitStream[i] != first) {
+ break;
+ }
+ }
+ if (i == (start + long_wait)) {
+ break;
+ }
+ }
+ if (start == *size - 250 + 1) {
+ // did not find start sequence
+ return -1;
+ }
+ //found start once now test length by finding next one
+ // Inverting signal if needed
+ if (first == 1) {
+ for (i = start; i < *size; i++) {
+ bitStream[i] = !bitStream[i];
+ }
+ *invert = 1;
+ }else *invert=0;
+
+ int iii;
+ for (ii=start+29; ii <= *size - 250; ii++) {
+ first2 = bitStream[ii];
+ for (iii = ii; iii < ii + long_wait; iii++) {
+ if (bitStream[iii] != first2) {
+ break;
+ }
+ }
+ if (iii == (ii + long_wait)) {
+ break;
+ }
+ }
+ if (ii== *size - 250 + 1){
+ // did not find second start sequence
+ return -2;
+ }
+ bitCnt=ii-start;
+
+ // Dumping UID
+ i = start;
+ for (ii = 0; ii < bitCnt; ii++) {
+ bitStream[ii] = bitStream[i++];
+ }
+ *size=bitCnt;
+ return 1;
}
+
+
+//by marshmellow - demodulate PSK wave or NRZ wave (both similar enough)
+//peaks switch bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
+int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
+{
+ pskCleanWave(dest,*size);
+ int clk2 = DetectpskNRZClock(dest, *size, *clk);
+ *clk=clk2;
+ uint32_t i;
+ uint8_t high=0, low=128;
+ uint32_t gLen = *size;
+ if (gLen > 1280) gLen=1280;
+ // get high
+ for (i=0; i<gLen; ++i){
+ if (dest[i]>high) high = dest[i];
+ if (dest[i]<low) low=dest[i];
+ }
+ //fudge high/low bars by 25%
+ high = (uint8_t)((((int)(high)-128)*.75)+128);
+ low = (uint8_t)((((int)(low)-128)*.80)+128);
+
+ //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
+ int lastBit = 0; //set first clock check
+ uint32_t bitnum = 0; //output counter
+ uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+ if (*clk==32)tol=2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
+ uint32_t iii = 0;
+ uint8_t errCnt =0;
+ uint32_t bestStart = *size;
+ uint32_t maxErr = (*size/1000);
+ uint32_t bestErrCnt = maxErr;
+ //uint8_t midBit=0;
+ uint8_t curBit=0;
+ uint8_t bitHigh=0;
+ uint8_t ignorewin=*clk/8;
+ //PrintAndLog("DEBUG - lastbit - %d",lastBit);
+ //loop to find first wave that works - align to clock
+ for (iii=0; iii < gLen; ++iii){
+ if ((dest[iii]>=high)||(dest[iii]<=low)){
+ lastBit=iii-*clk;
+ //loop through to see if this start location works
+ for (i = iii; i < *size; ++i) {
+ //if we found a high bar and we are at a clock bit
+ if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+ bitHigh=1;
+ lastBit+=*clk;
+ ignorewin=*clk/8;
+ bitnum++;
+ //else if low bar found and we are at a clock point
+ }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+ bitHigh=1;
+ lastBit+=*clk;
+ ignorewin=*clk/8;
+ bitnum++;
+ //else if no bars found
+ }else if(dest[i]<high && dest[i]>low) {
+ if (ignorewin==0){
+ bitHigh=0;
+ }else ignorewin--;
+ //if we are past a clock point
+ if (i>=lastBit+*clk+tol){ //clock val
+ lastBit+=*clk;
+ bitnum++;
+ }
+ //else if bar found but we are not at a clock bit and we did not just have a clock bit
+ }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
+ //error bar found no clock...
+ errCnt++;
+ }
+ if (bitnum>=1000) break;
+ }
+ //we got more than 64 good bits and not all errors
+ if ((bitnum > (64+errCnt)) && (errCnt<(maxErr))) {
+ //possible good read
+ if (errCnt==0){
+ bestStart = iii;
+ bestErrCnt=errCnt;
+ break; //great read - finish
+ }
+ if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
+ if (errCnt<bestErrCnt){ //set this as new best run
+ bestErrCnt=errCnt;
+ bestStart = iii;
+ }
+ }
+ }
+ }
+ if (bestErrCnt<maxErr){
+ //best run is good enough set to best run and set overwrite BinStream
+ iii=bestStart;
+ lastBit=bestStart-*clk;
+ bitnum=0;
+ for (i = iii; i < *size; ++i) {
+ //if we found a high bar and we are at a clock bit
+ if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+ bitHigh=1;
+ lastBit+=*clk;
+ curBit=1-*invert;
+ dest[bitnum]=curBit;
+ ignorewin=*clk/8;
+ bitnum++;
+ //else if low bar found and we are at a clock point
+ }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+ bitHigh=1;
+ lastBit+=*clk;
+ curBit=*invert;
+ dest[bitnum]=curBit;
+ ignorewin=*clk/8;
+ bitnum++;
+ //else if no bars found
+ }else if(dest[i]<high && dest[i]>low) {
+ if (ignorewin==0){
+ bitHigh=0;
+ }else ignorewin--;
+ //if we are past a clock point
+ if (i>=lastBit+*clk+tol){ //clock val
+ lastBit+=*clk;
+ dest[bitnum]=curBit;
+ bitnum++;
+ }
+ //else if bar found but we are not at a clock bit and we did not just have a clock bit
+ }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
+ //error bar found no clock...
+ bitHigh=1;
+ dest[bitnum]=77;
+ bitnum++;
+ errCnt++;
+ }
+ if (bitnum >=1000) break;
+ }
+ *size=bitnum;
+ } else{
+ *size=bitnum;
+ *clk=bestStart;
+ return -1;
+ }
+
+ if (bitnum>16){
+ *size=bitnum;
+ } else return -1;
+ return errCnt;
+}
+
-// Copyright (C) 2014
+// Copyright (C) 2014
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
#include <stdint.h>
int DetectASKClock(uint8_t dest[], size_t size, int clock);
-int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
-uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen);
-int manrawdecode(uint8_t *BitStream, int *bitLen);
-int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset);
-int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert);
+int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert);
+uint64_t Em410xDecode(uint8_t *BitStream,size_t size);
+int manrawdecode(uint8_t *BitStream, size_t *size);
+int BiphaseRawDecode(uint8_t * BitStream, size_t *size, int offset);
+int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert);
int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo);
int IOdemodFSK(uint8_t *dest, size_t size);
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow);
-uint32_t bytebits_to_byte(uint8_t* src, int numbits);
+uint32_t bytebits_to_byte(uint8_t* src, size_t numbits);
+int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert);
+int DetectpskNRZClock(uint8_t dest[], size_t size, int clock);
+int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert);
+void pskCleanWave(uint8_t *bitStream, size_t size);
#endif