ans = FSKrawDemod(cmdStr, FALSE);\r
break;\r
case DEMOD_ASK:\r
- snprintf(cmdStr, sizeof(buf),"%d %d 0", bitRate[config.bitrate], config.inverted );\r
+ snprintf(cmdStr, sizeof(buf),"%d %d 1", bitRate[config.bitrate], config.inverted );\r
ans = ASKDemod(cmdStr, FALSE, FALSE, 1);\r
break;\r
case DEMOD_PSK1:\r
- snprintf(cmdStr, sizeof(buf),"%d %d 0", bitRate[config.bitrate], config.inverted );\r
+ // skip first 160 samples to allow antenna to settle in (psk gets inverted occasionally otherwise)\r
+ CmdLtrim("160");\r
+ snprintf(cmdStr, sizeof(buf),"%d %d 6", bitRate[config.bitrate], config.inverted );\r
ans = PSKDemod(cmdStr, FALSE);\r
break;\r
case DEMOD_PSK2: //inverted won't affect this\r
case DEMOD_PSK3: //not fully implemented\r
- snprintf(cmdStr, sizeof(buf),"%d 0 1", bitRate[config.bitrate] );\r
+ // skip first 160 samples to allow antenna to settle in (psk gets inverted occasionally otherwise)\r
+ CmdLtrim("160");\r
+ snprintf(cmdStr, sizeof(buf),"%d 0 6", bitRate[config.bitrate] );\r
ans = PSKDemod(cmdStr, FALSE);\r
psk1TOpsk2(DemodBuffer, DemodBufferLen);\r
break;\r
break;\r
case DEMOD_BI:\r
case DEMOD_BIa:\r
- snprintf(cmdStr, sizeof(buf),"0 %d %d 0", bitRate[config.bitrate], config.inverted );\r
+ snprintf(cmdStr, sizeof(buf),"0 %d %d 1", bitRate[config.bitrate], config.inverted );\r
ans = ASKbiphaseDemod(cmdStr, FALSE);\r
break;\r
default:\r
} else {\r
clk = GetAskClock("", FALSE, FALSE);\r
if (clk>0) {\r
- if ( ASKDemod("0 0 0", FALSE, FALSE, 1) && test(DEMOD_ASK, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
+ if ( ASKDemod("0 0 1", FALSE, FALSE, 1) && test(DEMOD_ASK, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_ASK;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = FALSE;\r
tests[hits].block0 = PackBits(tests[hits].offset, 32, DemodBuffer);\r
++hits;\r
}\r
- if ( ASKDemod("0 1 0", FALSE, FALSE, 1) && test(DEMOD_ASK, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
+ if ( ASKDemod("0 1 1", FALSE, FALSE, 1) && test(DEMOD_ASK, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_ASK;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = TRUE;\r
tests[hits].block0 = PackBits(tests[hits].offset, 32, DemodBuffer);\r
++hits;\r
}\r
- if ( ASKbiphaseDemod("0 0 0 0", FALSE) && test(DEMOD_BI, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5) ) {\r
+ if ( ASKbiphaseDemod("0 0 0 2", FALSE) && test(DEMOD_BI, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5) ) {\r
tests[hits].modulation = DEMOD_BI;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = FALSE;\r
tests[hits].block0 = PackBits(tests[hits].offset, 32, DemodBuffer);\r
++hits;\r
}\r
- if ( ASKbiphaseDemod("0 0 1 0", FALSE) && test(DEMOD_BIa, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5) ) {\r
+ if ( ASKbiphaseDemod("0 0 1 2", FALSE) && test(DEMOD_BIa, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5) ) {\r
tests[hits].modulation = DEMOD_BIa;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = TRUE;\r
\r
//undo trim from nrz\r
save_restoreGB(0);\r
+ // skip first 160 samples to allow antenna to settle in (psk gets inverted occasionally otherwise)\r
+ CmdLtrim("160");\r
clk = GetPskClock("", FALSE, FALSE);\r
if (clk>0) {\r
- if ( PSKDemod("0 0 1", FALSE) && test(DEMOD_PSK1, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
+ if ( PSKDemod("0 0 6", FALSE) && test(DEMOD_PSK1, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_PSK1;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = FALSE;\r
tests[hits].block0 = PackBits(tests[hits].offset, 32, DemodBuffer);\r
++hits;\r
}\r
- if ( PSKDemod("0 1 1", FALSE) && test(DEMOD_PSK1, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
+ if ( PSKDemod("0 1 6", FALSE) && test(DEMOD_PSK1, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_PSK1;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = TRUE;\r
++hits;\r
}\r
// PSK2 - needs a call to psk1TOpsk2.\r
- if ( PSKDemod("0 0 1", FALSE)) {\r
+ if ( PSKDemod("0 0 6", FALSE)) {\r
psk1TOpsk2(DemodBuffer, DemodBufferLen);\r
if (test(DEMOD_PSK2, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)){\r
tests[hits].modulation = DEMOD_PSK2;\r
}\r
} // inverse waves does not affect this demod\r
// PSK3 - needs a call to psk1TOpsk2.\r
- if ( PSKDemod("0 0 1", FALSE)) {\r
+ if ( PSKDemod("0 0 6", FALSE)) {\r
psk1TOpsk2(DemodBuffer, DemodBufferLen);\r
if (test(DEMOD_PSK3, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)){\r
tests[hits].modulation = DEMOD_PSK3;\r
\r
if ( DemodBufferLen < 64 ) return FALSE;\r
uint8_t si = 0;\r
- for (uint8_t idx = 0; idx < 64; idx++){\r
+ for (uint8_t idx = 28; idx < 64; idx++){\r
si = idx;\r
- if ( PackBits(si, 32, DemodBuffer) == 0x00 ) continue;\r
+ if ( PackBits(si, 28, DemodBuffer) == 0x00 ) continue;\r
\r
uint8_t safer = PackBits(si, 4, DemodBuffer); si += 4; //master key\r
uint8_t resv = PackBits(si, 8, DemodBuffer); si += 8;\r
// 2nibble must be zeroed.\r
- // moved test to here, since this gets most faults first.\r
if (safer != 0x6) continue;\r
if ( resv > 0x00) continue;\r
//uint8_t pageSel = PackBits(si, 1, DemodBuffer); si += 1;\r
//uint8_t fastWrite = PackBits(si, 1, DemodBuffer); si += 1;\r
si += 1+1;\r
int bitRate = PackBits(si, 5, DemodBuffer)*2 + 2; si += 5; //bit rate\r
- if (bitRate > 128) continue;\r
+ if (bitRate > 128 || bitRate < 8) continue;\r
\r
- si += 1+1+2+1;\r
- //uint8_t AOR = PackBits(si, 1, DemodBuffer); si += 1; //bit 15 extended mode\r
+ //uint8_t AOR = PackBits(si, 1, DemodBuffer); si += 1; \r
//uint8_t PWD = PackBits(si, 1, DemodBuffer); si += 1; \r
//uint8_t pskcr = PackBits(si, 2, DemodBuffer); si += 2; //could check psk cr\r
//uint8_t inverse = PackBits(si, 1, DemodBuffer); si += 1;\r
- uint8_t modread = PackBits(si, 3, DemodBuffer); si += 3; //bit 24, 30, 31 could be tested for 0 if not extended mode\r
- //uint8_t maxBlk = PackBits(si, 2, DemodBuffer); si += 2;\r
+ si += 1+1+2+1;\r
+ uint8_t modread = PackBits(si, 3, DemodBuffer); si += 3;\r
+ uint8_t maxBlk = PackBits(si, 3, DemodBuffer); si += 3;\r
//uint8_t ST = PackBits(si, 1, DemodBuffer); si += 1;\r
-\r
+ if (maxBlk == 0) continue;\r
//test modulation\r
if (!testQ5Modulation(mode, modread)) continue;\r
if (bitRate != clk) continue;\r
}\r
\r
bool testBitRate(uint8_t readRate, uint8_t clk){\r
- uint8_t expected[8] = {8, 16, 32, 40, 50, 64, 100, 128};\r
+ uint8_t expected[] = {8, 16, 32, 40, 50, 64, 100, 128};\r
if (expected[readRate] == clk)\r
return true;\r
\r
\r
if ( DemodBufferLen < 64 ) return FALSE;\r
uint8_t si = 0;\r
- for (uint8_t idx = 0; idx < 64; idx++){\r
+ for (uint8_t idx = 28; idx < 64; idx++){\r
si = idx;\r
- if ( PackBits(si, 32, DemodBuffer) == 0x00 ) continue;\r
+ if ( PackBits(si, 28, DemodBuffer) == 0x00 ) continue;\r
\r
uint8_t safer = PackBits(si, 4, DemodBuffer); si += 4; //master key\r
uint8_t resv = PackBits(si, 4, DemodBuffer); si += 4; //was 7 & +=7+3 //should be only 4 bits if extended mode\r
if ( resv > 0x00) continue;\r
\r
uint8_t xtRate = PackBits(si, 3, DemodBuffer); si += 3; //extended mode part of rate\r
- int bitRate = PackBits(si, 3, DemodBuffer); si += 3; //bit rate\r
+ int bitRate = PackBits(si, 3, DemodBuffer); si += 3; //bit rate\r
if (bitRate > 7) continue;\r
uint8_t extend = PackBits(si, 1, DemodBuffer); si += 1; //bit 15 extended mode\r
uint8_t modread = PackBits(si, 5, DemodBuffer); si += 5+2+1; \r
\r
for (; i < endpos; ++i)\r
bits[i - config.offset]=DemodBuffer[i];\r
-\r
+ //print second round of read data (more accurate due to antenna settling)\r
blockData = PackBits(0, 32, bits);\r
+\r
PrintAndLog(" %s | %08X | %s", blockNum, blockData, sprint_bin(bits,32));\r
}\r
\r
uint32_t fw = PackBits(si, 1, DemodBuffer); si += 1;\r
uint32_t inv = PackBits(si, 1, DemodBuffer); si += 1; \r
uint32_t por = PackBits(si, 1, DemodBuffer); si += 1;\r
- if (config.Q5) PrintAndLog("*** Warning *** Info read off a Q5 will not work as expected");\r
+ if (config.Q5) PrintAndLog("*** Warning *** Config Info read off a Q5 will not display as expected");\r
PrintAndLog("");\r
PrintAndLog("-- T55xx Configuration & Tag Information --------------------");\r
PrintAndLog("-------------------------------------------------------------");\r
{"read", CmdT55xxReadBlock, 0, "b <block> p [password] [o] [1] -- Read T55xx block data. Optional [p password], [override], [page1]"},\r
{"resetread",CmdResetRead, 0, "Send Reset Cmd then lf read the stream to attempt to identify the start of it (needs a demod and/or plot after)"},\r
{"write", CmdT55xxWriteBlock,0, "b <block> d <data> p [password] [1] -- Write T55xx block data. Optional [p password], [page1]"},\r
- {"trace", CmdT55xxReadTrace, 0, "[1] Show T55xx traceability data (page 1/ blk 0-1)"},\r
- {"info", CmdT55xxInfo, 0, "[1] Show T55xx configuration data (page 0/ blk 0)"},\r
+ {"trace", CmdT55xxReadTrace, 0, "[1] Show T55x7 traceability data (page 1/ blk 0-1)"},\r
+ {"info", CmdT55xxInfo, 0, "[1] Show T55x7 configuration data (page 0/ blk 0)"},\r
{"dump", CmdT55xxDump, 0, "[password] [o] Dump T55xx card block 0-7. Optional [password], [override]"},\r
{"special", special, 0, "Show block changes with 64 different offsets"},\r
{"wakeup", CmdT55xxWakeUp, 0, "Send AOR wakeup command"},\r
if (currSample < (fclow-2)){ //0-5 = garbage noise
//do nothing with extra garbage
} else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves
- if (LastSample > (fchigh-2) && preLastSample < (fchigh-1)){
+ if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
dest[numBits-1]=1; //correct last 9 wave surrounded by 8 waves
}
dest[numBits++]=1;
- } else if (currSample > (fchigh+1) && !numBits) { //12 + and first bit = garbage
+ } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = garbage
//do nothing with beginning garbage
} else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's
dest[numBits++]=1;
//if lastval was 1, we have a 1->0 crossing
if (dest[idx-1]==1) {
- if (!numBits && n < rfLen/fclow) {
- n=0;
- lastval = dest[idx];
- continue;
+ if (!numBits) {
+ if (n < rfLen/fclow) {
+ n=0;
+ lastval = dest[idx];
+ continue;
+ }
+ n = (n * fclow + rfLen/4) / rfLen;
+ } else {
+ n = (n * fclow + rfLen/2) / rfLen;
}
- n = (n * fclow + rfLen/2) / rfLen;
} else {// 0->1 crossing
//test first bitsample too small
if (!numBits && n < rfLen/fchigh) {
return (int)startIdx;
}
+/*
+void dummy(char *fmt, ...){}
+
+#ifndef ON_DEVICE
+#include "ui.h"
+#define prnt PrintAndLog
+#else
+
+#define prnt dummy
+#endif
+*/
// by marshmellow
// to detect a wave that has heavily clipped (clean) samples
uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
{
uint16_t allPeaks=1;
uint16_t cntPeaks=0;
- size_t loopEnd = 512+60;
+ size_t loopEnd = 512+160;
if (loopEnd > size) loopEnd = size;
- for (size_t i=60; i<loopEnd; i++){
+ for (size_t i=160; i<loopEnd; i++){
if (dest[i]>low && dest[i]<high)
allPeaks=0;
else
}
return allPeaks;
}
-
// by marshmellow
// to help detect clocks on heavily clipped samples
// based on count of low to low
{
uint8_t fndClk[] = {8,16,32,40,50,64,128};
size_t startwave;
- size_t i = 0;
+ size_t i = 100;
size_t minClk = 255;
// get to first full low to prime loop and skip incomplete first pulse
while ((dest[i] < high) && (i < size))
minClk = i - startwave;
}
// set clock
+ //prnt("minClk: %d",minClk);
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
return fndClk[clkCnt];
uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
uint8_t clkEnd = 9;
uint8_t loopCnt = 255; //don't need to loop through entire array...
- if (size <= loopCnt) return -1; //not enough samples
-
+ if (size <= loopCnt+60) return -1; //not enough samples
+ size -= 60; //sometimes there is a strange end wave - filter out this....
//if we already have a valid clock
uint8_t clockFnd=0;
for (;i<clkEnd;++i)
}
}
}
-
uint8_t ii;
uint8_t clkCnt, tol = 0;
uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
}
//if we found no errors then we can stop here and a low clock (common clocks)
// this is correct one - return this clock
- //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
+ //prnt("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
if(errCnt==0 && clkCnt<7) {
if (!clockFnd) *clock = clk[clkCnt];
return ii;
uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
uint16_t loopCnt = 4096; //don't need to loop through entire array...
if (size == 0) return 0;
- if (size<loopCnt) loopCnt = size;
+ if (size<loopCnt) loopCnt = size-20;
//if we already have a valid clock quit
size_t i=1;
uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
fc = countFC(dest, size, 0);
if (fc!=2 && fc!=4 && fc!=8) return -1;
- //PrintAndLog("DEBUG: FC: %d",fc);
+ //prnt("DEBUG: FC: %d",fc);
//find first full wave
- for (i=0; i<loopCnt; i++){
+ for (i=160; i<loopCnt; i++){
if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
if (waveStart == 0) {
waveStart = i+1;
- //PrintAndLog("DEBUG: waveStart: %d",waveStart);
+ //prnt("DEBUG: waveStart: %d",waveStart);
} else {
waveEnd = i+1;
- //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+ //prnt("DEBUG: waveEnd: %d",waveEnd);
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
firstFullWave = waveStart;
}
}
}
- //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+ //prnt("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
//test each valid clock from greatest to smallest to see which lines up
for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
waveStart = 0;
errCnt=0;
peakcnt=0;
- //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
+ //prnt("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
//top edge of wave = start of new wave
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
//if this wave is a phase shift
- //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
+ //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
peakcnt++;
lastClkBit+=clk[clkCnt];
if (peaksdet[i] > peaksdet[best]) {
best = i;
}
- //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+ //prnt("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
}
return clk[best];
}
+int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
+ //find shortest transition from high to low
+ size_t i = 0;
+ size_t transition1 = 0;
+ int lowestTransition = 255;
+ uint8_t lastWasHigh=0;
+ //find first valid beginning of a high/low wave
+ if (dest[i] >= peak) {
+ for (; i < size; i++) {
+ if (dest[i] <= low) break;
+ }
+ lastWasHigh=0;
+ } else if (dest[i] <= low) {
+ for (; i < size; i++) {
+ if (dest[i] >= peak) break;
+ }
+ lastWasHigh=1;
+ } else {
+ for (; i < size; i++) {
+ if (dest[i] >= peak || dest[i] <= low) {
+ lastWasHigh = (dest[i] >= peak);
+ break;
+ }
+ }
+ }
+ if (i==size) return 0;
+ transition1 = i;
+
+ for (;i < size; i++) {
+ if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
+ lastWasHigh = (dest[i] >= peak);
+ if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
+ transition1 = i;
+ }
+ }
+ if (lowestTransition == 255) lowestTransition = 0;
+ return lowestTransition;
+}
+
//by marshmellow
//detect nrz clock by reading #peaks vs no peaks(or errors)
int DetectNRZClock(uint8_t dest[], size_t size, int clock)
uint8_t clk[]={8,16,32,40,50,64,100,128,255};
size_t loopCnt = 4096; //don't need to loop through entire array...
if (size == 0) return 0;
- if (size<loopCnt) loopCnt = size;
-
+ if (size<loopCnt) loopCnt = size-20;
//if we already have a valid clock quit
for (; i < 8; ++i)
if (clk[i] == clock) return clock;
int peak, low;
if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
- //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
+ int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
+ //prnt("DEBUG: peak: %d, low: %d",peak,low);
size_t ii;
uint8_t clkCnt;
uint8_t tol = 0;
- uint16_t peakcnt=0;
- uint16_t peaksdet[]={0,0,0,0,0,0,0,0};
- uint16_t maxPeak=0;
+ uint16_t smplCnt = 0;
+ int16_t peakcnt = 0;
+ int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
+ uint16_t maxPeak = 255;
+ uint8_t firstpeak = 0;
//test for large clipped waves
for (i=0; i<loopCnt; i++){
if (dest[i] >= peak || dest[i] <= low){
- peakcnt++;
+ if (!firstpeak) continue;
+ smplCnt++;
} else {
- if (peakcnt>0 && maxPeak < peakcnt){
- maxPeak = peakcnt;
+ firstpeak=1;
+ if (smplCnt > 6 ){
+ if (maxPeak > smplCnt){
+ maxPeak = smplCnt;
+ //prnt("maxPk: %d",maxPeak);
+ }
+ peakcnt++;
+ //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
+ smplCnt=0;
}
- peakcnt=0;
}
}
+ uint8_t samePeak=0;
+ uint8_t errBitHigh=0;
peakcnt=0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 8; ++clkCnt){
- //ignore clocks smaller than largest peak
- if (clk[clkCnt]<maxPeak) continue;
-
+ //ignore clocks smaller than smallest peak
+ if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
//try lining up the peaks by moving starting point (try first 256)
- for (ii=0; ii< loopCnt; ++ii){
+ for (ii=20; ii < loopCnt; ++ii){
if ((dest[ii] >= peak) || (dest[ii] <= low)){
peakcnt=0;
- // now that we have the first one lined up test rest of wave array
- for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
- if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
- peakcnt++;
+ uint8_t bitHigh =0;
+ uint8_t ignoreCnt = 0;
+ uint8_t ignoreWindow = 4;
+ int lastBit = ii-clk[clkCnt];
+ //loop through to see if this start location works
+ for (i = ii; i < size-20; ++i) {
+ // if we are at a clock bit
+ if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
+ //test high/low
+ if (dest[i] >= peak || dest[i] <= low) {
+ if (samePeak) peakcnt--;
+ bitHigh=1;
+ peakcnt++;
+ errBitHigh = 0;
+ ignoreCnt = ignoreWindow;
+ lastBit += clk[clkCnt];
+ samePeak = 1;
+ } else if (i == lastBit + clk[clkCnt] + tol) {
+ lastBit += clk[clkCnt];
+ samePeak = 0;
+ }
+ //else if not a clock bit and no peaks
+ } else if (dest[i] < peak && dest[i] > low){
+ samePeak = 0;
+ if (ignoreCnt==0){
+ bitHigh=0;
+ if (errBitHigh==1) peakcnt--;
+ errBitHigh=0;
+ } else {
+ ignoreCnt--;
+ }
+ // else if not a clock bit but we have a peak
+ } else if ((dest[i]>=peak || dest[i]<=low) && (bitHigh==0)) {
+ //error bar found no clock...
+ errBitHigh=1;
}
}
if(peakcnt>peaksdet[clkCnt]) {
for (iii=7; iii > 0; iii--){
if (peaksdet[iii] > peaksdet[best]){
best = iii;
+ } else if (peaksdet[iii] == peaksdet[best] && lowestTransition){
+ if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))){
+ best = iii;
+ }
}
- //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+ //prnt("DEBUG: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
}
+
return clk[best];
}
return (int) startidx;
}
-// by marshmellow - demodulate NRZ wave (both similar enough)
+// by marshmellow - demodulate NRZ wave
// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
-// there probably is a much simpler way to do this....
-int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr)
-{
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
if (justNoise(dest, *size)) return -1;
*clk = DetectNRZClock(dest, *size, *clk);
if (*clk==0) return -2;
size_t i, gLen = 4096;
- if (gLen>*size) gLen = *size;
+ if (gLen>*size) gLen = *size-20;
int high, low;
if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
- int lastBit = 0; //set first clock check
- size_t iii = 0, bitnum = 0; //bitnum counter
- uint16_t errCnt = 0, MaxBits = 1000;
- size_t bestErrCnt = maxErr+1;
- size_t bestPeakCnt = 0, bestPeakStart = 0;
- uint8_t bestFirstPeakHigh=0, firstPeakHigh=0, curBit=0, bitHigh=0, errBitHigh=0;
- uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
- uint16_t peakCnt=0;
- uint8_t ignoreWindow=4;
- uint8_t ignoreCnt=ignoreWindow; //in case of noise near peak
- //loop to find first wave that works - align to clock
- for (iii=0; iii < gLen; ++iii){
- if ((dest[iii]>=high) || (dest[iii]<=low)){
- if (dest[iii]>=high) firstPeakHigh=1;
- else firstPeakHigh=0;
- lastBit=iii-*clk;
- peakCnt=0;
- errCnt=0;
- //loop through to see if this start location works
- for (i = iii; i < *size; ++i) {
- // if we are at a clock bit
- if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) {
- //test high/low
- if (dest[i] >= high || dest[i] <= low) {
- bitHigh = 1;
- peakCnt++;
- errBitHigh = 0;
- ignoreCnt = ignoreWindow;
- lastBit += *clk;
- } else if (i == lastBit + *clk + tol) {
- lastBit += *clk;
- }
- //else if no bars found
- } else if (dest[i] < high && dest[i] > low){
- if (ignoreCnt==0){
- bitHigh=0;
- if (errBitHigh==1) errCnt++;
- errBitHigh=0;
- } else {
- ignoreCnt--;
- }
- } else if ((dest[i]>=high || dest[i]<=low) && (bitHigh==0)) {
- //error bar found no clock...
- errBitHigh=1;
- }
- if (((i-iii) / *clk)>=MaxBits) break;
- }
- //we got more than 64 good bits and not all errors
- if (((i-iii) / *clk) > 64 && (errCnt <= (maxErr))) {
- //possible good read
- if (!errCnt || peakCnt > bestPeakCnt){
- bestFirstPeakHigh=firstPeakHigh;
- bestErrCnt = errCnt;
- bestPeakCnt = peakCnt;
- bestPeakStart = iii;
- if (!errCnt) break; //great read - finish
- }
- }
- }
+
+ uint8_t bit=0;
+ //convert wave samples to 1's and 0's
+ for(i=20; i < *size-20; i++){
+ if (dest[i] >= high) bit = 1;
+ if (dest[i] <= low) bit = 0;
+ dest[i] = bit;
}
- //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
- if (bestErrCnt > maxErr) return bestErrCnt;
-
- //best run is good enough set to best run and set overwrite BinStream
- lastBit = bestPeakStart - *clk;
- memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk);
- bitnum += (bestPeakStart / *clk);
- for (i = bestPeakStart; i < *size; ++i) {
- // if expecting a clock bit
- if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) {
- // test high/low
- if (dest[i] >= high || dest[i] <= low) {
- peakCnt++;
- bitHigh = 1;
- errBitHigh = 0;
- ignoreCnt = ignoreWindow;
- curBit = *invert;
- if (dest[i] >= high) curBit ^= 1;
- dest[bitnum++] = curBit;
- lastBit += *clk;
- //else no bars found in clock area
- } else if (i == lastBit + *clk + tol) {
- dest[bitnum++] = curBit;
- lastBit += *clk;
- }
- //else if no bars found
- } else if (dest[i] < high && dest[i] > low){
- if (ignoreCnt == 0){
- bitHigh = 0;
- if (errBitHigh == 1){
- dest[bitnum++] = 7;
- errCnt++;
- }
- errBitHigh=0;
- } else {
- ignoreCnt--;
- }
- } else if ((dest[i] >= high || dest[i] <= low) && (bitHigh == 0)) {
- //error bar found no clock...
- errBitHigh=1;
+ //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
+ size_t lastBit = 0;
+ size_t numBits = 0;
+ for(i=21; i < *size-20; i++) {
+ //if transition detected or large number of same bits - store the passed bits
+ if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
+ memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
+ numBits += (i - lastBit + (*clk/4)) / *clk;
+ lastBit = i-1;
}
- if (bitnum >= MaxBits) break;
}
- *size = bitnum;
- return bestErrCnt;
+ *size = numBits;
+ return 0;
}
//by marshmellow
uint16_t loopCnt = 4096; //don't need to loop through entire array...
if (*size<loopCnt) loopCnt = *size;
+ size_t numBits=0;
uint8_t curPhase = *invert;
size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint8_t fc=0, fullWaveLen=0, tol=1;
waveEnd = i+1;
//PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
waveLenCnt = waveEnd-waveStart;
- if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave
+ if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
lastAvgWaveVal = avgWaveVal/(waveLenCnt);
firstFullWave = waveStart;
fullWaveLen=waveLenCnt;
}
avgWaveVal += dest[i+2];
}
+ if (firstFullWave == 0) {
+ // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
+ // so skip a little to ensure we are past any Start Signal
+ firstFullWave = 160;
+ memset(dest, curPhase, firstFullWave / *clock);
+ } else {
+ memset(dest, curPhase^1, firstFullWave / *clock);
+ }
+ //advance bits
+ numBits += (firstFullWave / *clock);
+ //set start of wave as clock align
+ lastClkBit = firstFullWave;
//PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
- lastClkBit = firstFullWave; //set start of wave as clock align
//PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
waveStart = 0;
- size_t numBits=0;
- //set skipped bits
- memset(dest, curPhase^1, firstFullWave / *clock);
- numBits += (firstFullWave / *clock);
dest[numBits++] = curPhase; //set first read bit
for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
//top edge of wave = start of new wave