LED_A_OFF();
}
+//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_demod(uint8_t * dest, size_t size)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- uint8_t threshold_value = 127;
+ uint32_t maxVal=0;
+ // // we don't care about actual value, only if it's more or less than a
+ // // threshold essentially we capture zero crossings for later analysis
+
+ // we do care about the actual value as sometimes near the center of the
+ // wave we may get static that changes direction of wave for one value
+ // if our value is too low it might affect the read. and if our tag or
+ // antenna is weak a setting too high might not see anything. [marshmellow]
+ if (size<100) return size;
+ for(idx=1; idx<100; idx++){
+ if(maxVal<dest[idx]) maxVal = dest[idx];
+ }
+ // set close to the top of the wave threshold with 13% margin for error
+ // less likely to get a false transition up there.
+ // (but have to be careful not to go too high and miss some short waves)
+ uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
+ //uint8_t threshold_value = 127;
// sync to first lo-hi transition, and threshold
- //Need to threshold first sample
+ // Need to threshold first sample
if(dest[0] < threshold_value) dest[0] = 0;
else dest[0] = 1;
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
-
- if (idx-last_transition < 9) {
- dest[numBits]=1;
+ if (idx-last_transition<6){
+ //do nothing with extra garbage
+ } else if (idx-last_transition < 9) {
+ dest[numBits]=1;
} else {
- dest[numBits]=0;
+ dest[numBits]=0;
}
last_transition = idx;
numBits++;
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
+uint32_t myround(float f)
+{
+ if (f >= 2000) return 2000;//something bad happened
+ return (uint32_t) (f + (float)0.5);
+}
-size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits, uint8_t invert )
+//translate 11111100000 to 10
+size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
{
uint8_t lastval=dest[0];
uint32_t idx=0;
}
//if lastval was 1, we have a 1->0 crossing
if ( dest[idx-1]==1 ) {
- n=(n+1) / h2l_crossing_value;
+ n=myround((float)(n+1)/((float)(rfLen)/(float)8));
+ //n=(n+1) / h2l_crossing_value;
} else {// 0->1 crossing
- n=(n+1) / l2h_crossing_value;
+ n=myround((float)(n+1)/((float)(rfLen-2)/(float)10));
+ //n=(n+1) / l2h_crossing_value;
}
if (n == 0) n = 1;
memset(dest+numBits, dest[idx-1] , n);
}else{
memset(dest+numBits, dest[idx-1]^1 , n);
- }
-
+ }
numBits += n;
}
n=0;
}//end for
return numBits;
}
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
-
+ if (size < 2000) continue;
// FSK demodulator
size = fsk_demod(dest, size);
// 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25)
// 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
// do not invert
- size = aggregate_bits(dest,size, 6,5,5,0);
+ size = aggregate_bits(dest,size, 50,5,0); //6,5,5,0
WDT_HIT();
uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
int numshifts = 0;
idx = 0;
+ //one scan
+ uint8_t sameCardCount =0;
while( idx + sizeof(frame_marker_mask) < size) {
// search for a start of frame marker
+ if (sameCardCount>2) break; //only up to 2 valid sets of data for the same read of looping card data
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
idx+=sizeof(frame_marker_mask);
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
}
+ sameCardCount++;
if (findone){
if (ledcontrol) LED_A_OFF();
return;
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
-
- // FSK demodulator
- size = fsk_demod(dest, size);
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
- // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
- size = aggregate_bits(dest, size, 7,6,13,1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
- WDT_HIT();
- //Index map
- //0 10 20 30 40 50 60
- //| | | | | | |
- //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
- //-----------------------------------------------------------------------------
- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
- //
- //XSF(version)facility:codeone+codetwo
- //Handle the data
- uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
- for( idx=0; idx < (size - 64); idx++) {
- if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
- //frame marker found
- if(findone){ //only print binary if we are doing one
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
- Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
- }
- code = bytebits_to_byte(dest+idx,32);
- code2 = bytebits_to_byte(dest+idx+32,32);
- short version = bytebits_to_byte(dest+idx+28,8); //14,4
- char facilitycode = bytebits_to_byte(dest+idx+19,8) ;
- uint16_t number = (bytebits_to_byte(dest+idx+37,8)<<8)|(bytebits_to_byte(dest+idx+46,8)); //36,9
-
- Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
- // if we're only looking for one tag
- if (findone){
- if (ledcontrol) LED_A_OFF();
- //LED_A_OFF();
- return;
- }
- }
+ //make sure buffer has data
+ if (size < 64) return;
+ //test samples are not just noise
+ uint8_t testMax=0;
+ for(idx=0;idx<64;idx++){
+ if (testMax<dest[idx]) testMax=dest[idx];
}
+ idx=0;
+ //if not just noise
+ if (testMax>170){
+ //Dbprintf("testMax: %d",testMax);
+ // FSK demodulator
+ size = fsk_demod(dest, size);
+ // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
+ // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
+ // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
+ size = aggregate_bits(dest, size, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
+ WDT_HIT();
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo
+ //Handle the data
+ uint8_t sameCardCount=0;
+ uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
+ for( idx=0; idx < (size - 74); idx++) {
+ if (sameCardCount>2) break;
+ if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
+ //frame marker found
+ if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
+ //confirmed proper separator bits found
+ if(findone){ //only print binary if we are doing one
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ }
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+ short version = bytebits_to_byte(dest+idx+27,8); //14,4
+ uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
+ uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+ Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
+ // if we're only looking for one tag
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ //LED_A_OFF();
+ return;
+ }
+ sameCardCount++;
+ }
+ }
+ }
+ }
WDT_HIT();
}
DbpString("Stopped");
* Arguments:
* c : 0 or 1
*/
+ //this method is dependant on all highs and lows to be the same(or clipped) this could be an issue[marshmellow]
+ //might be able to use clock to help identify highs and lows with some more tolerance
+ //but for now I will try a fuzz factor
int Cmdaskdemod(const char *Cmd)
{
int i;
sscanf(Cmd, "%i", &c);
/* Detect high and lows and clock */
- // (AL - clock???)
+ // (AL - clock???)
for (i = 0; i < GraphTraceLen; ++i)
{
if (GraphBuffer[i] > high)
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
-
+ //prime loop
if (GraphBuffer[0] > 0) {
GraphBuffer[0] = 1-c;
} else {
GraphBuffer[0] = c;
}
+ //20% fuzz [marshmellow]
+ high=(int)(.8*high);
+ low=(int)(.8*low);
for (i = 1; i < GraphTraceLen; ++i) {
/* Transitions are detected at each peak
* Transitions are either:
* low for long periods, others just reach the peak and go
* down)
*/
- if ((GraphBuffer[i] == high) && (GraphBuffer[i - 1] == c)) {
+ //[marhsmellow] changed == to >= for high and <= for low
+ if ((GraphBuffer[i] >= high) && (GraphBuffer[i - 1] == c)) {
GraphBuffer[i] = 1 - c;
- } else if ((GraphBuffer[i] == low) && (GraphBuffer[i - 1] == (1 - c))){
+ } else if ((GraphBuffer[i] <= low) && (GraphBuffer[i - 1] == (1 - c))){
GraphBuffer[i] = c;
} else {
/* No transition */
return 0;
}
+//demod GraphBuffer wave to 0s and 1s for each wave - 0s for short waves 1s for long waves
+size_t fsk_wave_demod(int size)
+{
+ uint32_t last_transition = 0;
+ uint32_t idx = 1;
+ uint32_t maxVal = 0;
+ // we don't care about actual value, only if it's more or less than a
+ // threshold essentially we capture zero crossings for later analysis
+ for(idx=1; idx<size; idx++){
+ if(maxVal<GraphBuffer[idx]) maxVal = GraphBuffer[idx];
+ }
+ // set close to the top of the wave threshold with 13% margin for error
+ // less likely to get a false transition up there.
+ // (but have to be careful not to go too high and miss some short waves)
+ uint32_t threshold_value = (uint32_t)(maxVal*.87);
+ idx=1;
+ // int threshold_value = 100;
+
+ // sync to first lo-hi transition, and threshold
+ // PrintAndLog("FSK init complete size: %d",size);//debug
+ // Need to threshold first sample
+ if(GraphBuffer[0] < threshold_value) GraphBuffer[0] = 0;
+ else GraphBuffer[0] = 1;
+ size_t numBits = 0;
+ // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+ // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
+ // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+ for(idx = 1; idx < size; idx++) {
+ // threshold current value
+ if (GraphBuffer[idx] < threshold_value) GraphBuffer[idx] = 0;
+ else GraphBuffer[idx] = 1;
+ // Check for 0->1 transition
+ if (GraphBuffer[idx-1] < GraphBuffer[idx]) { // 0 -> 1 transition
+ if (idx-last_transition<6){
+ // do nothing with extra garbage (shouldn't be any) noise tolerance?
+ } else if(idx-last_transition < 9) {
+ GraphBuffer[numBits]=1;
+ // Other fsk demods reverse this making the short waves 1 and long waves 0
+ // this is really backwards... smaller waves will typically be 0 and larger 1 [marshmellow]
+ // but will leave as is and invert when needed later
+ } else{
+ GraphBuffer[numBits]=0;
+ }
+ last_transition = idx;
+ numBits++;
+ // PrintAndLog("numbits %d",numBits);
+ }
+ }
+ return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+}
+uint32_t myround(float f)
+{
+ if (f >= UINT_MAX) return UINT_MAX;
+ return (uint32_t) (f + (float)0.5);
+}
+//translate 11111100000 to 10
+size_t aggregate_bits(int size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert) //,uint8_t l2h_crossing_value
+{
+ int lastval=GraphBuffer[0];
+ uint32_t idx=0;
+ size_t numBits=0;
+ uint32_t n=1;
+ uint32_t n2=0;
+ for( idx=1; idx < size; idx++) {
+
+ if (GraphBuffer[idx]==lastval) {
+ n++;
+ continue;
+ }
+ // if lastval was 1, we have a 1->0 crossing
+ if ( GraphBuffer[idx-1]==1 ) {
+ n=myround((float)(n+1)/((float)(rfLen)/(float)8)); //-2 noise tolerance
+
+ // n=(n+1) / h2l_crossing_value;
+ //truncating could get us into trouble
+ //now we will try with actual clock (RF/64 or RF/50) variable instead
+ //then devide with float casting then truncate after more acurate division
+ //and round to nearest int
+ //like n = (((float)n)/(float)rfLen/(float)10);
+ } else {// 0->1 crossing
+ n=myround((float)(n+1)/((float)(rfLen-2)/(float)10)); // as int 120/6 = 20 as float 120/(64/10) = 18 (18.75)
+ //n=(n+1) / l2h_crossing_value;
+ }
+ if (n == 0) n = 1; //this should never happen... should we error if it does?
+
+ if (n < maxConsequtiveBits) // Consecutive //when the consecutive bits are low - the noise tolerance can be high
+ //if it is high then we must be careful how much noise tolerance we allow
+ {
+ if (invert==0){ // do not invert bits
+ for (n2=0; n2<n; n2++){
+ GraphBuffer[numBits+n2]=GraphBuffer[idx-1];
+ }
+ //memset(GraphBuffer+numBits, GraphBuffer[idx-1] , n);
+ }else{ // invert bits
+ for (n2=0; n2<n; n2++){
+ GraphBuffer[numBits+n2]=GraphBuffer[idx-1]^1;
+ }
+ //memset(GraphBuffer+numBits, GraphBuffer[idx-1]^1 , n);
+ }
+ numBits += n;
+ }
+ n=0;
+ lastval=GraphBuffer[idx];
+ }//end for
+ return numBits;
+}
+// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
+size_t fskdemod(uint8_t rfLen, uint8_t invert)
+{
+ //uint8_t h2l_crossing_value = 6;
+ //uint8_t l2h_crossing_value = 5;
+
+ // if (rfLen==64) //currently only know settings for RF/64 change from default if option entered
+ // {
+ // h2l_crossing_value=8; //or 8 as 64/8 = 8
+ // l2h_crossing_value=6; //or 6.4 as 64/10 = 6.4
+ // }
+ size_t size = GraphTraceLen;
+ // FSK demodulator
+ size = fsk_wave_demod(size);
+ size = aggregate_bits(size,rfLen,192,invert);
+ // size = aggregate_bits(size, h2l_crossing_value, l2h_crossing_value,192, invert); //192=no limit to same values
+ //done messing with GraphBuffer - repaint
+ RepaintGraphWindow();
+ return size;
+}
+uint32_t bytebits_to_byte(int* src, int numbits)
+{
+ uint32_t num = 0;
+ for(int i = 0 ; i < numbits ; i++)
+ {
+ num = (num << 1) | (*src);
+ src++;
+ }
+ return num;
+}
+
+//fsk demod and print binary
int CmdFSKdemod(const char *Cmd)
+{
+ //raw fsk demod no manchester decoding no start bit finding just get binary from wave
+ //set defaults
+ uint8_t rfLen = 50;
+ uint8_t invert=0;
+ //set options from parameters entered with the command
+ if (strlen(Cmd)>0 && strlen(Cmd)<=2) {
+ rfLen=param_get8(Cmd, 0); //if rfLen option only is used
+ if (rfLen==1){
+ invert=1; //if invert option only is used
+ rfLen = 50;
+ } else if(rfLen==0) rfLen=50;
+ }
+ if (strlen(Cmd)>2) {
+ rfLen=param_get8(Cmd, 0); //if both options are used
+ invert=param_get8(Cmd,1);
+ }
+ PrintAndLog("Args invert: %d \nClock:%d",invert,rfLen);
+
+ size_t size = fskdemod(rfLen,invert);
+
+ PrintAndLog("FSK decoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size
+
+ for (int i = 2; i < (size-16); i+=16) {
+ PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
+ GraphBuffer[i],
+ GraphBuffer[i+1],
+ GraphBuffer[i+2],
+ GraphBuffer[i+3],
+ GraphBuffer[i+4],
+ GraphBuffer[i+5],
+ GraphBuffer[i+6],
+ GraphBuffer[i+7],
+ GraphBuffer[i+8],
+ GraphBuffer[i+9],
+ GraphBuffer[i+10],
+ GraphBuffer[i+11],
+ GraphBuffer[i+12],
+ GraphBuffer[i+13],
+ GraphBuffer[i+14],
+ GraphBuffer[i+15]);
+ }
+ ClearGraph(1);
+ return 0;
+}
+
+int CmdFSKdemodHID(const char *Cmd)
+{
+ //raw fsk demod no manchester decoding no start bit finding just get binary from wave
+ //set defaults
+ uint8_t rfLen = 50;
+ uint8_t invert=0;//param_get8(Cmd, 0);
+ size_t idx=0;
+ uint32_t hi2=0, hi=0, lo=0;
+
+ //get binary from fsk wave
+ size_t size = fskdemod(rfLen,invert);
+
+ // final loop, go over previously decoded fsk data and now manchester decode into usable tag ID
+ // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
+ int frame_marker_mask[] = {1,1,1,0,0,0};
+ int numshifts = 0;
+ idx = 0;
+ while( idx + 6 < size) {
+ // search for a start of frame marker
+
+ if ( memcmp(GraphBuffer+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ { // frame marker found
+ idx+=6;//sizeof(frame_marker_mask); //size of int is >6
+ while(GraphBuffer[idx] != GraphBuffer[idx+1] && idx < size-2)
+ {
+ // Keep going until next frame marker (or error)
+ // Shift in a bit. Start by shifting high registers
+ hi2 = (hi2<<1)|(hi>>31);
+ hi = (hi<<1)|(lo>>31);
+ //Then, shift in a 0 or one into low
+ if (GraphBuffer[idx] && !GraphBuffer[idx+1]) // 1 0
+ lo=(lo<<1)|0;
+ else // 0 1
+ lo=(lo<<1)|1;
+ numshifts++;
+ idx += 2;
+ }
+
+ //PrintAndLog("Num shifts: %d ", numshifts);
+ // Hopefully, we read a tag and hit upon the next frame marker
+ if(idx + 6 < size)
+ {
+ if ( memcmp(GraphBuffer+(idx), frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ {
+ if (hi2 != 0){ //extra large HID tags
+ PrintAndLog("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
+ else { //standard HID tags <38 bits
+ //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+ uint8_t bitlen = 0;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
+ uint32_t lo2=0;
+ lo2=(((hi & 15) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+ uint8_t idx3 = 1;
+ while(lo2>1){ //find last bit set to 1 (format len bit)
+ lo2=lo2>>1;
+ idx3++;
+ }
+ bitlen =idx3+19;
+ fc =0;
+ cardnum=0;
+ if(bitlen==26){
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
+ }
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ if(bitlen==34){
+ cardnum = (lo>>1)&0xFFFF;
+ fc= ((hi&1)<<15)|(lo>>17);
+ }
+ if(bitlen==35){
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
+ }
+ }
+ else { //if bit 38 is not set then 37 bit format is used
+ bitlen= 37;
+ fc =0;
+ cardnum=0;
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ }
+
+ PrintAndLog("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+ ClearGraph(1);
+ return 0;
+ }
+ }
+ }
+ // reset
+ hi2 = hi = lo = 0;
+ numshifts = 0;
+ }else
+ {
+ idx++;
+ }
+ }
+ if (idx + sizeof(frame_marker_mask) >= size){
+ PrintAndLog("start bits for hid not found");
+ PrintAndLog("FSK decoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size
+
+ for (int i = 2; i < (size-16); i+=16) {
+ PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
+ GraphBuffer[i],
+ GraphBuffer[i+1],
+ GraphBuffer[i+2],
+ GraphBuffer[i+3],
+ GraphBuffer[i+4],
+ GraphBuffer[i+5],
+ GraphBuffer[i+6],
+ GraphBuffer[i+7],
+ GraphBuffer[i+8],
+ GraphBuffer[i+9],
+ GraphBuffer[i+10],
+ GraphBuffer[i+11],
+ GraphBuffer[i+12],
+ GraphBuffer[i+13],
+ GraphBuffer[i+14],
+ GraphBuffer[i+15]);
+ }
+ }
+ ClearGraph(1);
+ return 0;
+}
+
+
+int CmdFSKdemodIO(const char *Cmd)
+{
+ //raw fsk demod no manchester decoding no start bit finding just get binary from wave
+ //set defaults
+ uint8_t rfLen = 64;
+ uint8_t invert=1;
+ size_t idx=0;
+ uint8_t testMax=0;
+ //test samples are not just noise
+ if (GraphTraceLen < 64) return 0;
+ for(idx=0;idx<64;idx++){
+ if (testMax<GraphBuffer[idx]) testMax=GraphBuffer[idx];
+ }
+ idx=0;
+ //get full binary from fsk wave
+ size_t size = fskdemod(rfLen,invert);
+
+ //if not just noise
+ //PrintAndLog("testMax %d",testMax);
+ if (testMax>40){
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo (raw)
+ //Handle the data
+ int mask[] = {0,0,0,0,0,0,0,0,0,1};
+ for( idx=0; idx < (size - 74); idx++) {
+ if ( memcmp(GraphBuffer + idx, mask, sizeof(mask))==0) {
+ //frame marker found
+ if (GraphBuffer[idx+17]==1 && GraphBuffer[idx+26]==1 && GraphBuffer[idx+35]==1 && GraphBuffer[idx+44]==1 && GraphBuffer[idx+53]==1){
+ //confirmed proper separator bits found
+
+ PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx], GraphBuffer[idx+1], GraphBuffer[idx+2], GraphBuffer[idx+3], GraphBuffer[idx+4], GraphBuffer[idx+5], GraphBuffer[idx+6], GraphBuffer[idx+7], GraphBuffer[idx+8]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+9], GraphBuffer[idx+10], GraphBuffer[idx+11],GraphBuffer[idx+12],GraphBuffer[idx+13],GraphBuffer[idx+14],GraphBuffer[idx+15],GraphBuffer[idx+16],GraphBuffer[idx+17]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+18], GraphBuffer[idx+19], GraphBuffer[idx+20],GraphBuffer[idx+21],GraphBuffer[idx+22],GraphBuffer[idx+23],GraphBuffer[idx+24],GraphBuffer[idx+25],GraphBuffer[idx+26]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+27], GraphBuffer[idx+28], GraphBuffer[idx+29],GraphBuffer[idx+30],GraphBuffer[idx+31],GraphBuffer[idx+32],GraphBuffer[idx+33],GraphBuffer[idx+34],GraphBuffer[idx+35]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+36], GraphBuffer[idx+37], GraphBuffer[idx+38],GraphBuffer[idx+39],GraphBuffer[idx+40],GraphBuffer[idx+41],GraphBuffer[idx+42],GraphBuffer[idx+43],GraphBuffer[idx+44]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+45], GraphBuffer[idx+46], GraphBuffer[idx+47],GraphBuffer[idx+48],GraphBuffer[idx+49],GraphBuffer[idx+50],GraphBuffer[idx+51],GraphBuffer[idx+52],GraphBuffer[idx+53]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d%d",GraphBuffer[idx+54],GraphBuffer[idx+55],GraphBuffer[idx+56],GraphBuffer[idx+57],GraphBuffer[idx+58],GraphBuffer[idx+59],GraphBuffer[idx+60],GraphBuffer[idx+61],GraphBuffer[idx+62],GraphBuffer[idx+63]);
+
+ uint32_t code = bytebits_to_byte(GraphBuffer+idx,32);
+ uint32_t code2 = bytebits_to_byte(GraphBuffer+idx+32,32);
+ short version = bytebits_to_byte(GraphBuffer+idx+27,8); //14,4
+ uint8_t facilitycode = bytebits_to_byte(GraphBuffer+idx+19,8) ;
+ uint16_t number = (bytebits_to_byte(GraphBuffer+idx+36,8)<<8)|(bytebits_to_byte(GraphBuffer+idx+45,8)); //36,9
+
+ PrintAndLog("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
+ ClearGraph(1);
+ return 0;
+ } else {
+ PrintAndLog("thought we had a valid tag but did not match format");
+ }
+ }
+ }
+ if (idx >= (size-74)){
+ PrintAndLog("start bits for io prox not found");
+ PrintAndLog("FSK decoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size
+
+ for (int i = 2; i < (size-16); i+=16) {
+ PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
+ GraphBuffer[i],
+ GraphBuffer[i+1],
+ GraphBuffer[i+2],
+ GraphBuffer[i+3],
+ GraphBuffer[i+4],
+ GraphBuffer[i+5],
+ GraphBuffer[i+6],
+ GraphBuffer[i+7],
+ GraphBuffer[i+8],
+ GraphBuffer[i+9],
+ GraphBuffer[i+10],
+ GraphBuffer[i+11],
+ GraphBuffer[i+12],
+ GraphBuffer[i+13],
+ GraphBuffer[i+14],
+ GraphBuffer[i+15]);
+ }
+ }
+ }
+ ClearGraph(1);
+ return 0;
+}
+/*
+int CmdFSKdemodHIDold(const char *Cmd)//not put in commands yet //old CmdFSKdemod needs updating
{
static const int LowTone[] = {
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
int lowLen = sizeof (LowTone) / sizeof (int);
int highLen = sizeof (HighTone) / sizeof (int);
- int convLen = (highLen > lowLen) ? highLen : lowLen;
+ int convLen = (highLen > lowLen) ? highLen : lowLen; //if highlen > lowLen then highlen else lowlen
uint32_t hi = 0, lo = 0;
int i, j;
int minMark = 0, maxMark = 0;
-
+
for (i = 0; i < GraphTraceLen - convLen; ++i) {
int lowSum = 0, highSum = 0;
GraphTraceLen -= (convLen + 16);
RepaintGraphWindow();
- // Find bit-sync (3 lo followed by 3 high)
+ // Find bit-sync (3 lo followed by 3 high) (HID ONLY)
int max = 0, maxPos = 0;
for (i = 0; i < 6000; ++i) {
int dec = 0;
PrintAndLog("hex: %08x %08x", hi, lo);
return 0;
}
-
+*/
int CmdGrid(const char *Cmd)
{
sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY);
uint8_t got[40000];
n = strtol(Cmd, NULL, 0);
- if (n == 0) n = 512;
+ if (n == 0) n = 6000;
if (n > sizeof(got)) n = sizeof(got);
PrintAndLog("Reading %d samples\n", n);
{
if (GraphBuffer[i-1] != GraphBuffer[i])
{
- lc = i-lastval;
- lastval = i;
-
- // Error check: if bitidx becomes too large, we do not
- // have a Manchester encoded bitstream or the clock is really
- // wrong!
- if (bitidx > (GraphTraceLen*2/clock+8) ) {
- PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
- return 0;
- }
- // Then switch depending on lc length:
- // Tolerance is 1/4 of clock rate (arbitrary)
- if (abs(lc-clock/2) < tolerance) {
- // Short pulse : either "1" or "0"
- BitStream[bitidx++]=GraphBuffer[i-1];
- } else if (abs(lc-clock) < tolerance) {
- // Long pulse: either "11" or "00"
- BitStream[bitidx++]=GraphBuffer[i-1];
- BitStream[bitidx++]=GraphBuffer[i-1];
- } else {
+ lc = i-lastval;
+ lastval = i;
+
+ // Error check: if bitidx becomes too large, we do not
+ // have a Manchester encoded bitstream or the clock is really
+ // wrong!
+ if (bitidx > (GraphTraceLen*2/clock+8) ) {
+ PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
+ return 0;
+ }
+ // Then switch depending on lc length:
+ // Tolerance is 1/4 of clock rate (arbitrary)
+ if (abs(lc-clock/2) < tolerance) {
+ // Short pulse : either "1" or "0"
+ BitStream[bitidx++]=GraphBuffer[i-1];
+ } else if (abs(lc-clock) < tolerance) {
+ // Long pulse: either "11" or "00"
+ BitStream[bitidx++]=GraphBuffer[i-1];
+ BitStream[bitidx++]=GraphBuffer[i-1];
+ } else {
// Error
warnings++;
- PrintAndLog("Warning: Manchester decode error for pulse width detection.");
- PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)");
+ PrintAndLog("Warning: Manchester decode error for pulse width detection.");
+ PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)");
if (warnings > 10)
{
for (i = 0; i < bitidx; i += 2) {
if ((BitStream[i] == 0) && (BitStream[i+1] == 1)) {
BitStream[bit2idx++] = 1 ^ invert;
- } else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) {
- BitStream[bit2idx++] = 0 ^ invert;
- } else {
- // We cannot end up in this state, this means we are unsynchronized,
- // move up 1 bit:
- i++;
+ } else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) {
+ BitStream[bit2idx++] = 0 ^ invert;
+ } else {
+ // We cannot end up in this state, this means we are unsynchronized,
+ // move up 1 bit:
+ i++;
warnings++;
- PrintAndLog("Unsynchronized, resync...");
- PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
+ PrintAndLog("Unsynchronized, resync...");
+ PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
if (warnings > 10)
{
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "Detect clock rate"},
- {"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
+ {"fskdemod", CmdFSKdemod, 1, "[clock rate] [invert] Demodulate graph window from FSK to binary (clock = 64 or 50)(invert = 1 or 0)"},
+ {"fskdemodhid", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK"},
+ {"fskdemodio", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox FSK"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
{"hide", CmdHide, 1, "Hide graph window"},