#include "usb_cdc.h" // for usb_poll_validate_length
#include "fpgaloader.h"
-static int timeout = 4096;
-
// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
// 56,64us = 24 ssp_clk_cycles
-#define DELAY_ICLASS_VCD_TO_VICC_SIM 140
-#define TAG_SOF_UNMODULATED 24
+#define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24)
+// times in ssp_clk_cycles @ 3,3625MHz when acting as reader
+#define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER
+// times in samples @ 212kHz when acting as reader
+#define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us
+#define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us
+
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
//if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Uart.output, Uart.byteCnt, parity);
- LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, parity, true);
+ LogTrace_ISO15693(Uart.output, Uart.byteCnt, time_start*32, time_stop*32, parity, true);
/* And ready to receive another command. */
Uart.state = STATE_UNSYNCD;
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Demod.output, Demod.len, parity);
- LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
+ LogTrace_ISO15693(Demod.output, Demod.len, time_start*32, time_stop*32, parity, false);
// And ready to receive another response.
memset(&Demod, 0, sizeof(Demod));
A legit tag has about 273,4us delay between reader EOT and tag SOF.
**/
if (modulated_response_size > 0) {
- uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM - TAG_SOF_UNMODULATED - DELAY_ARM_TO_READER_SIM;
+ uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM;
TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
- LogTrace(trace_data, trace_data_size, response_time + DELAY_ARM_TO_READER_SIM, response_time + (modulated_response_size << 6) + DELAY_ARM_TO_READER_SIM, NULL, false);
+ LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size/2, NULL, false);
}
}
/// THE READER CODE
-//-----------------------------------------------------------------------------
-// Transmit the command (to the tag) that was placed in ToSend[].
-//-----------------------------------------------------------------------------
-static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) {
- int c;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- AT91C_BASE_SSC->SSC_THR = 0x00;
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
-
- if (wait) {
- if (*wait < 10) *wait = 10;
+static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) {
- for (c = 0; c < *wait;) {
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
- c++;
- }
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
- }
-
- uint8_t sendbyte;
- bool firstpart = true;
- c = 0;
- for (;;) {
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ CodeIso15693AsReader(frame, len);
- // DOUBLE THE SAMPLES!
- if (firstpart) {
- sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
- } else {
- sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
- c++;
- }
- if (sendbyte == 0xff) {
- sendbyte = 0xfe;
- }
- AT91C_BASE_SSC->SSC_THR = sendbyte;
- firstpart = !firstpart;
+ TransmitTo15693Tag(ToSend, ToSendMax, start_time);
- if (c >= len) {
- break;
- }
- }
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
- if (samples && wait) *samples = (c + *wait) << 3;
+ uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
+ LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true);
}
-//-----------------------------------------------------------------------------
-// Prepare iClass reader command to send to FPGA
-//-----------------------------------------------------------------------------
-void CodeIClassCommand(const uint8_t *cmd, int len) {
- int i, j, k;
-
- ToSendReset();
-
- // Start of Communication: 1 out of 4
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x0f;
- ToSend[++ToSendMax] = 0x00;
-
- // Modulate the bytes
- for (i = 0; i < len; i++) {
- uint8_t b = cmd[i];
- for (j = 0; j < 4; j++) {
- for (k = 0; k < 4; k++) {
- if (k == (b & 3)) {
- ToSend[++ToSendMax] = 0x0f;
- } else {
- ToSend[++ToSendMax] = 0x00;
- }
- }
- b >>= 2;
- }
- }
-
- // End of Communication
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
-
- // Convert from last character reference to length
- ToSendMax++;
-}
-
-static void ReaderTransmitIClass(uint8_t *frame, int len) {
- int wait = 0;
- int samples = 0;
-
- // This is tied to other size changes
- CodeIClassCommand(frame, len);
-
- // Select the card
- TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
- if (trigger)
- LED_A_ON();
-
- // Store reader command in buffer
- uint8_t par[MAX_PARITY_SIZE];
- GetParity(frame, len, par);
- LogTrace(frame, len, rsamples, rsamples, par, true);
-}
-
-//-----------------------------------------------------------------------------
-// Wait a certain time for tag response
-// If a response is captured return true
-// If it takes too long return false
-//-----------------------------------------------------------------------------
-static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) {
- //uint8_t *buffer
- // buffer needs to be 512 bytes
- int c;
-
- // Set FPGA mode to "reader listen mode", no modulation (listen
- // only, since we are receiving, not transmitting).
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
-
- // Now get the answer from the card
- Demod.output = receivedResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
-
- uint8_t b;
- if (elapsed) *elapsed = 0;
-
- bool skip = false;
-
- c = 0;
- for (;;) {
- WDT_HIT();
-
- if (BUTTON_PRESS()) return false;
-
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
- if (elapsed) (*elapsed)++;
- }
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- if (c < timeout) {
- c++;
- } else {
- return false;
- }
- b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- skip = !skip;
- if (skip) continue;
-
- if (ManchesterDecoding(b & 0x0f)) {
- *samples = c << 3;
- return true;
- }
- }
- }
-}
-
-static int ReaderReceiveIClass(uint8_t *receivedAnswer) {
- int samples = 0;
- if (!GetIClassAnswer(receivedAnswer, 160, &samples, 0)) {
- return false;
- }
- rsamples += samples;
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(receivedAnswer, Demod.len, parity);
- LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, parity, false);
- if (samples == 0) return false;
- return Demod.len;
-}
-
-static void setupIclassReader() {
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Reset trace buffer
- set_tracing(true);
- clear_trace();
-
- // Setup SSC
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
- // Start from off (no field generated)
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
-
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(200);
- LED_A_ON();
-
-}
-
-static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) {
+static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size,
+ uint8_t expected_size, uint8_t retries, uint32_t start_time, uint32_t *eof_time) {
while (retries-- > 0) {
- ReaderTransmitIClass(command, cmdsize);
- if (expected_size == ReaderReceiveIClass(resp)) {
+ ReaderTransmitIClass(command, cmdsize, &start_time);
+ if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, ICLASS_READER_TIMEOUT_OTHERS, eof_time)) {
return true;
}
}
* 1 = Got CSN
* 2 = Got CSN and CC
*/
-static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
- static uint8_t act_all[] = { 0x0a };
- //static uint8_t identify[] = { 0x0c };
- static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
- static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- static uint8_t readcheck_cc[]= { 0x88, 0x02 };
+static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key, uint32_t *eof_time) {
+ uint8_t act_all[] = { 0x0a };
+ uint8_t identify[] = { 0x0c };
+ uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ uint8_t readcheck_cc[] = { 0x88, 0x02 };
if (use_credit_key)
readcheck_cc[0] = 0x18;
else
uint8_t resp[ICLASS_BUFFER_SIZE];
uint8_t read_status = 0;
+ uint32_t start_time = GetCountSspClk();
// Send act_all
- ReaderTransmitIClass(act_all, 1);
+ ReaderTransmitIClass(act_all, 1, &start_time);
// Card present?
- if (!ReaderReceiveIClass(resp)) return read_status;//Fail
-
+ if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return read_status;//Fail
+
//Send Identify
- ReaderTransmitIClass(identify, 1);
+ start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ ReaderTransmitIClass(identify, 1, &start_time);
+ // FpgaDisableTracing(); // DEBUGGING
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
- uint8_t len = ReaderReceiveIClass(resp);
+ uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return read_status;//Fail
//Copy the Anti-collision CSN to our select-packet
memcpy(&select[1], resp, 8);
//Select the card
- ReaderTransmitIClass(select, sizeof(select));
+ start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ ReaderTransmitIClass(select, sizeof(select), &start_time);
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
- len = ReaderReceiveIClass(resp);
+ len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return read_status;//Fail
//Success - level 1, we got CSN
read_status = 1;
// Card selected, now read e-purse (cc) (only 8 bytes no CRC)
- ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
- if (ReaderReceiveIClass(resp) == 8) {
+ start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc), &start_time);
+ if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time) == 8) {
//Save CC (e-purse) in response data
memcpy(card_data+8, resp, 8);
read_status++;
return read_status;
}
-static uint8_t handshakeIclassTag(uint8_t *card_data) {
- return handshakeIclassTag_ext(card_data, false);
+static uint8_t handshakeIclassTag(uint8_t *card_data, uint32_t *eof_time) {
+ return handshakeIclassTag_ext(card_data, false, eof_time);
}
uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
set_tracing(true);
- setupIclassReader();
+ clear_trace();
+ Iso15693InitReader();
+ StartCountSspClk();
+ uint32_t start_time = 0;
+ uint32_t eof_time = 0;
+
uint16_t tryCnt = 0;
bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
while (!userCancelled) {
}
WDT_HIT();
- read_status = handshakeIclassTag_ext(card_data, use_credit_key);
+ read_status = handshakeIclassTag_ext(card_data, use_credit_key, &eof_time);
if (read_status == 0) continue;
if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC;
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// handshakeIclass returns CSN|CC, but the actual block
// layout is CSN|CONFIG|CC, so here we reorder the data,
// moving CC forward 8 bytes
memcpy(card_data+16, card_data+8, 8);
//Read block 1, config
if (flagReadConfig) {
- if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) {
+ if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
Dbprintf("Failed to dump config block");
}
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 5, AA
if (flagReadAA) {
- if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) {
+ if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
result_status |= FLAG_ICLASS_READER_AA;
memcpy(card_data + (8*5), resp, 8);
} else {
uint8_t resp[ICLASS_BUFFER_SIZE];
- setupIclassReader();
set_tracing(true);
+ clear_trace();
+ Iso15693InitReader();
+ StartCountSspClk();
+ uint32_t start_time = 0;
+ uint32_t eof_time = 0;
+
while (!BUTTON_PRESS()) {
WDT_HIT();
break;
}
- uint8_t read_status = handshakeIclassTag(card_data);
+ uint8_t read_status = handshakeIclassTag(card_data, &eof_time);
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+
if (read_status < 2) continue;
//for now replay captured auth (as cc not updated)
memcpy(check+5, MAC, 4);
- if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) {
+ if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 5, start_time, &eof_time)) {
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
Dbprintf("Error: Authentication Fail!");
continue;
}
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
//first get configuration block (block 1)
crc = block_crc_LUT[1];
read[1] = 1;
read[2] = crc >> 8;
read[3] = crc & 0xff;
- if (!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) {
+ if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
Dbprintf("Dump config (block 1) failed");
continue;
}
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
mem = resp[5];
memory.k16 = (mem & 0x80);
memory.book = (mem & 0x20);
read[2] = crc >> 8;
read[3] = crc & 0xff;
- if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) {
+ if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
block, resp[0], resp[1], resp[2],
resp[3], resp[4], resp[5],
uint8_t resp[ICLASS_BUFFER_SIZE];
memcpy(check+5, MAC, 4);
bool isOK;
- isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
+ uint32_t eof_time;
+ isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 6, 0, &eof_time);
cmd_send(CMD_ACK,isOK, 0, 0, 0, 0);
}
uint16_t rdCrc = iclass_crc16(&bl, 1);
readcmd[2] = rdCrc >> 8;
readcmd[3] = rdCrc & 0xff;
- uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t resp[10];
bool isOK = false;
-
+ uint32_t eof_time;
+
//readcmd[1] = blockNo;
- isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
+ isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, &eof_time);
memcpy(readdata, resp, sizeof(resp));
return isOK;
uint16_t wrCrc = iclass_crc16(wrCmd, 13);
write[14] = wrCrc >> 8;
write[15] = wrCrc & 0xff;
- uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t resp[10];
bool isOK = false;
-
- isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
+ uint32_t eof_time = 0;
+
+ isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, 0, &eof_time);
+ uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
if (isOK) { //if reader responded correctly
//Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
if (memcmp(write+2, resp, 8)) { //if response is not equal to write values
if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
//error try again
- isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
+ isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, start_time, &eof_time);
}
}
}
#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
+// Delays in SSP_CLK ticks.
+// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
+#define DELAY_READER_TO_ARM 8
+#define DELAY_ARM_TO_READER 0
+//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
+#define DELAY_TAG_TO_ARM 32
+#define DELAY_ARM_TO_TAG 16
+
static int DEBUG = 0;
+
+// specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
+bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) {
+ uint32_t duration = timestamp_end - timestamp_start;
+ duration /= 32;
+ timestamp_end = timestamp_start + duration;
+ return LogTrace(btBytes, iLen, timestamp_start, timestamp_end, parity, readerToTag);
+}
+
+
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 2 - Air Interface
// This section basically contains transmission and receiving of bits
// resulting data rate is 26.48 kbit/s (fc/512)
// cmd ... data
// n ... length of data
-static void CodeIso15693AsReader(uint8_t *cmd, int n)
-{
- int i, j;
+void CodeIso15693AsReader(uint8_t *cmd, int n) {
ToSendReset();
- // Give it a bit of slack at the beginning
- for(i = 0; i < 24; i++) {
- ToSendStuffBit(1);
- }
-
// SOF for 1of4
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- for(i = 0; i < n; i++) {
- for(j = 0; j < 8; j += 2) {
- int these = (cmd[i] >> j) & 3;
+ ToSend[++ToSendMax] = 0x84; //10000100
+
+ // data
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < 8; j += 2) {
+ int these = (cmd[i] >> j) & 0x03;
switch(these) {
case 0:
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x40; //01000000
break;
case 1:
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x10; //00010000
break;
case 2:
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x04; //00000100
break;
case 3:
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
+ ToSend[++ToSendMax] = 0x01; //00000001
break;
}
}
}
- // EOF
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
-
- // Fill remainder of last byte with 1
- for(i = 0; i < 4; i++) {
- ToSendStuffBit(1);
- }
+ // EOF
+ ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
+
ToSendMax++;
}
// is designed for more robust communication over longer distances
static void CodeIso15693AsReader256(uint8_t *cmd, int n)
{
- int i, j;
-
ToSendReset();
- // Give it a bit of slack at the beginning
- for(i = 0; i < 24; i++) {
- ToSendStuffBit(1);
- }
-
// SOF for 1of256
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
-
- for(i = 0; i < n; i++) {
- for (j = 0; j<=255; j++) {
- if (cmd[i]==j) {
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x81; //10000001
+
+ // data
+ for(int i = 0; i < n; i++) {
+ for (int j = 0; j <= 255; j++) {
+ if (cmd[i] == j) {
ToSendStuffBit(0);
- } else {
- ToSendStuffBit(1);
ToSendStuffBit(1);
+ } else {
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
}
}
}
+
// EOF
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
-
- // Fill remainder of last byte with 1
- for(i = 0; i < 4; i++) {
- ToSendStuffBit(1);
- }
+ ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
ToSendMax++;
}
// Transmit the command (to the tag) that was placed in cmd[].
-static void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t start_time)
-{
+void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time) {
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+
+ *start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0;
+
+ while (GetCountSspClk() > *start_time) { // we may miss the intended time
+ *start_time += 16; // next possible time
+ }
- while (GetCountSspClk() < start_time) ;
+
+ while (GetCountSspClk() < *start_time)
+ /* wait */ ;
LED_B_ON();
- for(int c = 0; c < len; c++) {
+ for (int c = 0; c < len; c++) {
uint8_t data = cmd[c];
for (int i = 0; i < 8; i++) {
- uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
+ uint16_t send_word = (data & 0x80) ? 0xffff : 0x0000;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
+
data <<= 1;
}
WDT_HIT();
}
LED_B_OFF();
+
+ *start_time = *start_time + DELAY_ARM_TO_TAG;
+
}
// don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
- uint32_t modulation_start_time = *start_time + 3 * 8; // no need to transfer the unmodulated start of SOF
+ uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8; // no need to transfer the unmodulated start of SOF
while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
if (slot_time) {
uint8_t shift_delay = modulation_start_time & 0x00000007;
- *start_time = modulation_start_time - 3 * 8;
+ *start_time = modulation_start_time + DELAY_ARM_TO_READER - 3 * 8;
LED_C_ON();
uint8_t bits_to_shift = 0x00;
// false if we are still waiting for some more
//=============================================================================
-#define NOISE_THRESHOLD 160 // don't try to correlate noise
+#define NOISE_THRESHOLD 160 // don't try to correlate noise
+#define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
typedef struct DecodeTag {
enum {
STATE_TAG_SOF_LOW,
+ STATE_TAG_SOF_RISING_EDGE,
STATE_TAG_SOF_HIGH,
STATE_TAG_SOF_HIGH_END,
STATE_TAG_RECEIVING_DATA,
- STATE_TAG_EOF
+ STATE_TAG_EOF,
+ STATE_TAG_EOF_TAIL
} state;
int bitCount;
int posCount;
uint8_t *output;
int len;
int sum1, sum2;
+ int threshold_sof;
+ int threshold_half;
+ uint16_t previous_amplitude;
} DecodeTag_t;
{
switch(DecodeTag->state) {
case STATE_TAG_SOF_LOW:
- // waiting for 12 times low (11 times low is accepted as well)
- if (amplitude < NOISE_THRESHOLD) {
- DecodeTag->posCount++;
- } else {
+ // waiting for a rising edge
+ if (amplitude > NOISE_THRESHOLD + DecodeTag->previous_amplitude) {
if (DecodeTag->posCount > 10) {
- DecodeTag->posCount = 1;
- DecodeTag->sum1 = 0;
- DecodeTag->state = STATE_TAG_SOF_HIGH;
+ DecodeTag->threshold_sof = amplitude - DecodeTag->previous_amplitude;
+ DecodeTag->threshold_half = 0;
+ DecodeTag->state = STATE_TAG_SOF_RISING_EDGE;
} else {
DecodeTag->posCount = 0;
}
+ } else {
+ DecodeTag->posCount++;
+ DecodeTag->previous_amplitude = amplitude;
}
break;
+ case STATE_TAG_SOF_RISING_EDGE:
+ if (amplitude - DecodeTag->previous_amplitude > DecodeTag->threshold_sof) { // edge still rising
+ if (amplitude - DecodeTag->threshold_sof > DecodeTag->threshold_sof) { // steeper edge, take this as time reference
+ DecodeTag->posCount = 1;
+ } else {
+ DecodeTag->posCount = 2;
+ }
+ DecodeTag->threshold_sof = (amplitude - DecodeTag->previous_amplitude) / 2;
+ } else {
+ DecodeTag->posCount = 2;
+ DecodeTag->threshold_sof = DecodeTag->threshold_sof/2;
+ }
+ // DecodeTag->posCount = 2;
+ DecodeTag->state = STATE_TAG_SOF_HIGH;
+ break;
+
case STATE_TAG_SOF_HIGH:
// waiting for 10 times high. Take average over the last 8
- if (amplitude > NOISE_THRESHOLD) {
+ if (amplitude > DecodeTag->threshold_sof) {
DecodeTag->posCount++;
if (DecodeTag->posCount > 2) {
- DecodeTag->sum1 += amplitude; // keep track of average high value
+ DecodeTag->threshold_half += amplitude; // keep track of average high value
}
if (DecodeTag->posCount == 10) {
- DecodeTag->sum1 >>= 4; // calculate half of average high value (8 samples)
+ DecodeTag->threshold_half >>= 2; // (4 times 1/2 average)
DecodeTag->state = STATE_TAG_SOF_HIGH_END;
}
} else { // high phase was too short
DecodeTag->posCount = 1;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
}
break;
case STATE_TAG_SOF_HIGH_END:
- // waiting for a falling edge
- if (amplitude < DecodeTag->sum1) { // signal drops below 50% average high: a falling edge
+ // check for falling edge
+ if (DecodeTag->posCount == 13 && amplitude < DecodeTag->threshold_sof) {
DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high)
DecodeTag->shiftReg = 0;
DecodeTag->bitCount = 0;
DecodeTag->sum2 = 0;
DecodeTag->posCount = 2;
DecodeTag->state = STATE_TAG_RECEIVING_DATA;
+ // FpgaDisableTracing(); // DEBUGGING
+ // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
+ // amplitude,
+ // DecodeTag->threshold_sof,
+ // DecodeTag->threshold_half/4,
+ // DecodeTag->previous_amplitude); // DEBUGGING
LED_C_ON();
} else {
DecodeTag->posCount++;
if (DecodeTag->posCount > 13) { // high phase too long
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
DecodeTag->sum2 += amplitude;
}
if (DecodeTag->posCount == 8) {
- int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
- int32_t corr_0 = -corr_1;
- int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
- if (corr_EOF > corr_0 && corr_EOF > corr_1) {
+ if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in both halves
if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
DecodeTag->state = STATE_TAG_EOF;
} else {
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
- } else if (corr_1 > corr_0) {
+ } else if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in second half
// logic 1
if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
DecodeTag->lastBit = SOF_PART2; // SOF completed
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
+ // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
- DecodeTag->posCount = 0;
- DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
+ return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
- } else {
+ } else if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
// logic 0
if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
} else {
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
+ // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
DecodeTag->shiftReg = 0;
}
}
+ } else { // no modulation
+ if (DecodeTag->lastBit == SOF_PART2) { // only SOF (this is OK for iClass)
+ LED_C_OFF();
+ return true;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
}
DecodeTag->posCount = 0;
}
DecodeTag->sum2 += amplitude;
}
if (DecodeTag->posCount == 8) {
- int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
- int32_t corr_0 = -corr_1;
- int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
- if (corr_EOF > corr_0 || corr_1 > corr_0) {
+ if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_EOF_TAIL;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
- } else {
+ }
+ }
+ DecodeTag->posCount++;
+ break;
+
+ case STATE_TAG_EOF_TAIL:
+ if (DecodeTag->posCount == 1) {
+ DecodeTag->sum1 = 0;
+ DecodeTag->sum2 = 0;
+ }
+ if (DecodeTag->posCount <= 4) {
+ DecodeTag->sum1 += amplitude;
+ } else {
+ DecodeTag->sum2 += amplitude;
+ }
+ if (DecodeTag->posCount == 8) {
+ if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // no modulation in both halves
LED_C_OFF();
return true;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
}
}
DecodeTag->posCount++;
break;
-
}
return false;
static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len)
{
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
DecodeTag->output = data;
{
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
}
/*
* Receive and decode the tag response, also log to tracebuffer
*/
-static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int timeout)
-{
+int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) {
+
int samples = 0;
- bool gotFrame = false;
+ int ret = 0;
- uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
+ uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
// the Decoder data structure
DecodeTag_t DecodeTag = { 0 };
// Setup and start DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ uint32_t dma_start_time = 0;
uint16_t *upTo = dmaBuf;
for(;;) {
if (behindBy == 0) continue;
+ samples++;
+ if (samples == 1) {
+ // DMA has transferred the very first data
+ dma_start_time = GetCountSspClk() & 0xfffffff0;
+ }
+
uint16_t tagdata = *upTo++;
if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+ ret = -1;
break;
}
}
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
}
- samples++;
-
if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
- gotFrame = true;
+ *eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM; // end of EOF
+ if (DecodeTag.lastBit == SOF_PART2) {
+ *eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
+ }
+ if (DecodeTag.len > DecodeTag.max_len) {
+ ret = -2; // buffer overflow
+ }
break;
}
if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
- DecodeTag.len = 0;
+ ret = -1; // timeout
break;
}
}
FpgaDisableSscDma();
- BigBuf_free();
- if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
- samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
+ if (DEBUG) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
+ samples, ret, DecodeTag.state, DecodeTag.lastBit, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
- if (DecodeTag.len > 0) {
- LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
+ if (ret < 0) {
+ return ret;
}
+ uint32_t sof_time = *eof_time
+ - DecodeTag.len * 8 * 8 * 16 // time for byte transfers
+ - 32 * 16 // time for SOF transfer
+ - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
+
+ if (DEBUG) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time, *eof_time);
+
+ LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, *eof_time*4, NULL, false);
+
return DecodeTag.len;
}
for (int i = 7; i >= 0; i--) {
if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
- *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF
+ *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM; // end of EOF
gotFrame = true;
break;
}
- DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
- 32 // time for SOF transfer
- 16; // time for EOF transfer
- LogTrace(DecodeReader.output, DecodeReader.byteCount, sof_time, *eof_time, NULL, true);
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*32, *eof_time*32, NULL, true);
}
return DecodeReader.byteCount;
SpinDelay(100);
// Now send the command
- TransmitTo15693Tag(ToSend, ToSendMax, 0);
+ uint32_t start_time = 0;
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
FpgaDisableSscDma();
ExpectTagAnswer = true;
- LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, samples*64, samples*64, NULL, true);
/* And ready to receive another command. */
DecodeReaderReset(&DecodeReader);
/* And also reset the demod code, which might have been */
if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
FpgaDisableSscDma();
ExpectTagAnswer = true;
- LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, samples*64, samples*64, NULL, true);
/* And ready to receive another command. */
DecodeReaderReset(&DecodeReader);
/* And also reset the demod code, which might have been */
if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
FpgaDisableSscDma();
//Use samples as a time measurement
- LogTrace(DecodeTag.output, DecodeTag.len, samples, samples, NULL, false);
+ LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, samples*64, samples*64, NULL, false);
// And ready to receive another response.
DecodeTagReset(&DecodeTag);
DecodeReaderReset(&DecodeReader);
// Initialize the proxmark as iso15k reader
-static void Iso15693InitReader() {
+void Iso15693InitReader() {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Setup SSC
- // FpgaSetupSsc();
// Start from off (no field generated)
LED_D_OFF();
// init ... should we initialize the reader?
// speed ... 0 low speed, 1 hi speed
// *recv will contain the tag's answer
-// return: lenght of received data
-int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) {
+// return: length of received data, or -1 for timeout
+int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint32_t *eof_time) {
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
- if (init) Iso15693InitReader();
-
- int answerLen=0;
-
+ if (init) {
+ Iso15693InitReader();
+ StartCountSspClk();
+ }
+
+ int answerLen = 0;
+
if (!speed) {
// low speed (1 out of 256)
CodeIso15693AsReader256(send, sendlen);
CodeIso15693AsReader(send, sendlen);
}
- TransmitTo15693Tag(ToSend, ToSendMax, start_time);
+ if (start_time == 0) {
+ start_time = GetCountSspClk();
+ }
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// Now wait for a response
if (recv != NULL) {
- answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2);
+ answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2, eof_time);
}
LED_A_OFF();
// Now send the IDENTIFY command
BuildIdentifyRequest();
- TransmitTo15693Tag(ToSend, ToSendMax, 0);
+ uint32_t start_time = 0;
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// Now wait for a response
- answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2) ;
- uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ uint32_t eof_time;
+ answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time) ;
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
if (answerLen >=12) // we should do a better check than this
{
if (answerLen >= 12 && DEBUG) {
for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages
BuildReadBlockRequest(TagUID, i);
- TransmitTo15693Tag(ToSend, ToSendMax, start_time);
- int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2);
- start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+ int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
if (answerLen > 0) {
Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
DbdecodeIso15693Answer(answerLen, answer);
if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
- start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
+ start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM;
TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
}
uint8_t data[6];
uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
-
- int datalen=0, recvlen=0;
-
- Iso15693InitReader();
- StartCountSspClk();
+ int datalen = 0, recvlen = 0;
+ uint32_t eof_time;
// first without AFI
// Tags should respond without AFI and with AFI=0 even when AFI is active
data[1] = ISO15693_INVENTORY;
data[2] = 0; // mask length
datalen = Iso15693AddCrc(data,3);
- recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0);
- uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ uint32_t start_time = GetCountSspClk();
+ recvlen = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen>=12) {
Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
for (int i = 0; i < 256; i++) {
data[2] = i & 0xFF;
datalen = Iso15693AddCrc(data,4);
- recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time);
- start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen >= 12) {
Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
int recvlen = 0;
uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
-
+ uint32_t eof_time;
+
LED_A_ON();
if (DEBUG) {
Dbhexdump(datalen, data, false);
}
- recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0);
+ recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0, &eof_time);
+
+ // for the time being, switch field off to protect rdv4.0
+ // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
if (recv) {
if (DEBUG) {
Dbprintf("RECV:");
- Dbhexdump(recvlen, recvbuf, false);
- DbdecodeIso15693Answer(recvlen, recvbuf);
+ if (recvlen > 0) {
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
}
-
- cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
-
+ if (recvlen > ISO15693_MAX_RESPONSE_LENGTH) {
+ recvlen = ISO15693_MAX_RESPONSE_LENGTH;
+ }
+ cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
}
- // for the time being, switch field off to protect rdv4.0
- // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
-
LED_A_OFF();
}
int recvlen = 0;
uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
-
+ uint32_t eof_time;
+
LED_A_ON();
// Command 1 : 02213E00000000
cmd[3][5] = uid[1];
cmd[3][6] = uid[0];
- for (int i=0; i<4; i++) {
+ for (int i = 0; i < 4; i++) {
// Add the CRC
crc = Iso15693Crc(cmd[i], 7);
cmd[i][7] = crc & 0xff;
Dbhexdump(sizeof(cmd[i]), cmd[i], false);
}
- recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0);
+ recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0, &eof_time);
if (DEBUG) {
Dbprintf("RECV:");
- Dbhexdump(recvlen, recvbuf, false);
- DbdecodeIso15693Answer(recvlen, recvbuf);
+ if (recvlen > 0) {
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
}
cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
// Delays in SSP_CLK ticks.
// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
-#define DELAY_READER_TO_ARM_SIM 8
-#define DELAY_ARM_TO_READER_SIM 0
-#define DELAY_ISO15693_VCD_TO_VICC_SIM 132 // 132/423.75kHz = 311.5us from end of command EOF to start of tag response
-//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader
+#define DELAY_ISO15693_VCD_TO_VICC_SIM 132 // 132/423.75kHz = 311.5us from end of command EOF to start of tag response
+//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
#define DELAY_ISO15693_VCD_TO_VICC_READER 1056 // 1056/3,39MHz = 311.5us from end of command EOF to start of tag response
-#define DELAY_ISO15693_VICC_TO_VCD_READER 1017 // 1017/3.39MHz = 300us between end of tag response and next reader command
+#define DELAY_ISO15693_VICC_TO_VCD_READER 1024 // 1024/3.39MHz = 302.1us between end of tag response and next reader command
+void Iso15693InitReader();
+void CodeIso15693AsReader(uint8_t *cmd, int n);
void CodeIso15693AsTag(uint8_t *cmd, size_t len);
-int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time);
void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow);
+int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time);
+void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time);
+int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time);
void SnoopIso15693(void);
void AcquireRawAdcSamplesIso15693(void);
void ReaderIso15693(uint32_t parameter);
void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]);
void SetTag15693Uid(uint8_t *uid);
void SetDebugIso15693(uint32_t flag);
+bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag);
#endif
if ( len % 16 == 0 ) {
for(; p-buf < len; p += 16)
- Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
name,
p-buf,
len,
}
else {
for(; p-buf < len; p += 8)
- Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
+ Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
}
}
// RotateLeft - Ultralight, Desfire
void rol(uint8_t *data, const size_t len){
- uint8_t first = data[0];
- for (size_t i = 0; i < len-1; i++) {
- data[i] = data[i+1];
- }
- data[len-1] = first;
+ uint8_t first = data[0];
+ for (size_t i = 0; i < len-1; i++) {
+ data[i] = data[i+1];
+ }
+ data[len-1] = first;
}
void lsl (uint8_t *data, size_t len) {
- for (size_t n = 0; n < len - 1; n++) {
- data[n] = (data[n] << 1) | (data[n+1] >> 7);
- }
- data[len - 1] <<= 1;
+ for (size_t n = 0; n < len - 1; n++) {
+ data[n] = (data[n] << 1) | (data[n+1] >> 7);
+ }
+ data[len - 1] <<= 1;
}
void LEDsoff()
// -------------------------------------------------------------------------
// test procedure:
//
-// ti = GetTickCount();
-// SpinDelay(1000);
-// ti = GetTickCount() - ti;
-// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
+// ti = GetTickCount();
+// SpinDelay(1000);
+// ti = GetTickCount() - ti;
+// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
void StartTickCount()
{
// This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
// We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
- uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
+ uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
// set RealTimeCounter divider to count at 1kHz:
AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
// note: worst case precision is approx 2.5%
// -------------------------------------------------------------------------
-// microseconds timer
+// microseconds timer
// -------------------------------------------------------------------------
void StartCountUS()
{
AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
-// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
+// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
-
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
+
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
-
+
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TCB->TCB_BCR = 1;
// -------------------------------------------------------------------------
-// Timer for iso14443 commands. Uses ssp_clk from FPGA
+// Timer for iso14443 commands. Uses ssp_clk from FPGA
// -------------------------------------------------------------------------
void StartCountSspClk()
{
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
- AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
- | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
- | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
+ AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
+ | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
+ | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
// configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
- | AT91C_TC_CPCSTOP // Stop clock on RC compare
- | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
- | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16 ... 13,56MHz/4)
- | AT91C_TC_ENETRG // Enable external trigger event
- | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
- | AT91C_TC_WAVE // Waveform Mode
- | AT91C_TC_AEEVT_SET // Set TIOA1 on external event
- | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
- AT91C_BASE_TC1->TC_RC = 0x02; // RC Compare value = 0x02
+ | AT91C_TC_CPCSTOP // Stop clock on RC compare
+ | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
+ | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16 ... 13,56MHz/4)
+ | AT91C_TC_ENETRG // Enable external trigger event
+ | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
+ | AT91C_TC_WAVE // Waveform Mode
+ | AT91C_TC_AEEVT_SET // Set TIOA1 on external event
+ | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
+ AT91C_BASE_TC1->TC_RC = 0x02; // RC Compare value = 0x02
// use TC0 to count TIOA1 pulses
- AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
- AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
- | AT91C_TC_WAVE // Waveform Mode
- | AT91C_TC_WAVESEL_UP // just count
- | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
- | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
- AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
- AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
+ | AT91C_TC_WAVE // Waveform Mode
+ | AT91C_TC_WAVESEL_UP // just count
+ | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
+ | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
+ AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
+ AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
// use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
- AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
- AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
- | AT91C_TC_WAVE // Waveform Mode
- | AT91C_TC_WAVESEL_UP; // just count
-
- AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
- AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
+ AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
+ AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
+ | AT91C_TC_WAVE // Waveform Mode
+ | AT91C_TC_WAVESEL_UP; // just count
+
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
+ AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
//
- // synchronize the counter with the ssp_frame signal. Note: FPGA must be in a FPGA mode with SSC transfer, otherwise SSC_FRAME and SSC_CLK signals would not be present
+ // synchronize the counter with the ssp_frame signal. Note: FPGA must be in a FPGA mode with SSC transfer, otherwise SSC_FRAME and SSC_CLK signals would not be present
//
- while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
- while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
- while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
- // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 1st ssp_clk after start of frame
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 2nd ssp_clk after start of frame
+ if ((AT91C_BASE_SSC->SSC_RFMR & SSC_FRAME_MODE_BITS_IN_WORD(32)) == SSC_FRAME_MODE_BITS_IN_WORD(16)) {
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 3rd ssp_clk after start of frame
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 4th ssp_clk after start of frame
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 5th ssp_clk after start of frame
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 6th ssp_clk after start of frame
+ }
// it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
- AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
- // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
- // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
+ AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
+ // at the next (3rd/7th) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
+ // at the next (4th/8th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
// whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
- // (just started with the transfer of the 4th Bit).
+ // (just started with the transfer of the 3rd Bit).
// The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
// we can use the counter.
while (AT91C_BASE_TC0->TC_CV < 0xFFFF);
while (AT91C_BASE_TC2->TC_CV > 0);
}
-
uint32_t GetCountSspClk(){
uint32_t hi, lo;
- do {
+ do {
hi = AT91C_BASE_TC2->TC_CV;
lo = AT91C_BASE_TC0->TC_CV;
- } while(hi != AT91C_BASE_TC2->TC_CV);
-
+ } while (hi != AT91C_BASE_TC2->TC_CV);
+
return (hi << 16) | lo;
}
-
// -------------------------------------------------------------------------
// Timer for bitbanging, or LF stuff when you need a very precis timer
// 1us = 1.5ticks
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // re-enable timer and wait for TC0
// second configure TC0 (lower, 0x0000FFFF) 16 bit counter
- AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
- AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO |
- AT91C_TC_ACPA_CLEAR | // RA comperator clears TIOA (carry bit)
- AT91C_TC_ACPC_SET | // RC comperator sets TIOA (carry bit)
- AT91C_TC_ASWTRG_SET; // SWTriger sets TIOA (carry bit)
+ AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
+ AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO |
+ AT91C_TC_ACPA_CLEAR | // RA comperator clears TIOA (carry bit)
+ AT91C_TC_ACPC_SET | // RC comperator sets TIOA (carry bit)
+ AT91C_TC_ASWTRG_SET; // SWTriger sets TIOA (carry bit)
AT91C_BASE_TC0->TC_RC = 0; // set TIOA (carry bit) on overflow, return to zero
AT91C_BASE_TC0->TC_RA = 1; // clear carry bit on next clock cycle
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // reset and re-enable timer
}
-// Wait / Spindelay in us (microseconds)
+// Wait / Spindelay in us (microseconds)
// 1us = 1.5ticks.
void WaitUS(uint16_t us){
WaitTicks( (uint32_t)us * 3 / 2 ) ;
// stop clock
void StopTicks(void){
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
}
void StartCountSspClk();
void ResetSspClk(void);
-uint32_t RAMFUNC GetCountSspClk();
+uint32_t GetCountSspClk();
extern void StartTicks(void);
extern uint32_t GetTicks(void);
char *hexout;
- if (strlen(cmd)<3) {
+ if (strlen(cmd)<2) {
PrintAndLog("Usage: hf 15 cmd raw [-r] [-2] [-c] <0A 0B 0C ... hex>");
PrintAndLog(" -r do not read response");
PrintAndLog(" -2 use slower '1 out of 256' mode");
SendCommand(&c);
if (reply) {
- if (WaitForResponseTimeout(CMD_ACK,&resp,1000)) {
+ if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
recv = resp.d.asBytes;
- PrintAndLog("received %i octets",resp.arg[0]);
- hexout = (char *)malloc(resp.arg[0] * 3 + 1);
- if (hexout != NULL) {
- for (int i = 0; i < resp.arg[0]; i++) { // data in hex
- sprintf(&hexout[i * 3], "%02X ", recv[i]);
+ int recv_len = resp.arg[0];
+ if (recv_len == 0) {
+ PrintAndLog("received SOF only. Maybe Picopass/iCLASS?");
+ } else if (recv_len > 0) {
+ PrintAndLog("received %i octets", recv_len);
+ hexout = (char *)malloc(resp.arg[0] * 3 + 1);
+ if (hexout != NULL) {
+ for (int i = 0; i < resp.arg[0]; i++) { // data in hex
+ sprintf(&hexout[i * 3], "%02X ", recv[i]);
+ }
+ PrintAndLog("%s", hexout);
+ free(hexout);
}
- PrintAndLog("%s", hexout);
- free(hexout);
+ } else if (recv_len == -1) {
+ PrintAndLog("card didn't respond");
+ } else if (recv_len == -2) {
+ PrintAndLog("receive buffer overflow");
}
} else {
PrintAndLog("timeout while waiting for reply.");
}
-
- } // if reply
+ }
+
return 0;
}
// adjust for different time scales
if (protocol == ICLASS || protocol == ISO_15693) {
- first_timestamp *= 32;
- timestamp *= 32;
duration *= 32;
}
if (showWaitCycles && !isResponse && next_record_is_response(tracepos, trace)) {
uint32_t next_timestamp = *((uint32_t *)(trace + tracepos));
- // adjust for different time scales
- if (protocol == ICLASS || protocol == ISO_15693) {
- next_timestamp *= 32;
- }
PrintAndLog(" %10d | %10d | %s | fdt (Frame Delay Time): %d",
(EndOfTransmissionTimestamp - first_timestamp),
// set ssp_frame signal for corr_i_cnt = 1..3
// (send one frame with 16 Bits)
- if (corr_i_cnt == 6'd2)
+ if (corr_i_cnt == 6'd1)
ssp_frame <= 1'b1;
- if (corr_i_cnt == 6'd14)
+ if (corr_i_cnt == 6'd5)
ssp_frame <= 1'b0;
end